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Abstract. A method of error-tolerant lookup in a finite-state lexicon is
described, as well as its application to automatic spelling correction. We
compare our method to the algorithm by K. Oflazer [14]. While Oflazer’s
algorithm searches for all possible corrections of a misspelled word that
are within a given similarity threshold, our approach is to retain only
the most similar corrections (nearest neighbours), reducing dynamically
the search space in the lexicon, and to reach the first correction as soon
as possible.

1 Introduction

K. Oflazer [14] proposed an efficient and elegant algorithm of error-tolerant look-
up in a finite-state dictionary, and its application to morphological analysis and
spelling correction of simple words. For a given input string that is not contained
in the dictionary the algorithm searches for all possible corrections that are
within the given distance threshold. We present a similar method in which only
those candidates are retained that have the minimal distance from the input
word, and the first solution can be obtained rapidly.

2 Related Work

Many aspects of a natural language can be treated through finite-state machines
in their classical [16, 7] and extended [8] versions, due to their time and space
efficiency obtained by determinisation and minimisation [19, 13, 2].

Automatic spelling correction is one of the oldest applications in the field of
natural language processing, and it has a very rich bibliography, a good review of
which is presented in [9]. The author divides the existing approaches into three
classes: nonword error detection, isolated-word error correction, and context-
dependent word correction. Many problems faced by the methods of the first
class in the early research (e.g. [12], due to the size of the lexicon and its access
time, found a solution in the finite-state model of the lexicon. One of the main
remaining problems, the recognition of spelling errors resulting in valid words
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(e.g. from → form) requires approaches of the third class, based most of the time
on a syntactic and/or stochastic analysis of a local context of words supposed
to be erroneous (e.g. [17, 5].

In the second type of approach, i.e. isolated error correction, errors are most
often of typing origin, of phonetic origin (e.g. [10], or both. This paper addresses
only typing errors. They are traditionally interpreted as resulting from one or
more editing operations on letters: insertions, deletions, replacements and inver-
sions of adjacent letters [3]. Their correction is related to the theoretical problem
of approximate string matching [6], in which the distance between two strings
is the minimum cost of all sequences of editing operations that transform one
string into another. Different sequences of editing operations may be allowed
and different cost functions may be assigned to these editing operations. With
the distance measure called edit distance proposed in [18, 11], editing operations
may be assigned arbitrary costs, and they may act on arbitrary positions in the
string in arbitrary order (e.g. ca can be obtained from abc by two operations:
deletion of b, inversion of a and c). However, an efficient algorithm for edit dis-
tance calculation exists only if WI +WD ≤ 2WS , where WS , WI , WD are costs
assigned to inversion, insertion and deletion operations, respectively.

In [4] this distance measure is modified and renamed to error distance by
assigning cost 1 to each editing operation and by admitting that errors occur
in linear order from left to right so that a later operation may not cancel the
effect of an earlier operation. Thus, inversions occur only between letters that are
adjacent in the original word and remain adjacent in the erroneous word (e.g. the
error distance between abc and ca is 3). Due to the equal cost of each editing
operation, the error distance becomes a metric, i.e. a function satisfying four
properties: non-negative values, reflexivity, symmetry, and triangular inequality.

The computational solution for the (editing or error) distance calculation,
belonging to the class of dynamic programming algorithms, is based on a matrix
H[0:n,0:m], where n and m are the lengths of the two strings to be compared,
and H[i,j] contains the distance between the prefixes of lengths i and j of the
two strings. The calculation is particularly efficient for the error distance ma-
trix, since the value of the element H[i+1,j+1] depends only on the values of
the elements H [i-1,j-1], H[i,j], H[i+1,j], and H[i,j+1]. Oflazer [14] made the cal-
culation of the error distance matrix even more efficient in that he applied it to
the finite-state representation of the lexicon. Thus, when a word is searched for
in the lexicon, a part of the matrix is calculated only once for all lexicon words
that have the same common prefix.

3 Spelling Correction Problem

The distance measure between two strings admitted in this paper, as well as in
Oflazer’s one, is the error distance of Du and Chang [4] (although Oflazer still
uses the notion of edit distance), as described in the previous section. There is
no theoretical distance limit between an erroneous word and its right correction.
Hence a trade-off is necessary between three factors: the search time efficiency
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(in the case of our algorithm and of Oflazer’s one it corresponds to the size of
the section of the automaton that is to be explored), the length of the resulting
correction candidate list (the user may be unwilling to consult a long list), and
the chance that the intended word be on that list. Thus, two of the possible
spelling correction problem definitions are:

– Finding all valid words which are no more distant from the input word than
a given threshold.

– Finding the nearest-neighbours, i.e. the valid words with the minimal dis-
tance from the input word (the minimal distance possibly being no bigger
than a given threshold).

Note that none of the two approaches guarantees that the right correction will
be found. The first approach is more often admitted (e.g. in [4, 14] since the right
correction candidate for a misspelled word may not be its nearest neighbour. In
our opinion, the second approach is preferable for many applications for three
reasons: statistical studies show that words with multiple errors are rare (0.17%
till 1.99% of unknown words in a corpus, with [15], users are easily discouraged
by long lists of correction candidates, and the search time grows exponentially
with the admitted distance threshold. Therefore, the tolerant lookup algorithm
we propose finds only the nearest neighbours and concentrates on reaching the
first solution (which often is the right one) as soon as possible.

4 Example

The interpretation of a spelling error can be ambiguous. For instance, the erro-
neous English word *aply has some one-operation corrections: apply (omission
of p), paly (inversion of p and a), ply (insertion of a), some 2 two-operation
corrections: ape (replacement of e by l, insertion of y), apple (omission of p,
replacement of e by y), pale (inversion of p and a, replacement of e by y), some
three-operation corrections: apples (omission of p and s, replacement of e by y),
pales (inversion of p and a, replacement of e by y, omission of s), etc.

We will show how the nearest neighbours with threshold 2 (in our exam-
ple these are the one-operation corrections) can be found by an error-tolerant
look-up in a deterministic finite-state lexicon. Let us consider a small extract of
English lexicon of simple words, containing some possible corrections of *aply
(Fig. 1). The terminal states are represented by double circles. We say that state
w is reachable from state v if there is a transition leading from v to w. The algo-
rithm follows at first the standard look-up procedure to find the longest correct
prefix. It begins in the initial state number 1. Parsing from left to right of aply
brings us to a non-terminal state 4, where reading the input letter l is not pos-
sible. Since the automaton is a deterministic one, no backtracking is necessary
to be sure that the parsed sequence is not contained in the lexicon. That is
where we start the error-tolerant look-up procedure searching for similar words
through admission of any of the 4 elementary operations at any of the 5 possible
positions in the erroneous word:
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a p l y
1 2 3 4 5

At word position 3, where the standard input blocked, we can make the following
suppositions:

– Letter l has been wrongly inserted. We omit l and try to recognize suffix -y
starting from the current state 4. That is not possible, so we have to make
a second supposition about a possible error. Apart from the wrong insertion
of l, we may simultaneously have:
• Wrong insertion of y. We try to recognize the empty suffix starting from
the current state 4. That is not possible since this state is not a terminal
one. No more supposition about a possible error is allowed since we
reached the admitted threshold 2.

• Omission of the correct letter before y. We try to recognize suffix -y start-
ing from all states reachable from state 4. That is not possible without
any further error admission.

• Replacement of the correct letter by y. We consider all transitions leading
from state 4 to a final state. There is one such transition: (4,e,9). Thus,
we get the first two-operation correction candidate ape with the error
distance 2.

– Letters l and y have been wrongly inverted. We try to recognize the inverted
suffix -yl starting from the current state 4 and considering a possible omission
at the end of the word (no second error is admitted between y and l due to
the condition that inverted letters must remain adjacent in the target word).
That is impossible.

– The correct letter has been omitted at the current position 3. We try to
recognize suffix -ly starting from any state that is reachable from state 4.
In state 9 the recognition of -ly is not possible with no more than 1 further
error supposition. In state 5 the recognition of -ly is possible with no further
error supposition, which yields a new 1-operation candidate apply. The error
distance threshold is reduced to 1. Therefore the 2-operation candidate apple
is not reached and the previously obtained candidate ape is eliminated as it
is more distant from the original word than the new candidate.

– The correct letter at position 3 has been replaced by l. We try to recognize
the suffix -y from any state that is reachable from state 4. That is not
possible without any further modification. Since the new threshold is 1 this
supposition is eliminated.

To continue searching for other candidates we have to backtrack from state
4 to state 2 (and from word position 3 to 2), where 4 possible hypotheses are
analysed again: wrong insertion of p (suffix -ly is unrecognizable from state 2, no
candidate is proposed), wrong inversion of l and p (suffix -lpy is unrecognizable),
omission of the right letter at position 2 (the only state reachable from state
2 is 4, from which the suffix -ply is recognizable yielding the same candidate
apply as previously obtained), replacement of the right letter at position 2 by p
(impossible since there is only one transition from 2 to 4).
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Fig. 1. Extract of a final state lexicon

Finally, backtracking from state 2 to state 1 (and from word position 2 to
1), yields two more one-operation candidates paly and ply. The two- and three-
operation candidates pale and pales are not reached due to the reduced threshold.

5 Algorithm

An outline of our error-tolerant finite-state lookup algorithm is shown on figure
Fig. 5. Let [l1l2...ln] be the word to be looked up, and n its length. Let wp =
1, ..., n+1 be the current word position. Let st be the current state, and t the
error distance threshold between two suffixes (i.e. the number of elementary
operations that we admit in a correct suffix so that it may still be considered
a valid correction candidate for a misspelled suffix).

The tolerant lookup function tries to recognize the suffix [lwp...ln] starting
from the current state st and admitting t elementary operations on letters at
most. This function returns a pair (ed, S) where S is the set of recognized (exact
or modified) suffixes, and ed is the edit distance between the suffix [lwp...ln] and
each of the suffixes in S (all suffixes in S always have the same edit distance from
[lwp...ln; if S is empty then ed = INF (a large number, bigger than the maximum
edit distance ever possible). The first call to tolerant lookup is done for the entire
word [l1...ln], the initial state, and the desired edit distance threshold. Then we
follow the standard look-up procedure, first without admitting any operation on
letters. Thus we can immediately recognize the input word if it belongs to the
lexicon, and then quit (the threshold value t becomes 0 in line 9 and lines 13–36
are omitted). If the word doesn’t belong to the lexicon the standard look-up ends
up with failure in one of the two cases: 1) the input sequence has been read in
and the last state is not a terminal one, 2) the input sequence has not been read
in completely and no further transition from the current state is possible. If the
exact suffix [lwp...ln] couldn’t be recognized, t remains positive (code line 9) and
we admit that an error occurred at position wp in the intended word. We try
to recognize the input suffix [lwp...ln] by admitting one of the four elementary
operations:
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1. tolerant lookup ([lwp ... ln],st,t)
2. begin
3. S ← ∅; ed ← INF;
4. if (wp > n)
5. if terminal(st) then return (0,{ε}); endif;

/*the empty suffix recognized*/
6. endif;

/*look up the exact suffix, reduce the threshold so as not to admit more
modifications than in the suffixes already found*/

7. if (wp ≤ n) and (there is a transition (st,lwp,sts))
8. (ed,S)← tolerant lookup([lwp+1 ... ln],sts,t);
9. t = min(t,ed);

/*concatenate the current letter lwp

with all suffixes similar to [lwp+1 ... ln]*/
10. for each (suff ∈ S) do suff ← lwp ◦ suff; endfor;
11. endif ;

/*look up modified suffixes*/
12. if (t>0)

/*suppose an insertion at position wp*/
13. if (wp ≤ n)
14. (edn,Sn)← tolerant lookup([lwp+1 ... ln],st,t-1);

/*only the suffixes with the smallest edit distance are retained*/
15. (ed,S) ← add or replace(ed,S,edn+1,Sn);
16. t = min(t,ed);
17. endif;

/*suppose an inversion of letters at positions wp and wp+1,
these letters must remain adjacent*/

18. if ((wp < n) and (lwp 	= lwp+1))
19. if (∃ ((st,lwp+1,sts) and (sts,lwp,stv)))
20. (edn,Sn)← tolerant lookup([lwp+2...ln],stv,t-1);
21. for each (suff ∈ Sn) do suff ← [lwp+1 lwp] ◦ suff;
22. endfor;
23. (ed,S) ← add or replace (ed,S,edn+1,Sn);
24. t = min(t,ed);
25. endif; endif;

26. for each transition (st,l,sts)

/*suppose an omission of a letter at position wp*/
27. (edn,Sn)← tolerant lookup([lwp...ln],sts,t-1);
28. for each (suff ∈ Sn) do suff ← l ◦ suff; endfor;
29. (ed,S) ← add or replace (ed,S,edn+1,Sn);
30. t = min(t,ed);

/*suppose a replacement of the right letter by lwp if the word not finished*/

31. if (wp ≤ n)
32. (edn,Sn)← tolerant lookup([lwp+1...ln],sts,t-1);
33. for each (suff ∈ Sn) do suff ← l ◦ suff; endfor;
34. (ed,S) ← add or replace (ed,S,edn+1,Sn);
35. t = min(t,ed);
36. endif; endfor; endif;
37. return(ed,S); end

Fig. 2. Error-tolerant lookup algorithm
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– Insertion of the letter lwp (if we haven’t read the whole word yet; lines 13–
17). We omit letter lwp and try to recognize the suffix [lwp+1...ln] starting
from the current state st. We retain only the best solutions (see comment
on function add or replace below).

– Inversion of letters at positions wp and wp+1 (if at least two letters are left;
lines 18–25). First we try to recognize the inverse infix [lwp+1lwp] starting
from the current state st and allowing no modification because we require
that inverted letters must remain adjacent. Then we try to recognize the
suffix [lwp+2...ln] starting from the arrival state stv.

– Omission of a letter at position wp (lines 27–30). For each transition leading
from the current state st to a state sts through a label l (line 26), we try
to recognize the current suffix [lwp...ln] starting from the state sts. Each
solution found is concatenated with the transition label l (line 28).

– Replacement of the right letter at position wp through letter lwp (if we
haven’t read the whole word yet; lines 31–36). For each transition leading
from the current state st to a state sts through label l, we try to recognize
the suffix [lwp+1...ln] starting from the state sts.

Notice that each time new solutions are found the value of ed and the contents
of S are updated by the function add or replace (lines 15, 23, 29, 34). If new
solutions are closer to the original word than the solutions already in S then S
is replaced by the set of new solutions, and the value of ed by the new error
distance. Otherwise the union of the two sets is done and ed remains unchanged.
Thus, only those solutions are retained that have the smallest error distance from
the original suffix. Then t gets reduced (lines 9, 16, 24, 30, 35), which limits the
range of further searches.

The above algorithm can take as parameter any value of the edit distance
threshold, but for languages like English and French, which we tested the pro-
gram with, the reasonable limit seems to be 2 operations because admitting
a bigger edit distance would often result in a great number of irrelevant correc-
tions. Besides the look-up time for a high edit distance threshold would require
the exploration of a very big section of the automaton, thus making the search
time hardly acceptable for large corpus applications (cf section 6).

6 Complexity and Performance

The exact complexity of our error-tolerant look-up algorithm is difficult to find
because it depends not only on the word’s length, but also on the size of the
dictionary and its precise contents (i.e. the number and length of words that
have common subsequences with the input word). Nevertheless, we can make
some average case estimation. Let n be the length of the input word, t the error
distance threshold, and fmax the maximal fan-out of the automaton. Let lwp be
the current letter in the input word, s the current state, and fs the fan-out of s.
Depending on what modification is admitted parsing of lwp from state s requires
at most:
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Table 1. Spelling correction performances

Correction time (ms)
correct one-error two-error sequences with

sequences sequences sequences more than 2 errors

7 40 211 233

– 1 transition in case of inversion (the transition that matches lwp+1);
– no transition in case of insertion (lwp is omitted, we remain in the current

state),
– fs transitions in case of omission or replacement (all transitions starting

from s).

In the worst case, i.e. when the threshold is not reduced during the whole look-up,
there are at most n!/t!(n−t)! possible distributions of t modifications over n word
positions. For each distribution (1 + 2 ∗ fmax)t paths at most must be followed,
each path being of length n+t at most. Hence, the worst case complexity is

O(n!/t!(n − t)! ∗ (n + t) ∗ 2t ∗ f t
max).

In particular, for t=0 we get O(n), for t=1 O(n2∗fmax), for t=2 O(n3∗f2
max),

etc.
We have run the algorithm with threshold 2 on three sets of erroneous strings:

sequences belonging to the lexicon, sequences containing one spelling error, and
sequences containing two spelling errors or more. The average search time results
are presented in the table below. Notice that the correction of 2 errors or more
is over 5 times longer than of a single error.

7 Comparison with Oflazer’s Algorithm

As we’ve already mentioned, our algorithm and Oflazer’s one admit different
definitions of the correction problem (cf section 3).

The main difference though is in the way the calculation of the error (edit)
distance is done in the two approaches. In Oflazer’s algorithm a matrix H is
maintained as described in section 2. Each time a transition is followed in the
automaton a new column of the matrix is to be calculated by a function of linear
complexity. In our approach the error distance calculation is embedded in the
algorithm: each time we admit a modification in the standard lookup procedure
the error distance increases. This allows us not to maintain the H-matrix but
has also the two major disadvantages:

– It is difficult to adapt the error distance calculation to a particular applica-
tion or language, e.g. by considering phonetically motivated interchanges of
certain letters or groups of letters, as it was done in [1] for Polish.
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– A correction candidate may be reached several times with different inter-
mediate error distance values. For example while looking up the word *aply
in the lexicon extract from section 4 with the edit distance threshold 3, the
correction candidate ape would be first recognized twice as a 3-operation
candidate: insertion of l + insertion of y + omission of e, and insertion of
l + omission of e + insertion of y. Then the same candidate ape would be
reached by 2 modifications: insertion of l + replacement of e by y, which
would invalidate the two previous solutions. That can make us follow the
same path in the automaton several times, which is not time-efficient for
bigger values of the edit distance threshold.

For applications in which most errors are of 1 or 2 operations, and in which
reaching quickly the first solution is important, our algorithm will often be more
efficient due to the fact that we first match the longest correct prefix. Note that
in a finite state lexicon the fan-out is very big for the states close to the initial
state. Oflazer’s algorithm explores most of them at the beginning so it may take
a longer time before a solution is found. Our algorithm first skips most of those
states (unless the error occurred at the initial position) and follows only the
exact path. Since most of misspelled words contain only one error, there is a big
chance that the point where the exact path was blocked is the position where
the error occurred.

8 Conclusion

We have presented a method of typographical nearest neighbour search in
a finite-state lexicon and its comparison to a similar algorithm by Oflazer [14].
Our method is designed for applications where only the least distant corrections
are looked for and where the first correction is to be reached as soon as possi-
ble. Oflazer’s algorithm is simpler and more elegant in the sense that the edit
distance calculation is independent from the look-up algorithm.
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