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Abstract. This paper describes several speedups for computation in
the order p + 1 subgroup of F∗

p2 and the order p2 − p + 1 subgroup
of F∗

p6 . These results are in a way complementary to LUC and XTR,
where computations in these groups are sped up using trace maps. As a
side result, we present an efficient method for XTR with p ≡ 3 mod 4.
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1 Introduction

Many cryptographic protocols rely on the assumed hardness of the discrete log-
arithm problem in certain groups. Well known examples are prime order sub-
groups of Z∗

p or of elliptic curves. Let Gx, for a positive integer x, denote a
cyclic (sub)group of order x. In this paper we focus on subgroups Gq of F∗

pd

with q a prime dividing the d-th cyclotomic polynomial Φd evaluated at p. The
cryptographic relevance of these groups was already pointed out in [11]: other
subgroups of F∗

pd can be embedded in a true subfield of F∗
pd , thereby making the

discrete logarithm computation substantially easier.
Computation in finite fields is a well studied problem. However, research

tends to emphasize on bilinear complexity [10], asymptotic complexity [24], or
binary characteristic [1]. The case of large prime characteristic with small ex-
tension degree has been studied less extensively [5,11,2]. Moreover, usually the
entire field is discussed, while hardly any attempt is made to look closely at the
cryptographically interesting cyclotomic subgroup. An exception is the afore-
mentioned article [11], but there the problem is not addressed in full detail. In
this paper, we consider the groups Gp+1 ⊂ F∗

p2 and Gp2−p+1 ⊂ F∗
p6 .

Currently the fastest exponentiation methods in the subgroups Gp+1 and
Gp2−p+1 use trace maps, resulting in respectively LUC [20] and XTR [13]. They
have the additional benefit of reducing the size of the representation of subgroup
elements to a half respectively a third of the traditional representation. Appli-
cation of LUC and XTR is advantageous in protocols where the subgroup oper-
ations are restricted to additions, and single or double exponentiations. But for
� The first author is sponsored by STW project EWI.4536
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more involved protocols that also require ordinary multiplications of subgroup
elements or triple (or larger) exponentiations, they may lead to cumbersome
manipulations that outweigh the computational advantages. As a consequence,
using trace based representations in more complicated protocols may be incon-
venient (unless of course the small representation size is crucial).

For that reason, we consider in this paper how exponentiation speedups in
Gp+1 and Gp2−p+1 can be achieved in such a way that other operations are not
affected, i.e., while avoiding trace based compression methods. For quadratic
extensions we show that for both p ≡ 2 mod 3 and p ≡ 3 mod 4 inversions in
Gp+1 ⊂ F∗

p2 come for free, and that squaring in Gp+1 is cheaper than in the field
Fp2 . This results in single and double exponentiations that cost about 60% and
75%, respectively, of traditional methods. Both methods are still considerably
slower than LUC (see also [22]).

Our main result concerns sixth degree extensions, i.e., the case Gp2−p+1 ⊂
F∗

p6 . We show that for both p ≡ 2 mod 9 and p ≡ 5 mod 9 inversions in Gp2−p+1
are very cheap, while squaring in Gp2−p+1 is substantially faster than in Fp6 .
Moreover, the methods from [8,22] can be used to transform a k-bit single expo-
nentiation into a k/2-bit double exponentiation (i.e., the product of two k/2-bit
exponentiations). Using appropriate addition chains this results in a vastly im-
proved single exponentiation routine, that takes approximately 26% of the time
cited in [13, Lemma 2.1.2.iii]. The improvement for double exponentiation is less
spectacular, requiring an estimated 33% compared to [13, Lemma 2.1.2.iv]. Our
methods are slightly slower than the improved version of XTR [22], but faster
than the original XTR [13].

Our proposed methods do not have the compressed-representation benefits
or disadvantages of LUC or XTR. Protocols where our methods compare well
to LUC and XTR are especially those based on homomorphic ElGamal encryp-
tion [7] such as Brands’ protocols [3] and Schoenmakers’ verifiable secret sharing
scheme [19]. Another example is the Cramer-Shoup protocol [6].

Another consideration is the cost of subgroup membership checking, since the
security of several cryptographic protocols stands or falls with the correctness
of the generators and proper subgroup membership of other elements. For LUC
the cost of the subgroup membership test is negligible. For XTR it is small but
not really negligible. Testing membership of Gp+1 and Gp2−p+1 as proposed in
this paper only costs a small constant number of operations in the underlying
field and is thus negligible, as in LUC.

The proposed methods can also be used in conjunction with LUC and XTR.
Given an element in Gp+1 or Gp2−p+1 the cost of computing the LUC respectively
XTR representation is negligible. Going from LUC to Gp+1 requires a square root
computation in Fp, going from XTR to Gp2−p+1 can be done by computing the
roots of a third degree polynomial over Fp2 . In both cases extra information is
needed to resolve root ambiguities.

Unless indicated otherwise, all logarithms in this paper are natural.
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2 Preliminaries

2.1 Computational Model

Throughout this paper we use the following conventions to measure the costs of
operations. Let l be a positive integer that will be clear from the context. We use
M for the cost of multiplying two l-bit numbers (without modular reduction), S
for the cost of squaring an l-bit number (idem), D for reducing a 2l-bit number
modulo an l-bit number, A1 for adding two l-bit numbers (including a reduction
if needed), and A2 for adding two 2l-bit numbers (no reduction). A modular
addition (of cost A1) typically boils down to two or three plain l-bit additions
(which makes it hard to determine whether A1 > A2 or vice versa). Consequently,
the stated numbers of additions should be taken with a grain of salt. As another
example, in Lemma 3.24.iv the cost of subgroup squaring is approximated as
2S + 2D + A1, assuming that the cost of subtracting one or multiplying by two
is negligible compared to A1 and A2. Furthermore, the reduction (of cost D) is
sometimes fed numbers slightly larger than 2l-bits.

Anyway, for exponentiations we always switch back to the simplified case
A1 = A2 = 0, M = D = 0.5, and S = 0.3, assuming some fixed value for l. This
corresponds to the model where an l-bit modular multiplication is the unit of
measurement, a squaring costs 80% of a modular multiplication, and additions
are considered negligible. This simplification facilitates comparisons with other
results given in the literature.

2.2 Discrete Logarithm Problem

In this paper it is assumed that the discrete logarithm problem in the order q
subgroup Gq of F∗

pd is sufficiently difficult. Here we briefly review the well known
implications of this assumption for the choice of q given pd.

It follows from the Pohlig-Hellman algorithm [15] that q is best chosen as a
prime number. Furthermore, it follows from the Pollard-ρ method [16,23] that√

q should be sufficiently large, say at least 280 or 2100 depending on the security
requirements. Finally, it was shown in [11] that q divides Φd(p) if and only if Gq

cannot be embedded in a true subfield of Fpd , under the assumption that q > d.
This implies that, if a sufficiently large q divides Φd(p), then index calculus
method attacks on the discrete logarithm problem in Gq cannot be mounted in
any true subfield of Fpd but must take place in the field Fpd . Thus, such attacks
can be expected to take time

exp((1.923 + o(1))(log pd)1/3(log log pd)2/3),

for p → ∞ and d fixed [9,17,18].
Summarizing, we find that the order q must be a prime of at least, say, 160

bits, irrespective of the value of d. For d = 2 we have the additional requirement
that q divides Φ2(p) = p + 1 and that the bit length of the prime p is at least,
say, 512. For d = 6 the order q divides Φ6(p) = p2 − p+1 and p must be a prime
of bit length at least, say, 170.
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2.3 Finite Field Representation

In cryptography, d-th degree extensions of finite fields are most commonly rep-
resented using either polynomial or normal bases (see [14] for definitions and
details). With a proper choice of minimal polynomial (such as a trinomial with
small coefficients), polynomial bases allow relatively efficient multiplication and
squaring in the sense that the usual reduction stage from a degree 2d−2 product
to the degree d − 1 result can be performed at the cost of cd additions in the
underlying prime field, for a very small constant c. In general, this is not the case
for normal bases, but they have the advantage that the Frobenius automorphism
can be computed for free. For polynomial bases the Frobenius automorphism can
be computed at a small but non-negligible cost. A class of polynomial bases com-
bining the best of both worlds is featured in [5]. They are based on cyclotomic
fields. The following theorem, a slight adaptation of [14, Theorem 2.47(ii)], says
something about the extension degrees one obtains using cyclotomic fields.

Theorem 2.31 Given a field Fpe with p prime and some n coprime to p. Then
the n-th cyclotomic field over Fpe is isomorphic to Fped where d is the least
positive integer such that ped ≡ 1 mod n.

This theorem implies d|φ(n). We fix e = 1. Furthermore, we concentrate on
d = φ(n), i.e., the case that p mod n generates Z∗

n. This requires Z∗
n to be cyclic,

so that n is either 2, 4, the power of an odd prime, or twice the power of an odd
prime. We ignore n = 2, since it does not lead to a proper extension.

Actually, [5] is concerned with rings Z[γ]/pZ[γ] where n is a prime power, γ
is a primitive n-th root of unity, and p is an integer of which primality is to be
determined. If p is indeed a prime generating Z∗

n then Z[γ]/pZ[γ] is isomorphic
to Fp[γ] supporting identical representations.

Let Γ = (γ, γ2, . . . , γd) with γ as above, then Γ is a basis of Fpd over Fp. It is
understood that an element a ∈ Fpd is represented as ā = (a0, . . . , ad−1) ∈ (Fp)d,
where a = Γ · āT . We abuse notation by identifying a and ā.

We are interested in finding fast single and double exponentiations for Gq,
where q|Φd(p) (cf. Section 2.2). For that purpose we formulate fast multiplication
and squaring methods for Fpd , show that squaring in GΦd(p) can be done even
faster, and that the cost of p-th powering in Fpd (and thus of inversion in GΦd(p))
is virtually negligible. Of independent interest is membership testing for GΦd(p).

If d < 105 , then Φd(p) =
∑

i∈P pi − ∑
i∈N pi for appropriate index sets P

and N . Let a ∈ Fpd . Since F∗
pd is cyclic, a ∈ GΦd(p) if and only if aΦd(p) = 1,

which is equivalent to
∏

i∈P api

=
∏

i∈N api

. Testing this condition requires at
most d applications of the Frobenius automorphism and |P| + |N | − 1 multipli-
cations in Fpd . Thus, for fixed d testing GΦd(p)-membership costs at most φ(d)
multiplications in Fpd . Membership x ∈ Gq can be established by verifying that
xq = 1.

The relation
∏

i∈P api

=
∏

i∈N api

gives rise to d possibly dependent relations
of degree |P|. In some cases these relations can be used to speed up |P|-th
powering in GΦd(p). This is exploited to get fast squaring in GΦd(p) for d = 2, 6.
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A major ingredient when calculating modulo Γ is writing powers > d of γ
as linear combinations in Γ . This reduction is performed in two stages. First, all
powers higher than n are reduced using γn = 1; next the relation Φn(γ) = 0 is
used to map everything to powers of γ between 1 and φ(n). Since d = φ(n), we
are done. Note that only additions and subtractions are needed for the reduction.

In [11] only pairs (p, n) are considered for which n is prime and for which p
generates Z∗

n, because they lead to so-called optimal normal bases. The relevance
of such bases for characteristics > 2 is limited, and the ‘cheap’ reduction they
achieve (just 2d − 1 additions in Fp) is almost met by the somewhat wider class
considered above.

2.4 Key Generation

Given n and d = φ(n) and a desired level of security, key generation consists of
two phases: sufficiently large primes p and q have to be found with p generating
Z∗

n and q dividing Φd(p), after which a generator of Gq has to be found.

2.41 Finding p and q. For small d, as in this paper, standard security require-
ments lead to log p > log q, cf. Section 2.2. In this case the obvious generalization
of the method from [13] can be used. First, an appropriately sized prime q is
selected, where q|Φd(p) may impose a priori restrictions on q (e.g., q ≡ 1 mod 3
for d = 6). Next, a root r of Φd[x] ∈ Fq[x] is found and p is determined as r + �q
for � ∈ Z≥0 such that p is a large enough prime that generates Z∗

n.
With larger d (or e > 1, cf. Theorem 2.31) one may aim for primes p that fit in

a computer word (i.e., log2(p) = 32 or 64). Although this may be advantageous,
log p becomes substantially smaller than log q. We are not aware of an efficient
method to find such p and q. If q is selected first, the probability is negligible
that an appropriate p exists such that q|Φde(p). If p is selected first, there is
only a very slim probability that Φde(p) has an appropriate prime factor, and
finding it leads to an unattractive integer factorization problem. In this paper
the possibility log p < log q is not further discussed.

2.42 Finding a generator of Gq. This problem is easily solved by selecting
h ∈ Fpd at random until g = h(pd−1)/q �= 1, at which point g is the desired
generator. A faster method is described in [12, credited to H.W. Lenstra, Jr.].
First an element h ∈ GΦd(p) is constructed directly and next g = hΦd(p)/q is
computed. If g = 1 another h has to be generated. The specifics follow.

Let f ∈ Fp and let γ be a primitive n-th root of unity as in Section 2.3.
Consider hf = (γ+f)(p

d−1)/Φd(p) ∈ GΦd(p). Since Φd(p) divides pd−1 irrespective
of p, we can write (pd − 1)/Φd(p) as r+(p) − r−(p) where r+ and r− are both
polynomials with positive coefficients. The equation (γ+f)r+ (p) = hf (γ+f)r− (p)

gives rise to a system of d equations in the coefficients of hf . Since the system
only depends on p’s congruency class modulo n (and not on p itself), solving the
system can be done before actually picking p. The resulting hf corresponding to
several different choices for f can be hardcoded in the program. In Section 4.4
the details for Gp2−p+1 with p ≡ 2 mod 9 are presented.
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2.5 LUC and XTR

For completeness, we give a very brief description of LUC and XTR. LUC [20]
is based on the subgroup Gp+1 ⊆ F∗

p2 and the trace map Tr : Fp2 → Fp defined
by Tr(g) = g + gp. Since g ∈ Gp+1 implies that (X − g)(X − gp) = X2 − (g +
gp)X + gpg = X2 − Tr(g)X + 1, the roots of the polynomial X2 − Tr(g)X + 1
are g and its conjugate gp. Define Vn = Tr(gn), then it can easily be verified
that Vn+m = VnVm − Vn−m using gp = g−1 for g ∈ Gp+1. Thus, computation
of Vn+m from Vn, Vm, and Vn−m costs a multiplication (a squaring if n = m)
in Fp. The Vn coincide with a special instance of the Lucas-function.

XTR [13] is based on the subgroup Gp2−p+1 ⊆ F∗
p6 and the trace map Tr :

Fp6 → Fp2 defined by Tr(g) = g + gp2
+ gp4

. In this case, g ∈ Gp2−p+1 and
its conjugates gp2

and gp4
are the roots of the polynomial X3 − Tr(g)X2 +

Tr(g)pX − 1. Define cn = Tr(gn), then it can be verified that cn+m = cncm −
cp
mcn−m+cn−2m. Since the cn are elements of Fp2 , efficient computation of cn+m

requires a suitable representation for Fp2 (in particular one that supports cheap
Frobenius).

Both LUC and XTR compute Tr(gn) instead of gn and in case of a double
exponentiation this would be Tr(gnhm) instead of gnhm. The necessity of know-
ing Vn−m respectively cn−m and cn−2m makes ordinary exponentiation routines
unapplicable. Nevertheless, in either case efficient exponentiation methods exist.
However, the shortest addition chain is typically considerably longer than the
shortest one. For further details, see [22] and the references contained therein.

3 Quadratic Extensions

In this section we discuss computing in Fp2 and Gp+1 ⊂ F∗
p2 . Fast computations

in the full field Fp2 with p ≡ 2 mod 3 are important for XTR and have been
discussed in [13]. We show that the field arithmetic for p ≡ 3 mod 4 from [5, Case
pk = 4] can be used for XTR without significant loss of efficiency compared to
p ≡ 2 mod 3. The subgroup Gp+1 is not relevant for XTR, but it is the subgroup
on which LUC is based. We show that it yields some extra computational benefits
that are, however, still not competitive with LUC.

We first discuss the field arithmetic for p ≡ 2 mod 3 in general and then focus
on the subgroup. The case p ≡ 3 mod 4 is dealt with similarly, first the field
arithmetic and then the subgroup arithmetic. Suitable exponentiation routines
that apply to either case conclude this section.

3.1 Field Representation for p ≡ 2 mod 3

3.11 Field arithmetic. Let p and q be primes with p ≡ 2 mod 3 and q|p + 1.
Then p generates Z∗

3 and Φ3(x) = x2 + x + 1|x3 − 1 is irreducible in Fp. Let γ
denote a root of Φ3(x), then γn = γ(nmod3) and in particular γp = γ2. Hence
Γ = (γ, γ2) is an optimal normal basis of Fp2 over Fp. Using Γ instead of
(1, γ) leads to slightly fewer additions than the basis (1, γ) discussed in [5, Case
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p = 3]. The following lemma is easily implied by the formulas from [13, Section
2.1] (cf. [13, Lemma 2.1.1], [22, Lemma 2.2], and [5, Case p = 3]).

Lemma 3.12 Let a, b, c ∈ Fp2 with p ≡ 2 mod 3.
i. Computing ap is free.
ii. Computing a2 costs 2M + 2D + 3A1.
iii. Computing ab costs 3M + 2D + 2A1 + 2A2.
iv. Computing ac − bcp costs 4M + 2D + 6A1 + 2A2.

3.13 Subgroup arithmetic. Because xp+1 = 1 for x ∈ Gp+1, we find that
inversion in Gp+1 is equivalent to p-th powering and thus for free. Let a = a0γ +
a1γ

2 with a0, a1 ∈ Fp, so a ∈ Fp2 . Then a ∈ Gp+1 if and only if ap+1 = ap ·a = 1,
i.e., (a1γ + a0γ

2)(a0γ + a1γ
2) = 1. This is equivalent to a2

0 − a0a1 + a2
1 = 1, so

that Gp+1-membership testing costs M + S + D + A1 + A2 plus a comparison
with one. This relation can also be exploited to speed up squaring in Gp+1, since
the value of a0a1 follows from a2

0 and a2
1 using only a handful of additions. More

specifically, a2 = (2−2a2
0−a2

1)γ+(2−a2
0−2a2

1)γ
2, which costs 2S+2D+2A1+3A2.

Free inversion in Gp+1 also results in an advantage for simultaneous compu-
tation of ab and ab−1 for a ∈ Fp2 and b ∈ Gp+1: since there are only four possible
combinations aibj , four multiplications suffice.

Lemma 3.14 Let Gp+1 be the order p + 1 subgroup of F∗
p2 with p ≡ 2 mod 3

and let a = a0γ + a1γ
2 ∈ Fp2 with Φ3(γ) = 0.

i. The element a is in Fp if and only if a0 = a1.
ii. The element a is in Gp+1 if and only if a2

0 − a0a1 + a2
1 = 1. Testing this

costs M + S + D + A1 + A2.
iii. Computing a−1 for a ∈ Gp+1 is free.
iv. Computing a2 for a ∈ Gp+1 costs 2S + 2D + 2A1 + 3A2.
v. Computing ab and ab−1 for b ∈ Gp+1 costs 4M + 4D + 6 min(A1, A2).

3.2 Field Representation for p ≡ 3 mod 4

3.21 Field arithmetic. Let p and q be primes with p ≡ 3 mod 4 and q|p + 1.
Then p generates Z∗

4 and Φ4(x) = x2 + 1 is irreducible in Fp. Let γ denote a
root of Φ4(x), then Γ = (1, γ) is a basis of Fp2 over Fp. (Since γ2 = −1 the
basis (γ, γ2) looks contrived and leads to slightly more complicated reductions.)
This field representation is identical to [5, Case pk = 4], although the number of
additions in our cost functions is slightly different.

Let a ∈ Fp2 be represented by (a0, a1) ∈ (Fp)2, i.e., a = Γ · (a0, a1)T =
a0 + a1γ. From γn = γ(nmod4) and thus γp = γ3 = −γ it follows that ap =
ap
0 + ap

1γ
p = a0 − a1γ so that p-th powering costs a modular negation. The

cost of multiplication is 3M + 2D + 2A1 + 3A2 since ab = a0b0 − a1b1 + ((a0 +
a1)(b0 + b1) − a0b0 − a1b1)γ. The cost of squaring is 2M + 2D + 2A1 since
a2 = (a0 +a1)(a0 −a1)+2a0a1γ. The cost of computing ac− bcp for a, b, c ∈ Fp2

is 4M +2D+2A1 +2A2 since ac−bcp = (b0 +a0)c0 +(b1 −a1)c1 +((a1 −b1)c0 +
(a0 + b0)c1)γ. By analogy with Lemma 3.12 we get the following.
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Lemma 3.22 Let a, b, c ∈ Fp2 with p ≡ 3 mod 4.
i. Computing ap costs A1.
ii. Computing a2 costs 2M + 2D + 2A1.
iii. Computing ab costs 3M + 2D + 2A1 + 3A2.
iv. Computing ac − bcp costs 4M + 2D + 2A1 + 2A2.

It follows from Lemmas 3.12 and 3.22 and [13] that XTR can be generalized to
p ≡ 3 mod 4 without loss of efficiency compared to p ≡ 2 mod 3 as in [13].

3.23 Subgroup arithmetic. As in 3.13, inversion in Gp+1 is equivalent to p-th
powering; it costs A1. Let a = a0 + a1γ with a0, a1 ∈ Fp, so a ∈ Fp2 . Then
a ∈ Gp+1 if and only if ap+1 = ap · a = 1, i.e., (a0 − a1γ)(a0 + a1γ) = 1 which is
equivalent to a2

0 + a2
1 = 1. So, Gp+1-membership testing costs 2S + D + A2. It

also follows that a2 = 2a2
0 − 1 + ((a0 + a1)2 − 1)γ for a ∈ Gp+1, which implies

that squaring in Gp+1 can be done faster than in Fp2 .

Lemma 3.24 Let Gp+1 be the order p + 1 subgroup of F∗
p2 with p ≡ 3 mod 4

and let a = a0 + a1γ ∈ Fp2 with Φ4(γ) = 0.
i. The element a is in Fp if and only if a1 = 0.
ii. The element a is in Gp+1 if and only if a2

0 + a2
1 = 1. Testing this costs

2S + D + A2.
iii. If a ∈ Gp+1, then computing a−1 costs A1.
iv. If a ∈ Gp+1, then computing a2 costs 2S + 2D + A1.
v. Computing ab and ab−1 for b ∈ Gp+1 costs 4M + 4D + 6 min(A1, A2).

3.3 Subgroup Exponentiation

For a single exponentiation we have to compute am, where m has roughly the
same bitlength k as q. With signed flexible windows [4] of size 5, this requires
about k + 1 squarings and 7 + k/6 multiplications in Gq. With Lemmas 3.14.iv
and 3.24.iv the squaring cost is ≈ (3S + 2D)(k + 1) and with Lemmas 3.12.iii
and 3.22.iii the multiplication cost is ≈ (3M +2D)(7+k/6). Under the assump-
tion that M ≈ D and S ≈ 0.3M the resulting number of Fp-multiplications is
19.1 for the precomputation plus 2.0 per exponent bit.

For double exponentiation we have to compute ambn for m and n of roughly
equal size and with m as above. This can be computed using Solinas’ trick [21,
See also Appendix A], resulting in k squarings and k/2 multiplications in Gq.
With Gq-arithmetic as above, this becomes (2S+2D)k + (3M +2D)k/2 ≈ 2.85k
multiplications in Fp. The precomputation of ab and ab−1 uses Lemmas 3.14.v
and 3.24.v. Combination of these observations leads to the following theorem.

Theorem 3.31 Let p and q be primes with q|p+1, p ≡ 2 mod 3 or p ≡ 3 mod 4,
and 
log2 q� = k. Let a, b be in the order q subgroup Gq of F∗

p2 and m, n ∈ (0, q).
Assuming that M ≈ D and S ≈ 0.3M ,

i. computing am costs on average 19.1 + 2k multiplications in Fp, and
ii. computing ambn costs on average 4 + 2.85k multiplications in Fp.
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These results improve previously reported ones, but the resulting exponentia-
tions are less efficient than the LUC exponentiations. So, even though we have
several related results concerning improved key selection and other choices of p,
we leave the subject of quadratic extensions and move on to sixth degree exten-
sions because there our methods appear to have a more substantial impact.

4 Sixth Degree Extension

In this section fast exponentiation routines for the group Gp2−p+1 ⊂ F∗
p6 with p ≡

2 mod 9 are described. Let f be a sixth degree irreducible polynomial over some
ground field, with root γ. Consider the extension induced by γ and represented by
a polynomial basis consisting of six consecutive powers of γ, such as (1, γ, . . . , γ5)
or (γ, γ2, . . . , γ6). The cost of computation in this representation depends on the
general question of how many ground field multiplications are needed to multiply
two degree five polynomials, and on the specific question of what f looks like.
Therefore, a short word on the multiplication of fifth degree polynomials in
general, before going into details about the field representation and the benefits
the group offers. These results are then used in the subsequent exponentiation
routines. We conclude this section with an improved key selection method.

4.1 Multiplication of Fifth Degree Polynomials

Multiplication of two polynomials of degree five can be done in 18 multiplications
plus a handful of additions [2,5]. Indeed, let G(x) =

∑5
i=0 gix

i and H(x) =
∑5

i=0 hix
i be two fifth degree polynomials. Write G = G0 + G1x

3 and H =
H0 + H1x

3 where G0, G1, H0, and H1 are second degree polynomials. Then

GH = G0H0 + (G0H1 + G1H0)x3 + G1H1x
6,

so that, with C0 = G0H0, C1 = G1H1, and C2 = (G0 −G1)(H0 −H1), it follows
that

GH = C0 + (C0 + C1 − C2)x3 + C1x
6. (1)

Each of the Ci can be computed using 6 multiplications in the ground field. For
example, because G0 = g0 + g1x + g2x

2 and H0 = h0 + h1x + h2x
2,

C0 = g0h0+(g1h0+g0h1)x+(g2h0+g1h1+g0h2)x2+(g2h1+g1h2)x3+(g2h2)x4,

so that, with c0 = g0h0, c1 = g1h1, c2 = g2h2, c3 = (g0 − g1)(h0 − h1), c4 =
(g0 − g2)(h0 − h2), and c5 = (g1 − g2)(h1 − h2), we have that

C0 = c0 + (c0 + c1 − c3)x + (c0 + c1 + c2 − c4)x2 + (c1 + c2 − c5)x3 + c2x
4.

With similar expressions for C1 and C2 it follows that 18 ground field multipli-
cations (or squarings) suffice to compute the product GH (or the square G2).
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If the gi and hi are l-bit numbers, and one is interested in an (unreduced)
product with 2l-bit or sligthly larger coefficients, then computing C0 costs 6M +
6A1 + 7A2 and the cost of computing GH as in (1) is 18M + 24A1 + 21A2.

It remains to reduce GH modulo f , at a cost depending on f . This is discussed
in the remainder of this section for several ground fields Fp. In that case the
resulting coefficients must be reduced modulo p at a cost of 6D for l-bit p.

4.2 Field Representation for p ≡ 2 mod 9

4.21 Field arithmetic. Let p be prime with p ≡ 2 mod 9. Then p generates
Z∗

9 and Φ9(x) = x6 + x3 + 1 is irreducible in Fp. Let γ denote a root of Φ9(x),
then Γ = (γ, γ2, . . . , γ6) is a basis for Fp6 over Fp (in [5, Case pk = 9] the similar
basis (1, γ, . . . , γ5) is used).

Let a =
∑5

i=0 aiγ
i+1 ∈ Fp6 . From γn = γnmod9 and thus γp = γ2 it fol-

lows with Φ9(γ) = 0 that ap = a4γ + (a0 − a3)γ2 + a5γ
3 + a1γ

4 − a3γ
5 + a2γ

6.
Thus, p-th powering costs A1. In a similar way it follows that p3-th powering
costs 2A1. For multiplication in Fp6 the method from Section 4.1 is used, with
proper adjustment of the powers of x, e.g., G = G0x + G1x

4. It follows with
straightforward bookkeeping that collecting corresponding powers of x in Rela-
tion (1) combined with the modular reductions costs 12A2 + 6D. (For the basis
(1, γ, . . . , γ5) we find that the collecting phase costs 14A2, which slightly im-
proves the 18A2 reported in [5].) With Section 4.1 it follows that multiplication
can be done for 18M + 6D + 24A1 + 33A2. Doing more elaborate collecting re-
duces the 33A2 to 29A2. Squaring follows by replacing 18M by 18S, but it can
be done substantially faster by observing that

G2 = (G0γ + G1γ
4)2 = (G0 − G1)(G0 + G1)γ2 + (2G0 − G1)G1γ

5,

with G0, G1 ∈ Fp[γ] of degree two. Computing this costs 9A1 for the preparation
of the multiplicands, two polynomial multiplications costing 6M + 6A1 + 7A2
each, 7A2 for the collection, and 6D for the final reductions. It follows that
squaring can be done for 12M + 6D + 21A1 + 21A2. (This is A2 more than
reported in [5] for (1, γ, . . . , γ5).)

Lemma 4.22 Let a, b ∈ Fp6 with p ≡ 2 mod 9.
i. Computing ap or ap5

costs A1.
ii. Computing ap2

, ap3
, or ap4

costs 2A1.
iii. Computing a2 costs 12M + 6D + 21A1 + 21A2.
iv. Computing ab costs 18M + 6D + 24A1 + 29A2.

4.23 Subgroup arithmetic. Let a =
∑5

i=0 aiγ
i+1 ∈ Fp6 . Membership of one

of the three proper subfields of Fp6 is characterized by one of the equations api

=
a for i = 1, 2, 3. Specifically, a ∈ Fp if and only if ap = a which is equivalent to the
system of linear equations (a0, a1, a2, a3, a4, a5) = (a4, a0 − a3, a5, a1,−a3, a2).
The solution a0 = a1 = a3 = a4 = 0 and a2 = a5 is not surprising since
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1 + γ3 + γ6 = 0, so an element c ∈ Fp takes the form −cγ3 − cγ6. Similarly,
a ∈ Fp2 if and only if ap2

= a, which is equivalent to a = a2γ
3+a5γ

6, and a ∈ Fp3

if and only if ap3
= a or a = (a3−a4)γ+(−a3+a4)γ2+a5γ

3+a3γ
4+a4γ

5+a5γ
6.

More interesting for cryptographic purposes is the order p2 − p + 1 subgroup
Gp2−p+1 of F∗

p6 , because that subgroup cannot be embedded in a true subfield

of Fp6 . The Gp2−p+1-membership condition ap2−p+1 = 1 is equivalent to ap2
a =

ap, which can be verified at a cost of, essentially, a single Fp6-multiplication.
From ap3

= a−1 it follows that inversion in Gp2−p+1 costs 2A1.
Computing ap2

a − ap =
∑5

i=0 viγ
i+1 symbolically produces

v0 = a2
1 − a0a2 − a4 − a2

4 + a3a5,
v1 = −a0 + a1a2 + a3 − 2a0a3 + a2

3 − a2a4 − a1a5,
v2 = −a0a1 + a3a4 − a5 − 2a2a5 + a2

5,
v3 = −a1 − a2a3 + 2a1a4 − a2

4 − a0a5 + a3a5,
v4 = a2

0 + a1a2 + a3 − 2a0a3 − a4a5,
v5 = −a2 + a2

2 − a1a3 − a0a4 + a3a4 − 2a2a5.

(2)

If a ∈ Gp2−p+1, then vi = 0 for 0 ≤ i < 6 and the resulting six relations
can be used to significantly reduce the cost of squaring in Gp2−p+1. Let V =
(v0, v1, . . . , v5) be the vector consisting of the vi’s. Then for any 6×6-matrix M ,
we have that a2 + Γ · (M · V T ) = a2 if a ∈ Gp2−p+1, because in that case V
is the all-zero vector. Carrying out this computation symbolically, involving the
expressions for the vi’s for a particular choice of M yields the following:

a2 = a2 + 2Γ ·











0 0 0 −1 0 0
0 −1 0 0 1 0
0 0 1 0 0 0
1 0 0 −1 0 0
0 −1 0 0 0 0
0 0 0 0 0 1











· V T = Γ ·











2a1 + 3a4(a4 − 2a1)
2a0 + 3(a0 + a3)(a0 − a3)

−2a5 + 3a5(a5 − 2a2)
2(a1 − a4) + 3a1(a1 − 2a4)
2(a0 − a3) + 3a3(2a0 − a3)

−2a2 + 3a2(a2 − 2a5)











.

(3)

Given that we are working over a sixth degree extension, the six multiplications
and reductions required for (3) seem optimal. The additions can be taken care
of in several ways; a reasonable solution results in 6M + 6D + 9A1 + 12A2.

Lemma 4.24 Let Gp2−p+1 be the order p2 − p + 1 subgroup of F∗
p6 with p ≡

2 mod 9 and let a = a0γ + a1γ
2 + · · · + a5γ

6 ∈ Fp6 with Φ9(γ) = 0.
i. The element a is in Fp if and only if a = a2γ

3 + a2γ
6.

ii. The element a is in Fp2 if and only if a = a2γ
3 + a5γ

6.
iii. The element a is in Fp3 if and only if

a = (a3 − a4)γ + (−a3 + a4)γ2 + a5γ
3 + a3γ

4 + a4γ
5 + a5γ

6.
iv. The element a is in Gp2−p+1 if and only if in relations (2) vi = 0 for

0 ≤ i < 6. This can be checked at a cost of essentially 18M + 6D.
v. Computing a−1 for a ∈ Gp2−p+1 costs 2A1.
vi. Computing a2 for a ∈ Gp2−p+1 costs 6M + 6D + 9A1 + 12A2.
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4.3 Subgroup Exponentiation

For a single exponentiation we have to compute am, where m has roughly the
same bitlength k as q. For the case q|p2−p+1 it is shown in [22, Section 4.4] that
m can quickly be written as m ≡ m1 + m2p mod q with m1 and m2 of bitlength
k/2. Hence am can be rewritten as am1(ap)m2 . This can be computed using
Solinas’ trick [21] at the cost of k/2 squarings and k/4 multiplications in Gq.
Tanja Lange pointed out to us that the precomputation only requires one group
multiplication, since apa−1 = ap2

. With Lemmas 4.24.vi and 4.22.iv the squar-
ing and multiplication costs become ≈ (6M + 6D)k/2 and ≈ (18M + 6D)k/4,
respectively. Assuming that M ≈ D this results in six Fp-multiplications per
exponent bit.

A double exponentiation ambn, with log m ≈ log n and m as above, can
be rewritten as am1(ap)m2bn1(bp)n2 with ≈ k/2-bit m1, m2, n1, and n2. This
quadruple exponentiation can be computed using Solinas’ trick simultaneously
on two pairs of two exponents (paired in any way), resulting in a total of k/2
squarings and twice k/4 multiplications. With Lemmas 4.24.vi and 4.22.iv this
becomes (6M + 6D)k/2 + 2(18M + 6D)k/4 ≈ 9k multiplications in Fp. Com-
bination of these obeservations leads to the following theorem.

Theorem 4.31 Let p and q be primes with q|p2 − p + 1, p ≡ 2 mod 9, and

log2 q� = k. Let a, b be in the order q subgroup Gq of F∗

p6 and m, n ∈ (0, q).
Assuming that M ≈ D,

i. computing am costs on average 6 + 6k multiplications in Fp, and
ii. computing ambn costs on average 12 + 9k multiplications in Fp.

The cost of this Fp6-exponentiation is comparable to XTR, cf. Section 5.

4.4 Key Selection

We elaborate on the improved key selection mentioned in Section 2.42 and similar
to [12, Algorithm 4.5]. With f ∈ Fp and hf = (γ + f)(p

6−1)/Φ6(p) it follows that
hf (γ + f)(γ + f)p = (γ + f)p3

(γ + f)p4
. Solving this equation for the coefficients

of hf gives

hf =
Γ

f6 − f3 + 1
·











−f + f2 + 3f3 − f4 − 2f5

−f − 2f2 + 3f3 + 2f4 − 2f5

(1 − f2)3

f − f2 + f4 − f5

f − f2 + f4 − f5

−f3(1 − 3f + f3)











. (4)

This gives h1/2 = 1
19 (0,−12, 9, 6, 6, 1) and h2 = − 3

19 (6, 2, 3, 2, 2, 8/3).
Given either h ∈ GΦd(p), compute g = h(p2−p+1)/q using [4] and Lem-

mas 4.24.vi and 4.22.iv. Assuming that p is only slightly larger in size than q
this takes 8 log p + 90 ground field multiplications (note that Theorem 4.31 does
not apply). The resulting g generates Gq unless g = 1. The probability of failure
may be expected to be q−1, independently for each h. This is negligible.
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Remark 4.41 Our methods work, and result in identical runtimes, as long as
p mod 9 generates Z∗

9. Since φ(φ(9)) = 2, the only other case is p ≡ 5 mod 9.
Several other choices of p can be handled in a similar fashion.

5 Timings

All methods were implemented to verify their correctness and runtime charac-
teristics. The table below summarizes runtimes for Gq ⊂ Gp2−p+1 ⊂ F∗

p6 for
170-bit p and q, and compares them to the XTR timings from [13,22]. They are
in milliseconds on a 600 MHz Pentium III NT laptop, averaged over 100 random
p, q pairs and 100 exponentiations per pair. The timings confirm that our new
methods for Fp6-subgroup exponentiation are superior to the original XTR and
almost competitive with the faster version of XTR from [22]. This shows that the
main reason to use XTR would no longer be its speed, but mostly its compact
— and sometimes inconvenient — representation.

Table 1. XTR and Gq ⊂ Gp2−p+1 runtimes.

XTR in [13] XTR in [22] Gq

key generation 64 ms 62 ms 85 ms
single exponentiation 10 ms 7.4 ms 8.9 ms
double exponentiation 21 ms 8.6 ms 13 ms
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A Solinas’ Trick

We briefly discuss Solinas’ trick for performing a double exponentiation gahb in
a group where inversion is cheap. This naturally occurs in the context of elliptic
curve cryptography, and also applies to the groups Gq as discussed in this paper.

Let g be a group element and a some exponent. Let the binary expansion
of a be

∑k
i=0 ai2i where all ai ∈ {0, 1}. On average, half of the ai’s will be

nonzero, hence the square-and-multiply method requires k squarings and k/2
multiplications.

If inversion, i.e., the computation of g−1 is cheap, single exponentiation can
be sped up by using a signed digit representation for the exponent. Once again,
write a =

∑k
i=0 ai2i, but relax the condition on the ai to ai ∈ {−1, 0, 1}. The

representation is no longer unique, but the non-adjacent form (NAF) is. On
average, only a third of the ai’s of the NAF will be nonzero. This improves the
square-and-multiply method to k squarings and k/3 multiplications.

A double exponentiation, i.e., the computation of gahb for given group ele-
ments g and h and exponents a and b, can be performed faster than two separate
exponentiations using Shamir’s trick. If a =

∑k
i=0 ai2i and b =

∑k
i=0 bi2i with

all ai, bi ∈ {0, 1}, switching to a vector notation c = (ab)T and ci = (aibi)T leads
to c =

∑k
i=0 ci2

i, where ci ∈ {(0
0

)
,
(0
1

)
,
(1
0

)
,
(1
1

)}. Assuming a and b to be indepen-
dent, about three quarter of the columns ci will be nonzero. By precomputing
the value gh corresponding to ci =

(1
1

)
this yields a runtime of k squarings and

3k/4 multiplications for the square-and-multiply method.
If inversion is for free, one could consider combining the NAF with Shamir’s

trick. Given two random exponents, each having a NAF of length about k and
an expected number of 2k/3 zeroes, on average in 4

9 of the positions both ai

and bi be zero. This leaves 5
9k nonzero ci’s, resulting in an improvement of the

square-and-multiply method to k squarings and 5k/9 multiplications.
In [21], Solinas noted that computing the NAF’s independent of each other

might not be optimal to minimize the number of nonzero ci’s. As an alternative,
the joint sparse form is proposed, that satisfies the following properties:

1. There are at most two consecutive nonzero columns.
2. Adjacent terms do not have opposite sign, i.e., aiai+1 �= −1 and bibi+1 �= −1

for all i.
3. If aiai+1 = 1, then bi = 0 and bi+1 = ±1. Similarly for bibi+1 = 1.

An efficient algorithm is given in [21] that computes the Joint Sparse Form and
it is proven that on average, half of the resulting columns ci will be nonzero.
The running time of the square-and-multiply method thus becomes k squarings
and k/2 multiplications.
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