
ACTILOG: An Agent Activation Language

Jacinto A. Dávila

Centro de Simulación y Modelos (CESIMO)
Universidad de Los Andes. Mérida. Venezuela

jacinto@ula.ve

http://cesimo.ing.ula.ve/~jacinto

FAX: +58 274 2402811

Abstract. ACTILOG is a language to write generalized condition →
action activation rules. We propose it as an alternative and a comple-
ment to OPENLOG [6], another agent logic programming language for
an abductive reasoner. We want to show how implications (conditional
goals) can be used to state integrity contraints for an agent. These in-
tegrity contraints describe conditions under which the agent’s goals must
be reduced to plans that can be executed. For instance, a rule such as if
A then B, will indicate to the agent that whenever it can prove that A
is the case, it then should pursue goal B. B is normally the description
of a task that must be reduced to a set of low-level, primitive actions
that the agent can execute.

1 Introduction

ACTILOG is a language to write generalized condition → action activation
rules. We propose it as an alternative and a complement to OPENLOG [6],
another agent logic programming language for an abductive reasoner. The design
is such that any semantics for abductive logic programs could be taken as the
basic semantics for the programming languages ACTILOG and OPENLOG.
In this way, we build upon existing formalizations of abductive reasoning and
abductive logic programming[10].

Our objectives are similar to those of the IMPACT project [8] and their taps
(Temporal Agent Programs), i.e. to program agents using the most expressive
knowledge representation. However, instead of pursuing a characterization of
the model-theoretic semantics, we have aimed first towards the description of
the reasoning mechanisms based on abduction.

In previous work [4], [6], we suggested that the process of activation of goals
in an agent could be understood as the derivation of unconditional goals from
integrity constraints. Here, we want to show how implications (conditional goals)
can be used to state integrity constraints for an agent. These integrity constraints
describe conditions under which the agent’s goals must be reduced to plans that
can be executed. For instance, a rule such as if A then B, will indicate to the
agent that whenever it can prove that A is the case, it then should pursue goal
B. B is normally the description of a task that must be reduced to a set of
low-level, primitive actions that the agent can execute.

2 Jacinto A. Dávila

ACTILOG is similar to other well-known production-rule languages (such as
OPS5 [3]). A first difference with respect to previous work is that ACTILOG,
as OPENLOG [6], relies on a general purpose representation of actions and
events (i.e. a logic of actions) in the form of background theories. Temporal and
common-sense reasoning about initiation and termination of properties is, as we
have seen, possible within this framework.

A second important difference (with respect OPS5, in particular) is that
ACTILOG is an object-level language1. It does not include syntactic constructs
like goal G or plan P. These characterizations are provided by the architecture
of the agent [11].

ACTILOG is intended as a language to write declarative sentences stating
the relations between observations and subsequent actions to be performed in
response to those observations. These sentences are regarded as integrity con-
straints for the behaviour of the agent, in close analogy to integrity constraints
for information stored in a database. All the control devices required to inter-
pret and verify integrity constraints are provided by the proof procedure that
characterizes the reasoning mechanism of the agent [4], [9].

The enriched syntax of ACTILOG (with respect to languages that allow sim-
ple implications with atomic heads) supports the arrangement of the activating
conditions so as to minimize redundant processing. The head of an implication
can be almost any logical sentence (including implications) and thus it is possible
to write, not only sentences of the form: (A← B)← C, but also sentences such
as ((A ← B) ∧ (C ← D)) ← E), where E is a condition shared by both nested
implications. This captures some of the functionalities of the RETE algorithm
which has been used to improve the efficiency of the OPS5 platform (.ibid).

The following two sections describe ACTILOG in detail. Afterwards, We
compare the language with OPENLOG and discuss the advantages of each.

2 Syntax of ACTILOG

The syntax of ACTILOG is presented in table 1 in a variant of the BNF form.
The conventions to read the table are the same as in normal BNF. Notably, C∗

represents zero or more occurrence of the category symbol C. As in OPENLOG,
ACTILOG’s syntax is open so that the programmer can include fluent and ac-
tion names into the language. Actually, all the lower level syntactic categories,
including boolean fluents, are borrowed from [6].

The top-most syntactic category is UNIT . A “unit” in ACTILOG gathers
a set of activation rules (defined by ACT Rule) related to a particular task.
Below (in fig. 1), we give an example of ACTILOG encoding by translating the
instructions for an elevator controller.

Another important category in the syntax is Quants. It stands for the sub-
expression in an ACT rule that specifies which variables are existentially and
universally quantified.

1 As it is the case with OPENLOG.

ACTILOG: An Agent Activation Language 3

Table 1 ACTILOG Language: Syntax

Unit ::= Set to TaskName Activation Unit
Set ::= Act Rule (and Set)∗ Activation Set
Act Rule ::= Quants if Body then Head Basic Activation Rule
Quants ::= One Quant∗ Quantifiers
One Quant ::= ∃Var One Quantifier

| ∀Var
Body ::= Condition (and Body)∗ Body of an IC
Head ::= Disjunct (or Head)∗ Head of an IC
Disjunct ::= Set

| Task
| false

Condition ::= Funcfluent at Term Conditions
| Task
| not Condition
| Query Tests on “rigid” informa-

tion
Task ::= TaskName Schedule Task descriptions
Schedule ::= Schedule and Schedule Schedules

| at Term | before Term
| after Term | starting at Term
| finishing at Term
| starting before Term
| finishing before Term
| starting after Term
| finishing after Term

TaskName ::= Funcaction | Funcproc Action names
| TaskName (; TaskName)∗

| TaskName (par TaskName)∗

Funcaction ::= . . . As in OPENLOG
Funcproc ::= . . . As in OPENLOG
Funcfluent ::= . . . As in OPENLOG
Funcboolean ::= . . . As in OPENLOG
Term ::= Ind | Var As in OPENLOG
Ind ::= . . . As in OPENLOG
Var ::= . . . As in OPENLOG

Table 1. Syntax of ACTILOG

4 Jacinto A. Dávila

Variables for which quantification is not indicated are assumed as universally
quantified and their scope of quantification is the whole activation unit. This
means that the scope of the variable so implicitly quantified will include the
scope of quantification of the other variables. This aspect must be emphasized
because it implies that existentially quantified variables will depend on those
implicitly quantified variables for skolemization, as shown in example 1:.

Example 1. Consider the ACTILOG rule:

exists T1 if on(N) at T and T lt T1 then serve(N) at T1

It should be read as: ∀N ∀T ∃T1(serve(N,T1)← on(N,T) ∧ T < T1).
So, in clausal form one would write: serve(N, f(N,T)) ← on(N,T) ∧ T <

f(N,T), where f(N,T) is a skolem function.

Thus, the syntax of ACTILOG takes it beyond the realm of Horn clauses
extended with negation. One can now have existentially quantified variables in
the head of the clause. The implications of this are discussed in the following
section.

The other syntactic categories are better understood by the translation of
the rules into integrity constraints involving the predicates holds(P, T) and
done(A, To, Tf). This is the purpose of tables 3, 4 and 5 in the following sections.
Before that, however, we include the semantics specification of OPENLOG for
easy reference.

2.1 The Semantics of OPENLOG revisited

As in [6], the basic semantics of OPENLOG is shown in table2 2 by means of
the predicate done3. That is, we employ a indirect mechanism: the definition of
a predicate, to state the semantic. Basically, it is a mapping from our languages
into normal logic programs. Thus, OPENLOG code inherits existing semantics
for logic programs, including, we presume, those semantics for positive taps [8].

Recall that the definition of done can also function as an interpreter for the
language. Declaratively, done(A, To, Tf) reads “an action of type A is started
at To and completed at Tf”. One of the innovations in OPENLOG was that
between any two actions in a sequence it is always possible to “insert” a third
event without disrupting the semantics of the programming language. Axiom
[DN02] formalizes this possibility. This is what we mean by plans (derived from
OPENLOG programs) as being open to updates from the execution environment.

The definition of semantics in table 2 needs to be completed with a “base
case” clause for the predicate done and the definition of holds. These two ele-
ments are part of the semantics, but they are also the key elements of a back-
ground theory, a theory of change that, as we have shown in [6, 4], can be based
on the Situation Calculus [14] or the Event Calculus [12].

2 PROLOG-like syntax is being used.
3 The definitions of other predicates are also required but are not problematic.

ACTILOG: An Agent Activation Language 5

Table 2 OPENLOG−ACTILOG : Semantics and interpreter

done(Pr, To, Tf) ← proc Pr begin C end
∧ done(C, To, Tf) [DN01]

done((C1 ; C2), To, Tf) ← done(C1, To, T1) ∧ T1 < T2

∧ done(C2, T2, Tf) [DN02]
done((C1 par C2),

To, Tf) ← done(C1, To, T1) ∧ done(C2, To, Tf)
∧ T1 ≤ Tf

∨ done(C1, To, Tf) ∧ done(C2, To, T1)
∧ T1 < Tf [DN03]

done((C1 + C2), To, Tf) ← done(C1, To, Tf) ∧ done(C2, To, Tf) [DN04]
done((if E then C1),

To, Tf) ← holdsAt(E, To) ∧ done(C1, To, Tf)
∨ ¬holdsAt(E, To) ∧ To = Tf [DN05]

done((if E then C1

else C2), To, Tf) ← holdsAt(E, To) ∧ done(C1, To, Tf)
∨ ¬holdsAt(E, To) ∧ done(C2, To, Tf) [DN06]

done((while
∃L (Eb(L)
do B(L))),
To, Tf) ← (¬∃L holdsAt(Eb(L), To)

∧ To = Tf)
∨ (holdsAt(Eb(L

′), To)
∧ done(B(L′), To, T1)
∧ To < T1

∧ done((while
∃L (Eb(L) do B(L))), T1, Tf)) [DN07]

done((begin C end),
To, Tf) ← done(C, To, Tf) [DN08]

done(nil, To, To) [DN09]

holdsAt(and(X, Y), T) ← holdsAt(X, T) ∧ holdsAt(Y, T) [DN10]
holdsAt(or(X, Y), T) ← holdsAt(X, T) ∨ holdsAt(Y, T) [DN11]
holdsAt(not(X), T) ← ¬holdsAt(X, T) [DN12]
holdsAt(X, T) ← nonrigid(X) ∧ holds(X, T) [DN13]
holdsAt(Q, T) ← rigid(Q) ∧ Q [DN14]

nonrigid(X) ← isfluent(X) [DN15]

rigid(X) ← ¬isfluent(X) [DN16]

Table 2. The Semantics of OPENLOG and ACTILOG

6 Jacinto A. Dávila

ACTILOG also allows for composite task names, using the operators “;” and
“par” (and we could also add “+”). The idea is to borrow part of the definition
of done in table 2 to deal with these. However, for the sake of simplicity we omit
these operators in the semantics of ACTILOG.

3 The semantics of ACTILOG

It must be evident at this stage that OPENLOG and, now ACTILOG, are no
more than “syntactic sugar” for logic (traditional logic programming in the case
of OPENLOG). The exercise of defining these languages is important, however,
because it helps to clarify what logical concepts are involved in programming an
agent.

Thus, as with OPENLOG, to understand the meaning of any ACTILOG
unit, one must restore it to its underlying logical form. Unlike OPENLOG pro-
grams however, an ACTILOG unit cannot be transformed into a normal logic
program, without losing expressiveness. This is due to the fact that existen-
tial quantification is highly restricted in logic programs. We must use a richer
form of logic that admits explicit quantification of variables and a more complex
sentence structure.

Nevertheless, this is not a problem in our system because it is based on the
iff abductive proof procedure[9], iffPP, which can accommodate a more gen-
eral structure for implications (conditional goals). However, a few functionalities
must be added to the specification of iffPP to support the agent programming
language. The inference rules of the proof procedure remain the same except
for splitting of implications and case analysis, which must now include a
new set of conditions for their application. This rule is not applied if there are
universally quantified variables in the head of an implication. The reason for
this, which also applies to the rule of case analysis is analogous to the reason for
skolemization and is better explained by example 2, a follow-up to example 1:

Example 2. Suppose that we split:

∀N ∀T ∃T1((serve(N,T1) ∧ T < T1)← on(N,T)) (1)

We will end up with:

∀N ∀T ∃T1((serve(N,T1) ∧ T < T1) ∨ (false← on(N,T))) (2)

The reason not to split the sentence in this example is that the first disjunct
in the resulting sentence (serve(N,T1)) cannot be incorporated into the uncon-
ditional goals (as it should be), because it involves the universally quantified
variable N . If one insists on doing so, the proof procedure will treat N as exis-
tentially quantified. Note that whether this yields incorrect answers depends on
the rest of the formalization (in particular on the definition of serve).

However, it remains a problem that the system is losing the dependency
between existential and universal quantification. One can see this by looking

ACTILOG: An Agent Activation Language 7

back at the clausal form of the sentence in the example 2: serve(N, f(N,T))←
on(N,T) ∧ T < f(N,T), which after splitting leaves serve(N, f(N,T)) as a
separate disjunct. The value of the second argument of serve is determined, not
only by N but also by T .

Of course, nothing has been lost if one keeps the dependency by appealing
to the skolem function (f(N,T)). However, this would imply significant modi-
fications to the proof procedure. The use of skolemization has been attempted
before (see Denecker and De Schreye’s SLDNFA [7] for a system similar to iffPP,
but that uses skolemization) and it has proved to be cumbersome and inefficient.

However, one can reach a proper compromise with the following strategy:
The proof procedure will preserve the dependencies between variables in the
implications and will be banned from splitting (or doing case analysis) on any
implication the head of which contains variables with active dependencies.

The concept of active dependency is simple. The dependency between T1
and N and T above is active if N and T , in that implication, have not been
assigned known constant values. For instance, when, by propagation of on(3, 1),
the implication above becomes ∃T1(serve(3, T1)← 1 < T1) then this can safely
be handled by splitting because T1 is now as defined as it can be by skolemization
(T1 = f(3, 1)).

Observe that, for this strategy, the only extension required in iffPP is a list of
“dependencies” between variables in the implications. A list which could be built
by straightforward parsing of the quantifiers in the original integrity constraints.
To make the process easier, we restrict the quantifiers in the ACTILOG rules to
appear as shown in table 1.

All this explained, we can now show how to transform ACTILOG units into
sets of integrity contraints for agent programming. The procedure is described by
a normal (meta-)logic program in tables 3, 4 and 5. To simplify the presentation
the syntax of the logic programs is slightly relaxed. “{}” represents both empty
categories in ACTILOG and empty formulae. The predicate append/3 has the
usual interpretation.

4 OPENLOG versus ACTILOG

OPENLOG and ACTILOG are not exactly alternative solutions for the same
problem. We need a mechanism for the activation of goals in an agent. ACTILOG
allows the triggering of tasks at anytime, even if the task itself is defined by
OPENLOG procedures. In the examples above serve could be defined by an
OPENLOG procedure, but we will still need the aforementioned ACTILOG rule
to activate the goal.

If we do not allow for activation of goals (i.e. we do not want to use AC-
TILOG, only OPENLOG), the agent would have to have one, top-most main
goal from which all the possible activities of the agent are derived. This is the
solution in GOLOG[13]. Ours is closer to the forward-chaining-like solution in
the taps[8], without the overhead of model-theoretic computations.

8 Jacinto A. Dávila

Table 3 ACTILOG translation into Integrity Constraints

rewrite activa ic(Set to TaskName, IC)
← transform(Set, IC) [RW −ACTI]

transform(QV ars FRule and RestRules,
NQV ars(NewFRule ∧NRestRules))

← transform({} FRule, QV arsFR (NewFRule))
∧ transform({} RestRules, QV arsRest (NRestRules))
∧ transform quantifiers(QV ars, QV ars′)
append(QV arsFR, QV arsRest, QV arTemp)
append(QV ars′, QV arTemp, NQV ars) [TRSET]

transform(QV ars if Body then Head,
NQV ars(NewHead← NewBody))

← transform({} Body, {} NewBody)
∧ transform(QV ars Head, NQV ars (NewHead)) [TRRULE]

transform({} Condition and RestConds,
{}(holds(P, T) ∧NRestCond))

← Condition = P at T
∧ is fluent(P)
transform({} RestCond, {} (NRestCond)) [TRCOND− FL]

Table 3. Translating ACTILOG rules into Integrity Constraints (Part 1)

ACTILOG: An Agent Activation Language 9

Table 4 ACTILOG translation into Integrity Constraints

transform({} Condition and RestConds,
{}(done(Name, T1, T2) ∧ LogSched ∧NewRC))

← Condition = Name Schedule
∧ actionname(Name)
∧ transform schedule(T1, T2, Schedule, LogSched)
∧ transform({} RestConds, {} (NewRC)) [TRCOND−ACT]

transform({} not Condition, {}¬(NewCond))
← transform({} Condition, {} (NewCond)) [TRCOND−NOT]

transform(QV ars Disjunct or RestDisj,
NQV ars(NewDisj ∨NewRD))

← transform({} Disjunct, V ars1 (NewDis))
∧ transform({} RestDisj, ReV ars (NewRD))
∧ transform quantifiers(QV ars, LogQV ars)
append(V ars1, ReV ars, QV arTemp)
append(LogQV ars, QV arTemp, NQV ars) [TRHEAD−OR]

transform(QV ars Task,
NQV ars(LogSched ∧ done(TaskName, T1, T2)))

← Task = TaskName Schedule
∧ transform schedule(T1, T2, Schedule, LogSched)
∧ transform quantifiers(QV ars, QV ars′)
append(QV ars′, {∃T1 ∃T2}, NQV ars) [TRHEAD−ACT]

Table 4. Translating ACTILOG rules into Integrity Constraints (Part 2)

10 Jacinto A. Dávila

Table 5 ACTILOG translation into Integrity Constraints

transform quantifiers({}, {}) [TRQU1]
transform quantifiers(exists V RestQV,∃V RestQV ′)

← var(V) ∧ transform quantifiers(RestQV, RestQV ′) [TRQU2]

transform schedule(To, Tf ,at T, T le To ∧ T lt Tf) [TRSCH1]
transform schedule(To, Tf ,before T, To lt T ∧ Tf le T) [TRSCH2]
transform schedule(To, Tf ,after T, T le To ∧ T lt Tf) [TRSCH3]
transform schedule(To, Tf , starting at T, To eq T ∧ Tf lt T) [TRSCH4]
transform schedule(To, Tf ,finishing at T, To lt T ∧ Tf eq T) [TRSCH5]
transform schedule(To, Tf , starting before T, To lt T) [TRSCH6]
transform schedule(To, Tf ,finishing before T, Tf lt T) [TRSCH7]
transform schedule(To, Tf , starting after T, T lt To) [TRSCH8]
transform schedule(To, Tf ,finishing after T, T le Tf) [TRSCH9]

Table 5. Translating ACTILOG rules into Integrity Constraints (Part 3)

ACTILOG rules contribute to keep the agent open to its environment (as we
show below). Thus, the programmer will normally have to use ACTILOG and
OPENLOG to program the agent.

if currentfloor(M) at T and on(N) at T then (

if M eq N then open par turnoff(N); close after T

and if M lt N then addone(M,Nx); up(Nx) after T

and if N lt M then subone(M,Nx); down(Nx) after T)

Fig. 1. ACTILOG rule for a simple elevator controller

The ACTILOG rule in figure 1 provides a solution for an simple reactive
elevator-controller agent.

Observe that an ACTILOG “unit” will have neither recursive call, nor while
statements. The iterative reasoning is generated by the architecture of the agent,
i.e. by the cycling in which the whole system is engaged (as explained in [11]).

An ACTILOG unit is more open to the environment than a OPENLOG
procedure because cycle will check the environment on each iteration and new
information will be constantly arriving. There is less interaction with the en-
vironment when one has a while statement in a OPENLOG procedure which
is being unfolded. By using while, one is introducing an iterative process in
addition to (and without the benefits of interaction with the environment of)
the iterative process generated by cycle. It is like having a loop within a loop,
with the inconvenience that the “included-loop” (the demo predicate in [11] pro-

ACTILOG: An Agent Activation Language 11

cessing the while statement) is not forced to check the environment on every
iteration, as cycle is.

Notice that this is the case even if while statements can be interrupted to
assimilate inputs. To achieve the same number of “tests” on the environment
per unit of time, one would have to to force the program processing the while
to suspend processing after each iteration. In ACTILOG, cycle defines the only
iterative mechanism. No “loops within loops” can affect the interaction with the
environment.

In addition, ACTILOG units can support “planning ahead”. Actions will be
promoted from the head of implications to the bag of abducibles and, after that,
they will be “firing” implications and triggering subsequent actions.

There still is one more advantage in ACTILOG due to the fact the we are us-
ing the iff abductive proof procedure. Plans generated from ACTILOG rules, in
contrast to those obtained from OPENLOG procedures, can be made to contain
a minimal set of abduced steps. The checking of preconditions can be done in the
body of the implications, where abduction is not allowed by the proof procedure.
This form of precondition testing blurs the distinction between triggering con-
ditions and proper preconditions of actions. However, by using ACTILOG only,
we will not have to inhibit the abductive process to cater for “over-generation
of abducibles”. The problem is explained in [6].

Thus, OPENLOG and ACTILOG, in the context of abductive logic pro-
grams, could be alternative solutions for the same problem (i.e. both could be
used to generate the same behaviour in the agent) if OPENLOG is accompa-
nied by a mechanism to inhibit abduction. All these advantages suggest that
ACTILOG is a more expressive programming framework than OPENLOG and,
perhaps, that integrity constraints are equality related to traditional logic pro-
grams.

There are however, points in favour of using OPENLOG as the programming
language (or even better, a combination of OPENLOG and ACTILOG. We
followed this approach in the prototype).

The first advantage comes from Software Engineering. For complex tasks and
domains, the set of integrity contraints can be very large and difficult to arrange
as one “unit”. In those circumstances, a more “modular” approach, for instance
with procedures in OPENLOG, could be more advisable.

The second advantage is related to the first but is more subtle. In OPENLOG
procedures, the ultimate goal being pursued can always be inferred from the code
of the procedures. For instance, in the elevator example, once on(3, 1) triggers
the goal 1 < T1∧serve(3, 1, T1), the goal serve(3, T2, T1)∧1 < T2 can be inferred
from the other literals involved. These literals are part of the agent’s goals while
the agent is trying to achieve “serving the third floor by T1”. Thus, having
information about which higher goal the agent is aiming to (and how much is
still to be done to achieve it) in a partial plan is easier in OPENLOG.

This kind of information can be particularly useful when the system is using
heuristics to guide its search process and when it is trying to decide on the
importance or urgency of its goals.

12 Jacinto A. Dávila

But even this can be done, to some extend, in ACTILOG, although by ap-
pealing to an extra-logical resource. In the first category in table 1, a Unit could
be characterized by a Set and a TaskName (Unit ::= Set to TaskName),
where TaskName indicates the ultimate goal at which the integrity contraints
in Set are aiming.

This is an extra-logical device because TaskName is lost in the translation of
ACTILOG rules into integrity contraints that define their semantics. However,
if one maintains this “label” attached to the ACTILOG unit, one could identify
the tasks that have been triggered and reason about their state of planning and
execution.

Of course, this is not the only way of knowing about pending tasks. One could
also use “state encoding”, as described by Allen [1]: within the language, one
would introduce the fluent serving(N,T), initiated by the observation on(N,T),
and this would be enough for the agent to know which the on-going tasks are.

One last remark about ACTILOG and the activation of goals. Observe that,
from the perspective of a reactive agent, there may be no need to remember which
higher goal the agent is planning and acting for. For instance, in the case of the
elevator controller, the agent does not need to remember serve(3, T), activated
by on(3, T ′) for some T ′ < T .

If the signal stays on “outside in the environment”, the agent will be able to
realize that the task is still pending if it fails to reach its higher goal (serve(3, T)
in this case) with the first (re-)actions. It is as if the agent is using the “world
as its own model” [2] and so, representations (memory) of inputs and goals
(such as records of the signals and the triggered tasks) will not be necessary.
In a “cooperating” environment like that, an agent needs fewer deliberative
resources in order to be efficient and effective. We are exploiting this possibility
in the implementation.

The following section discuss the logic of activation of goals with one example
to illustrate how the reactive nature of integrity constraints can be combined
with planning.

5 Activation of goals for planning

The purpose of activating a goal is to have the agent plan actions to achieve it.
As we discussed above, sometimes the environment is such that the agent does
not need to plan. In those cases, reactivity becomes more important in producing
sensible behaviour, and then simple integrity constraint or ACTILOG rules are
sufficient to generate that behaviour.

However, the “reactive” use of integrity constraints to activate goals could
be a source of inadequate or improper behaviour. This could be the case, for
instance, if the agent continues executing a plan that it has devised to achieve
an “activated” goal, even though the “activating” conditions have ceased to hold.

To illustrate this, let us use the context of the following example. Imagine
that the goal:

∃T1 ∃T2 (0 < T1 ∧ serve(2, T1, T2)) (3)

ACTILOG: An Agent Activation Language 13

has been activated from the implication:

∃T1 ∃T2 (T < T1 ∧ serve(N,T1, T2)← obs(on(N), T)) (4)

by the input: obs(on(2), 0)
Also imagine that half-way through the execution of the corresponding plan,

the signal at floor 2 is turned off. The agent observes this, because it has in-
terrupted its reasoning to try the first action of the plan, and the information
about the new status of the signal arrives as “feedback”.

It would be incorrect4 for the elevator to keep executing this plan as its
motivating condition (that the signal was “on” and the floor ought to be served)
has vanished.

The problem is that the elevator (executing an OPENLOG “serve” procedure
and with the integrity constraint 4 above) has no means of deducing that the plan
is now unnecessary and must be abandoned, until it actually tries the turnoff
action (which will fail because the signal is not “on”).

We can solve this problem in several ways with our agent architecture. We
discuss one general5 and one specific solution below.

A general solution is to include this version of the axiom [DNEC0] which
includes an explicit test of all the preconditions of all the primitive actions, like
this:

done(A, To, Tf)← primitive(A) ∧ preconds(A, To)
∧To ≤ Tf ∧ do(A, To, Tf) [DNEC0′]

The axiom [DNECO’] would allow for the “clipped” constraint to be produced
and used by the planner to falsify the plan. If the agent completes that plan up to
the point where the preconditions of turnoff are reasoned about, it will “realize”
(before trying to execute it) that the action turnoff(2) is going to fail (precisely
because the elevator assumes that the signal will not be “on” at that floor). This
is the reason to drop the plan.

Notice that we are assuming here that either some action of the plan has been
executed or the planner has access to some mechanism to handle inequalities
and time-constraints involving the current time. As we said in that section, this
inequality-handling mechanism could be combined with a mechanism to evaluate
agent’s action preferences. One could also maintain an explicit record of the goal
that has been activated and its activating condition as “contextual” information.

That “general” solution to the problem of activating conditions that ceased
to hold (leaving “triggered” plans without justification for their execution) could
be expected to be inefficient. This is because the planner needs to “complete” the
plan up to the point where the constraints on the preconditions of the actions are
made explicit (e.g. the constraint false← clipped(0, on(2), T3) must be derived
by the planner, before it can be used to test whether the precondition persists).
4 with respect to an idealised model of perfect rationality with no resource constraints

for reasoning.
5 General solution for those cases when the “motivating” condition (e.g. on(2) above)

is also the precondition of some action in the plan (as in the case of turnoff(2) above).

14 Jacinto A. Dávila

One could improve the efficiency of the planner by providing a more precise
and informative integrity constraint to activate the “serve” goal. This would be a
specific solution because it uses knowledge specific to the problem. For instance,
after introducing a new abducible predicate6 serving, the constraints:

∃T1 ∃T2 ((T < T1 ∧ serving(N,T, T2) ∧ serve(N,T1, T2))
← obs(on(N), T))

∧ (false← (serving(N,T3, T4) ∧ do(S, turnoff(N), T0, Tf)
∧ S 6= self ∧ T3 ≤ T0 ∧ Tf ≤ T4))

will have any plan to achieve the goal serve(N,T1, T2) falsified, if an event that
switches the signal off (presumably other agent doing it) is observed before the
plan is executed by this agent7

Thus, integrity constraints do support some basic, rational behaviour in a
multi-agent, dynamic environment. Whether they can be extended to cater for
more complex cases of coordination and cooperative behaviour requires further
investigation.

6 Conclusions and further work

This article and the previous one [6] have presented a family of extended logic
programming languages to program an agent. The characteristic common to all
these languages is that their sentences have an unambiguous translation into
subsets of first order logic. In the case of OPENLOG, the translation has a more
restrictive output, yielding normal logic programs. In the case of ACTILOG the
translation is into a form that supports sentences formalizing integrity contraints,
that can be used to guide the process of activation of goals in the agent. Both
programming languages have an operational semantics closely related to the
specification of an abductive proof procedure [9].

OPENLOG is a logic programming language that can be used to write pro-
cedural code which can be combined with a declarative specification of a prob-
lem domain (a background theory). ACTILOG complements that language by
providing for integrity constraint and activation rules for the agent. However,
ACTILOG can also be used to state integrity constraints as an alternative rep-
resentation of procedural descriptions.

We plan to complete the family of language to program agents, with means
to represent agent preferences and priorities. We will also offer this family of
programming languages in a platform to simulate multi-agents systems [5].

6 This means that the bag of abduced atoms will contain {do, =, <, obs, serving}. The
introduction of serving could be regarded as an instance of “state-encoding” as
discussed by Allen in [1] and also mentioned in the previous section.

7 Here we also assume that there is a mechanism to deduce that the turning off of the
signal does occur after the instant when the goal is activated (T3 ≤ T0) and before
the plan is completed (Tf ≤ T4).

ACTILOG: An Agent Activation Language 15

7 Acknowledgments

This work has been partially funded by Fonacit-CDCHT-University of Los An-
des, projects I-524-95-02-AA, I-667-99-02-B and S1-2000000819.

References

1. James F. Allen, Temporal reasoning and planning, Reasoning About Plans (J. F.
Allen, H. Kautz, R. Pelavin, and J. Tenenberg, eds.), Morgan Kauffmann Publish-
ers, Inc., San Mateo, California, 1991, ISBN 1-55860-137-6.

2. Rodney Brooks, Intelligence without representation, Artificial Intelligence (1991),
139–159.

3. Lee Brownston, Programming expert systems in ops5, Addison-Wesley Inc., USA,
1985.

4. Jacinto Dávila, Agents in logic programming, Ph.D. thesis, Imperial College, Lon-
don, UK, 1997.

5. Jacinto Dávila and Mayerlin Uzcátegui, Galatea: A multi-agent simulation
platform, The best of AMSE (C. Berger-Vachon and A.M. Gil lafuente,
eds.), http://www.amse-modelling.org/Periodical AMSE.html, AMSE, Barcelona,
Spain, 2000.

6. Jacinto A. Dávila, Openlog: A logic programming language based on abduction, Lec-
ture Notes in Computer Science (Proceedings of PPDP’99. Pars,France) Gopalan,
Nadathur (Ed.). Springer. ISBN 3-540-66540-4. 1702 (1999).

7. M. Denecker and D. De Schreye, Sldnfa: an abductive procedure for normal abduc-
tive programs, Proc. International Conference and Symposium on Logic Program-
ming (1992), 686–700.

8. Jürgen Dix, Sarit Kraus, and V.S Subrahmanian, Temporal agent programs, Arti-
ficial Intelligence (2001), no. 127, 87–135.

9. T.H Fung and R. Kowalski, The iff proof procedure for abductive logic programming,
Journal of Logic Programming (1997).

10. A. C. Kakas, R. Kowalski, and F. Toni, Handbook of logic in artificial intelli-
gence and logic programming 5, ch. The Role of Abduction in Logic Programming,
pp. 235–324, Oxford University Press, 1998.

11. R Kowalski and F. Sadri, From logic programming towards multi-agent systems,
Annals of Mathematics and Artificial Intelligence 25 (1999), 391–419.

12. Robert Kowalski and Marek Sergot, A logic-based calculus of events, New Gener-
ation Computing 4 (1986), 67–95.

13. H. Levesque, R. Reiter, Y. Lespérance, L. Fangzhen, and R. B. Scherl,
Golog: A logic programming language for dynamic domains, (1995), (Also at
http://www.cs.toronto.edu/c̃ogrobo/).

14. J. McCarthy and P. Hayes, Some philosophical problems from the standpoint of
artificial intelligence, Machine Intelligence 4 (1969), 463–502.

