
An Efficient Spatiotemporal Indexing Method

for Moving Objects in
Mobile Communication Environments

Hyun Kyoo Park1, Jin Hyun Son2, and Myoung Ho Kim1

1 Div. of Computer Science, Korea Advanced Institute of Science and Technology,
373-1 Guseong-dong, Yuseong-gu, Daejeon, South Korea, 305-701

{hkpark, mhkim}@dbserver.kaist.ac.kr
2 Dept. of Computer Science and Engineering, Hanyang University,

1271 Sa-1 dong Ansan, Kyunggi-Do, South Korea, 425-791
jhson@cse.hanyang.ac.kr

Abstract. The spatiotemporal databases concern about the time-vary-
ing spatial attributes. And one of the important research areas is track-
ing and managing moving objects for the location-based services. Many
location-aware applications have arisen in various areas including mo-
bile communications, traffic control and military command and control
(C2) systems. However, managing exact geometric location information
is difficult to be achieved due to continual change of moving objects’
locations.
In this paper we propose the Bst-tree that utilizes the concept of multi-
version B-trees. It provides an indexing method for future location queries
based on the dual transformation. This approach can be applied for the
range query on moving object’s trajectories specifically in the mobile
communication systems. Also we present a dynamic management al-
gorithm that determines the appropriate update interval probabilisti-
cally induced by various mobility patterns to guarantee the query per-
formance.

1 Introduction

The recent advances in mobile computing and sensing technology such as GPS
have made it possible to perform location-based services via wireless links. One
of the important problems for location-based services is to provide fast answers
about range queries that retrieve the moving objects in a certain area. The
spatiotemporal indexing method for the location management is one of the im-
portant issues for this purpose.

However, in the conventional database systems, the data remain unchanged
unless it is explicitly modified. It means that the accuracy of the location infor-
mation is difficult to be maintained in the database systems, since a large number
of continual updates may not be properly processed. To reduce the number of
updates required while keeping the reasonable data accuracy, functions of time

M.-S. Chen et al. (Eds.): MDM 2003, LNCS 2574, pp. 78–91, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

An Efficient Spatiotemporal Indexing Method for Moving Objects 79

that express the object’s positions may be used. Then updates are necessary
only when the parameters of the functions change “significantly” [6, 10].

In this paper we propose an indexing approach that can answer the queries
about current or anticipated future positions of moving objects. We use one lin-
ear function per object’s trajectory that is composed of the initial position and
a function of velocity for a certain period of time. Then we index the location
information by the ideas of Space Filling Curve and duality. Also we provide a
dynamic management algorithm of the index structure to maintain the perfor-
mance of range queries about future position.

2 Problem Statement and Motivation of Research

The database management system (DBMS) technology can provide a founda-
tion for spatiotemporal applications in spite of some problems such as frequent
updates. So, the spatiotemporal capabilities need to be integrated, adapted, and
built on top of existing database management systems.

Previously most related work focused on historical queries for the spatiotem-
poral databases. However, the location-based services require future queries as
well as the conventional historical queries. In this paper we concentrate on the
range queries of moving objects in the future. An example future query may
be “retrieve the patrol cars that are or will be in a given region within next
30 minutes”. More generally, the location-based range queries considered in this
paper have the following forms:

Type-1(Time-sliced) Query: “Find all objects that are(or will be) in a certain
area at time t” ��

Type-2(Time-window) Query: “Find all objects that are(or will be) in a certain
area during time [ts, te]” ��

In the location-based services, the positional information of moving objects is
obtained via wireless communication. Then the real trajectories can be approx-
imated as linear functions through the Dead-Reckoning policy that can predict
the future position of the object. Then the trajectories can be reduced to lines
starting from an initial location during a certain period of time. Since several
mobile communication protocols have been developed as a solution of location
management for next-generation communication system (e.g., IS-41, GSM), this
assumption is practical [10].

One of the indexing methods for the lines is a Spatial Access Method (SAM)
such as the R-tree [9]. However, there are several problems when handling the
trajectories for the future position. Some of them are: (i) The Minimum Bound-
ing Rectangle (MBR) assigned to a trajectory often has too large area, and (ii)
implicitly all lines may extend to ‘infinity’ until being updated. It may incur
many overlaps of MBRs.

80 Hyun Kyoo Park, Jin Hyun Son, and Myoung Ho Kim

Hence we need an appropriate methodology to support indexing of trajecto-
ries rather than previous spatial access methods. In addition, the index structure
should afford the frequent updates after storing the trajectory information.

3 Preliminaries

3.1 Related Work

Wolfson et al. [6] proposed a data model to represent moving objects. They pro-
posed a framework called Moving Object Spatio-Temporal (MOST) for tracking
objects and a temporal query language called Future Temporal Logic (FTL).
Several spatiotemporal indexing methods were proposed for the concept of the
paper [6].

In the past, research in spatial and temporal database has mostly been made
separately. And for the theoretical basis, the community of computational geom-
etry developed early work on moving points focused on bounding the number of
changes in various geometric structures as the points move [6]. One of the result
is the Kinetic Data Structure (KDS) by Basch et al. proposed in [2].

A survey of previous work on spatiotemporal databases can be found in the
papers [4, 7, 9]. An important result of these is the TPR-tree by Saltenis et al.
[9]. They proposed the R-tree based approach but we think that the R-tree based
approach has some restrictions as a remedy of our problems. Another result by
Kollios et al. [4] proposed a sophisticated approach for the future queries that can
outperform the kd-B-tree and the R-tree. In their work, they used the Hough-X
transformation for indexing moving points, however they assumed that the space
is linear or quadratic and the velocities are fixed.

To support the future queries those we are concerning, we use multi-version
structure concept [3, 11] and extend the study of [4]. Also an appropriate predic-
tion of mobility patterns can reduce the difficulties in studying the continuous
updates in spatiotemporal indexing and the performance degradation in the
multi-version structure. Yet much of the literature to date has not considered
it. So we refer the information theory and the stochastic process [1] to predict
update intervals for our dynamic update algorithm in the mobile communication
environment [10].

In the practical environment, the location information is acquired from mo-
bile communication systems. And various location management scheme were
suggested [5, 10] and the dynamic location management scheme in the next
generation communication network [10] is used as a framework of our method.

3.2 Duality and Space Filling Curves

In the mobile communication environment, moving objects send their location
information and we can translate them as a set of tuples { t, x, y, Fx(t), Fy(t)}
where t is the time when the update message is sent. x, y denotes the coordinates
of the location. Fx(t) and Fy(t) that are functions of time denote velocity vectors

An Efficient Spatiotemporal Indexing Method for Moving Objects 81

x' x'

v v

x

1

2

3

4

5

1 2
t

1

1

2

3

4

5

6

o1

2

7

8

9

o2

o4

o6

o5

o3

-1-2

p4

p1

R1

R2 p6

p5

h2

h1

p2

p3

6

7

1

1

2

3

4

5

2-1-2

Fig. 1. Trajectories of moving points in the primal and the dual space

at x and y, respectively. This location information is transformed to a point in
the dual space as follows:

In d-dimensional space Rd, the hyperplane represented as a function of xd =
ν1x1+. . .+νd−1xd−1+νd in the primal space is transformed to a point (ν1, . . . , νd)
in the dual space and the point (ν1, . . . , νd) in the primal space can be trans-
formed to a line of xd = −ν1x1 − . . .− νd−1xd−1 − νd in the dual space [7].

Figure 1 shows the geometric representation of moving objects in the primal
and the dual spaces. Generally, a trajectory in the primal xt plane induces a
static point p in the dual x′ν plane. Similarly a query range R induces a query
strip σ that is bounded by two hyperplanes. For example, the trajectories of
objects (o1, . . . , o6) in the primal space can be transformed to points (p1, . . . , p6)
in the dual space. Also extreme points R1 and R2 of range R in the primal space
can be represented as a strip between the hyperplanes h1 and h2 in the dual
space. Hence the query of retrieving trajectories intersecting a range R parallel
to the x axis can be rewritten to a query of retrieving set of points in the query
strip σ.

In this paper we consider Space Filling Curve for an indexing in the dual
space. In Figure 1, the Peano curve provides a linear ordering in multidimen-
sional spaces starting from a lower left corner. Let SFC(x, v) be the function
that assigns a linear address for two-dimensional point (x, v). Then the dots
in the dual space have unique addresses that can be mapped as key values in
one-dimensional index structure.

4 The Proposed Index Structure for Moving Objects

In this section, we describe the Bst-tree; namely the Spatiotemporal B-tree. The
Bst-tree incorporates features of B-tree and the multi-version tree [3, 11]. Since
the Bst-tree stores the whole trajectory of a moving object as pieces, we need a
multi-version access method that stores the records with their own life-time to
handle the updated records.

82 Hyun Kyoo Park, Jin Hyun Son, and Myoung Ho Kim

Although moving object traces out a certain trajectory in three-dimensional
spatiotemporal space, we describe the two-dimensional case for simplicity. Then
the three dimensional queries can be achieved by conjunctions of each trees.

In Figure 2(a), object O2 changes its trajectory at time t2 and t4, and O3

changes at every timestamp while O1 keeps its movement function all the time.
The moving object checks its location periodically. We define unit time ∆t and
normalize to 1 for convenience. Since it is impractical to monitor the location at
every unit time, the object monitors its location every time interval τ = n∆t. For
example, Figure 2(b) shows the state of object O2. Then there are two updates
at t2 and t4. Here we define two different updates.

Definition 1. Adaptive Update
The Adaptive Update(AU) is an update operation to make an index of current
location information for all moving objects.

Definition 2. Instantaneous Update
The Instantaneous Update(IU) is a demanded update by individual moving object
when a movement function of an object is changed.

The time interval between two consecutive AU is represented as Tu in Figure
2(b) and determined by a dynamic method described in Section 5. IU is occurred
when the deviation from the expected trajectory exceeds the distance threshold
that is predefined by the Distance-based update protocol [10].

In our scheme, we discard the notion of Location Area borders and commu-
nication cells in most PCS or Cellular systems. Dynamic mobility management
in wireless communication services is known to provide better cost-effectiveness
and our method can be dynamically adapted to this scheme [5, 10].

Fig. 2. Representation of trajectories and the update parameters

4.1 Overview of the Bst-tree

Although a multi-version structure keeps both the current and old data, it may
experience a significant overhead when a large number of updates. Thus we may

An Efficient Spatiotemporal Indexing Method for Moving Objects 83

need an appropriate management strategy to handle this case. The Bst-tree has
two types of nodes, i.e., Branch nodes and Version nodes, as shown in Figure 3.
When AU occurs, a new Branch is made with the update timestamp. Then the
Branch node has a timestamp as a key value and a link to the Version node. For
example, an AU occurred at time 0 and 5. Then we have two Branches of b1(0),
b2(5) as shown in Figure 3.

b0

root

b5 bn

…

…

Branch
Node

Version
Node

Fig. 3. The illustration of the Bst-tree structure

Definition 3. Bst-tree Record Structure
The record in a Version node of the Bst-tree has the form (Key, TS, Pointer)
where Key, TS and Pointer denote a key, life-time of a record and a link to a
node at the next level (intermediary) or of the actual record (leaf) respectively.

In the Version node, the index key value is acquired from the method de-
scribed in Section 3.2. The life-time TS is set of (ts, te): the start and end time
of the record respectively. The currently valid record has the TS value of (ts, ∗)
and the updated old record has (ts, te) value.

4.2 Fundamental Operations

In this section we describe the insert and update operations. The Bst-tree is
partially persistent; therefore insertions and updates only are applied to current
data pages. To insert a new record or update an existing record, the Bst-tree
starts searching the current Branch node until finding the appropriate leaf node
which the record must be added.

To differentiate from the inserted record, we call the updated record a variant.
In the update operation, we do not perform the delete operation but invalidate
the currently existing record. The invalidation changes the te value of the record
to current timestamp. Hence the update operation inserts a variant into a proper
node that is logically the same as the insert operation followed by invalidation.
This process is the same as a conventional temporal database. However, if there
is modification of the structure by the split or merge operation, the operations
are not trivial.

84 Hyun Kyoo Park, Jin Hyun Son, and Myoung Ho Kim

Definition 4. Node Splitting
The Pmax and Pmin are node split parameters to control the node occupancy.
The values of parameters are Pmin ≤ Pmax ≤ B, where B is the node capacity.

When an update operation triggers the modification of structure, the valid
records of overflowed node are copied to a new assigned node with the current
timestamps. Then we invalidate all the records in the previous node and insert
the variant into the new node. The node split is divided into two cases where
Nv is the number of valid records in a node.

Case 1. Nv > Pmax; Create two nodes. And copy all the valid records in the
overflowed node to the new nodes by their key values. ��

Case 2. Pmin ≤ Nv ≤ Pmax; Create one node. And copy all the valid records in
the overflowed node to the new node. ��

In Figure 4, the upper illustration describes the Case 1 and the lower illus-
tration describes the Case 2 updates. In the Case 1, the update operation copies
the valid records in overflowed node A (e.g., the records have key value 5, 6,
8, 21) into nodes B and C at time 5. Then we change the life-time value ‘*’ of
the TS in node A to 5. After all we insert a variant of key value 25 in C. In
the Case 2, there are two valid records (e.g., the records have key values 5, 7)
in overflowed node. Then we assign one node and perform the similar update
procedure in the Case 1. In the case of the number of valid records being less
than the value of Pmin, the underflow condition is occurred. When the underflow
condition is occurred, we merge valid records in underflowed node with sibling
node as the same way of the update procedure. Therefore, when a node is cre-
ated, it is ensured that it contains less than the value of Pmax valid records.

4.3 Range Searching in the Dual Space

The range searching in the primal space induces the infinite range problem in
the dual space as shown in Figure 1. For example, query range of [R1, R2] in
the primal space in Figure 1 derives infinate query strip in the dual space. So,
we need a “Pruning” method to limit the query strip to avoid the infinite range
problem in the dual space.

The pruning phase is processed as follows. Since the possible positive and
negative maximum velocity of objects can bound the query strip in the dual
space, we can set the query strip to two rectangular regions as shown in Figure 5.
The maximum velocity trajectories T1 and T3 in the primal space are represented
by points T ∗

1 and T ∗
3 in the dual space. The staying objects’ trajectories that

may intersect the query range are depicted points T ∗
2 and T ∗

4 in the dual space
in the same way.

This restriction of range query is intuitive since the moving objects have
maximum velocities in real world. Then those four points make a super set of

An Efficient Spatiotemporal Indexing Method for Moving Objects 85

<5, (0, *), A> <5, (5, *), B> <8, (5, *), C >

A

B

C

<5, (0, 5)> <7, (0, 5)> <8, (0, 5)> <11, (0, 2)> <21, (2,5)>

<5, (5, *)> <7, (5, *) >

<8, (5, *)> <21, (5, *)> <25, (5, *) >

<5, (0, 5), A> <5, (5, *), B>

A

B

<5, (0, 5)> <7, (0, 5)> <8, (0, 3)> <11, (0, 2)> <21, (2,3)>

<5, (5, *)> <7, (5, *)> <25, (5, *)>

After inserting a record at time 0 (splits into two nodes, when Pmax =3, Pmin = 1)

After inserting a record at time 5 (splits into one node, when Pmax =3, Pmin = 1)

Fig. 4. Illustration of updates with structure modification

range query result. For time-window range queries, we only consider the range
at time te during the pruning phase since it contains all possible trajectories be-
tween ts and te. Then the query strip in the dual space is bounded by rectangles
the same as the previous time-slice queries. Based on this observation, we can
define corresponding Lower Left(LL) for the lowest key value and analogously
Upper Right(UR) value in a query range region. The result set is composed of
several data pages based on the Peano value in an ascending order. However all
the pages in the key ranges [LL,UR] may not be the result set. The result set
corresponds to a set of leaves that are composed of several node region that is
represented by In of the Version node in Figure 5. Each node has its key range
LL ≤ li ≤ ui ≤ UR where li and ui are the lower and upper key values of each
node i respectively.

To retrieve the exact pages rather than the all pages in range [LL,UR], we
first search for the leaf node that contains the lowest value larger than LL value.
Then follow pointers to find subsequent leaves until the node that has the larger
li value than UR value. The algorithm of excluding the unnecessary pages shown
in Figure 5 was introduced in several works [8], so that we do not mention the
details here.

5 Dynamic Management of the Bst-tree

In this paper we propose a dynamic algorithm to select the appropriate update
interval (the value of Tu in Figure 2) in the mobile environments. The determi-

86 Hyun Kyoo Park, Jin Hyun Son, and Myoung Ho Kim

x

1

2

3

4

5

1 2
t

1

1

2

3

4

5

x'

6

2

7

8

9

-1-2

R1

R2

h2

h1

6

7

10

8

9

10
tets

T3

T2

0

T1

T4

T*
3

T*
4

T*
1

T*
2

I1 Ik In
LL UR

LL

UR

v

Version Node

Primal Space Dual Space

Fig. 5. Primal-Dual representation for range query

nation of the interval between two consecutive AU depends on the duration that
objects keep their movement linear and the performance of Version node. Vari-
ous mobility models found in the literature [10], however most index structures
assume linear movement with constant speed [2, 12], that does not reflect reality.
In our approach, we adopt the multi-version structure to reflect updates. So we
model a moving object as a dynamic linear function and use the cost model that
is suggested by Tao et al. [11] for the evaluation of the performance and suggest
the parameter determination methodology.

5.1 Cost Model for Dynamic Management

The performance of Bst-tree depends on the number of node accesses that are
affected by the mobility pattern that defines how random the movement is. The
movement pattern is described as Randomness as;

Definition 5. Randomness
The Randomness defines how random the mobility pattern is. If on average, v
new variants by IU will be occurred in a Branch, then the Randomness is v/Nv

where Nv is the valid number of records at a certain time.

At a timestamp, the expected number of Nv is ln2(Pmax/B) since the Bst-
tree follows the average utilization of B-tree. Hence after a certain number of
updates, the performance of Version node approaches the degradation point [3,
11]. At the degradation point, the Version node produces worse performance
than a single ephemeral B-tree.

The value of Affordable Randomness is determined mostly by the value of
Pmax that is selected as a tuning parameter. Then we need the value of Affordable
Randomness for query parameters (qk, qt). In Eq. (1), the value of Affordable
Randomness for query parameters is shown.

AffordableRandomness(qk, qt) ∼=
Nv

Nn
qt − 1

ln2(Pmax/B)
1−ln2(Pmax/B) (qt − 1)

(1)

An Efficient Spatiotemporal Indexing Method for Moving Objects 87

where qk and qt denote query range of key and time space respectively. We
can allow IU in the interval of AU until Affordable Randomness by queries and
the value of Affordable Randomness can determine the optimal Branch duration
Tu in the Bst-tree.

5.2 Probability-Based Dynamic Update Algorithm

In continuous time, the movement of objects can be described as a Brownian
motion and the location distribution of an object in the future is a stochastic
process as time progresses [1]. Furthermore, the velocity of object is a stationary
Gauss-Markov process since the initial location and the ensuing location esti-
mation process have the same probability law. Hence, the predictive location of
moving object in the future is correlated in time and modeled by some finite
states with its velocity. In the linear motion assumption, we discretize the con-
tinuous movement into intervals to check the location information as shown in
Figure 2.

Let define α = e−λpτ (0 ≤ α ≤ 1, where 0 ≤ λp), the rate of IU. Then the
velocity of moving object in discrete time is;

vn = αvn−1 + (1 − α)µ +
√

1 − αnxn−1 (2)

In the sense of Gauss-Markov process, the general representation of velocity
in terms of the initial velocity v0 is

vn = αnv0 + (1 − αn)µ +
√

1 − αn

n−1∑
i=0

αn−i−1ζi (3)

In the equation, ζn is an independent, uncorrelated, and stationary Gaussian
process, with mean µζ = 0 and σζ = σ , where µ and σ are the asymptotic mean
and standard deviation of vn when n approaches infinity [1, 5].

To expect the update interval, the moving object checks its location period-
ically. Let τ be the location information inspection period as shown in Figure 2,
and skτ−1 be the displacement from an initial state. Then each moving object
triggers IU at the kth location inspection where the condition of |skτ−1 −µsk

| is
greater than a distance threshold. Probabilistically the expected location infor-
mation at kth location inspection is xk that we can derive from the Eq. (3)

xk =
i=kτ+τ−1∑

i=kτ

vi and skτ−1 =
k−1∑
i=0

xi (4)

skτ−1 is a Gaussian random variable with mean µsk
=

∑k−1
i=0 µxi . The ex-

pected value of location xk and displacement skτ−1 is hatxk = xk − µxk
and

hatsk = skτ−1 − µsk
. Then the following recursive iteration predicts the update

interval probabilistically.

ŝk = ŝk−1 + x̂k−1 (5)

88 Hyun Kyoo Park, Jin Hyun Son, and Myoung Ho Kim

Table 1. Definition of fuctions and parameters for the update interval

Functions Contents

pk(ŝ, x̂) Probability there is no update up to time k − 1
where ŝk = ŝ, x̂k−1 = x̂

pk−1(s, x̂) Probability there is no update up to time k
where sk = s, xk−1 = x

pk(s, x) Probability there is no update up to time k
where sk = s, xk = x

F (k) Probability there is no update up to time k
f(k) PDF of time k between two consecutive updates

From the previous analysis, our deterministic algorithm provides the predic-
tive kth interval of each Branch. In Table 1, we define some random variables
and probability density functions used in our algorithm. Probabilistically the AU
interval guarantees the query performance. So, the location distributions at time
k > 0 can be found from k = 1 until f(k) = F (k−1)−F (k) is sufficiently small,
with initial condition of pk(ŝ, k̂) = fx̂0(x̂)δ(ŝ−x̂) where k = 0, distance threshold
δ and fx̂ the PDF of x̂k for the x direction. where . The F (k) is acquired from
Eq. (6).

F (k) =
∫ ∞

−∞

∫ ∞

−∞
pk−1(ŝ, x̂)dx̂dŝ (6)

In the algorithm, the iteration will stop when the value of k exceeds the
Affordable Randomness iteratively for each object. Finally, we set the AU interval
for the new Branch from the current time to the value of k.

Algorithm determine_interval_of_Adaptive_Update
step 1: calculate k of all objects and enqueue in queue_k
step 2: dequeue minimum k in queue_k
step 3: while randomness > affordable_randomness do loop
increase the number of variants and calculate randomness;
dequeue the current k in queue_k;
calculate new k of the current object;
enqueue the new k in queue_k;

6 Experimental Results

We evaluated the Bst-tree in the Sun Ultra-60 with 256MB main memory system.
The experimental data set was generated with GSTD1 software that simulates
the trajectories of moving objects. The Bst-tree allows variants to be inserted
until it reaches until the Affordable Randomness. In Figure 6, we investigated

1 Synthetic moving object dataset generation tool, SIGMOD Record, 29(3).

An Efficient Spatiotemporal Indexing Method for Moving Objects 89

the Affordable Randomness for the time-sliced and time-window queries where
the moving objects are uniformly distributed. This is the expected result that
is suggested in [11]. We investigated the performance of the Bst-tree with the
uniformly distributed datasets here. As a result, for the time-slice query, it is
preferable not to allow IU. Also for the time-window query, the practically Af-
fordable Randomness converges almost 30%. In the Affordable Randomness, our
method is efficient for the construction and reflection of updates.

70

60

50

40

30

20

10

0

A
ffo

rd
a

bl
e

R
a

nd
om

ne
ss

 (
%

)

Query range (%)

0 2 4 6 8 10 12

 qk (Type 1 Query)
 qk (Type 2 Query)
 q t (Key Range 10%)
 qt (Key Range 5%)

Fig. 6. Affordable Randomness for the various queries

And the R*-trees consume more construction time than the Bst-tree. We do
not reflect the TPR-tree algorithm since it is not available to get the end time
of the movement functions when we construct the trees. Hence we construct the
R*-tree after one iteration of GSTD and use the trajectories. To evaluate IU
performance, we use 500,000 objects to construct trees and update 1,000 objects
up to 20,000 objects. The results of comparisons are shown in Figure 7.

8

6

4

2

0

 R* (1K)
 R* (4K)
 Bst (1K)
 Bst (4K)

1000 5000 10000 20000

120

100

80

60

40

20

500x103400300200100

 R* (4K)
 R* (1K)
 Bst (4K)
 Bst (1K)

Data Size (Byte) No. of Updates (Objects)

T
im

e
(S

ec
)

T
im

e
(S

ec
)

Fig. 7. Performance comparison of construction and update time

The size comparison of the R*-tree and the Bst-tree is shown in Figure 8.
For future queries in our environment, the size of the R*-tree is not affected
by the variance of the Randomness significantly but the Bst-tree is increased

90 Hyun Kyoo Park, Jin Hyun Son, and Myoung Ho Kim

exponentially. Although in the 30% Randomness, the size of the Bst-tree is less
than half of the R*-tree. Furthermore, the node accesses in answering the time-
slice query of 5% key range in the 20,000 objects are shown in Figure 8. Since
the future queries are affected by the Randomness directly, the 0% Randomness
matches the optimal performance and the Bst-tree increases the number of node
accesses almost linearly less than 25% Randomness range.

40

30

20

10

0

N
o
d
e
 a

c
c
e
s
s
e
s

252015105
Randomness (%)

 Uniform
 Gaussian

100

80

60

40

20

S
iz

e
 (

K
B

)

252015105
Randomness (%)

 Bst
 R*

Fig. 8. Node access and size comparison by the Randomness

7 Conclusions and Future Work

The location-based service is expected being used widely in the near future,
and it is an important application area of the spatiotemporal databases. In this
paper we have proposed an index structure, named the Bst-tree as a spatiotem-
poral indexing method for the future location queries in mobile communication
environments. The contribution of our work can be summarized as follows.

(i) An efficient indexing approach for moving objects to support the historical
and future queries: While the R-tree based indexing is very time consuming for
construction or updating, our index structure requires less time consuming and
supports O(logBN + t)range query performance.

(ii) A comprehensible probability-based determination of update interval:
The proposed algorithm can predict the behavior of an index structure for guar-
anteeing the query performance. Our update policy uses the mobile communica-
tion framework that can be very useful for the next generation communication
environments, specifically the Distance-based management protocol.

For further work, we are working on the effects of the mobility patterns that
can be generated in various environments. We use the discrete time interval for
the prediction, and we will analyze our method in continuous time.

Acknowledgement: This work was supported in part by grant No. R01-1999-
00244 from the interdisciplinary Research program of the KOSEF.

An Efficient Spatiotemporal Indexing Method for Moving Objects 91

References

1. Ross, S.: Stochastic Processes 2nd Ed., John Wiley & Sons (1996)
2. Basch, J., Guibas, L. Hershberger, J.: Data Structures for Mobile Data. Proc. of

the 8th Annual ACM-SIAM Symposium on Discrete Algorithms.(1997) 747–756
3. Bertimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scien-

tific.(1997)
4. Varman, P., Verma, R.: An Efficient Multiversion Access Structure. IEEE TKDE

Vol.9(3) (1997) 391–409
5. Liang, B., Haas, Z.: Predictive Distance-Based Mobility Management for PCS Net-

works. Proc. of IEEE INFOCOM.(1999) 1377–1384
6. Wolfson, O., Sistla, P., Chamberlain, S., Yesha, Y.: Updating and Querying

Databases that Track Mobile Units. J. of Distributed and Parallel Databases. (7).
(1999) 257–287

7. Agarwal, P., et al.: Efficient Searching with Linear Constraints. J. of Computer
and System Sciences. 61. (1999) 194–216

8. Ramsak, F., et al.: Integrating the UB-Tree into a Database System Kernel. Proc.
of VLDB. (2000) 263–272

9. Saltenis, S., et al.: Indexing the Positions of Continuously Moving Objects. Proc.
of SIGMOD. (2000) 331–342

10. Wong, V., Leung. V.: Location Management for Next-Generation Personal Com-
munication Networks. IEEE Network 14(5). (2000) 18–24

11. Tao, Y., Papadias, D., Zhang, J.: Cost Models for Overlapping and Multi-Version
Structures. Proc. of ICDE. (2002) 191–200

12. Kollios, G., Gunopulos, D., Tsotras, V., ”On Indexing Mobile Objects”, Proc. of
PODS, (1999) 262–272

	Introduction
	Problem Statement and Motivation of Research
	Preliminaries
	Related Work
	Duality and Space Filling Curves

	The Proposed Index Structure for Moving Objects
	Overview of the B^{st}-tree
	Fundamental Operations
	Range Searching in the Dual Space

	Dynamic Management of the B^{st}-tree
	Cost Model for Dynamic Management
	Probability-Based Dynamic Update Algorithm

	Experimental Results
	Conclusions and Future Work

