A Low-Power Design for an Elliptic Curve
Digital Signature Chip

Richard Schroeppel, Cheryl Beaver, Rita Gonzales, Russell Miller, and
Timothy Draelos

Sandia National Laboratories** Albuquerque, NM 87185-0785
{rschroe, cbeaver, ragonza, rdmille, tjdrael}@sandia.gov

Abstract. We present a VHDL design that incorporates optimizations
intended to provide digital signature generation with as little power,
space, and time as possible. These three primary objectives of power, size,
and speed must be balanced along with other important goals, including
flexibility of the hardware and ease of use. The highest-level function
offered by our hardware design is Elliptic Curve Optimal El Gamal digital
signature generation. Qur parameters are defined over the finite field
GF(2'™), which gives security that is roughly equivalent to that provided
by 1500-bit RSA signatures.

Our optimizations include using the point-halving algorithm for elliptic
curves, field towers to speed up the finite field arithmetic in general, and
further enhancements of basic finite field arithmetic operations. The
result is a synthesized VHDL digital signature design (using a CMOS
0.5um, 5V, 25°C library) of 191,000 gates that generates a signature in
4.4 ms at 20 MHz.

Keywords: Digital Signature, Elliptic Curve, ECDSA, Optimal El
Gamal, Characteristic 2, Field Towers, Trinomial Basis, Quadratic Equa-
tion, Qsolve, Almost-Inverse Algorithm, Point Halving, Signed Sliding
Window, GF(2%9), GF(2'™®), Hardware, VHDL, Low Power

1 Introduction

While the value of elliptic curve arithmetic in enabling public-key cryptography
to serve in resource-constrained environments is well accepted, efforts in cre-
ative implementations continue to bear fruit. A particularly active area is that
of hardware implementations of elliptic curve operations, including hardware
description language developments, programmable hardware realizations, and
fabricated custom circuits. Kim, et al, [I] introduce a hardware architecture to
take advantage of a nonconventional basis representation of finite field elements
to make point multiplication more efficient. Moon, et al, [2] address field multi-
plication and division, proposing new methods for fast elliptic curve arithmetic

** Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under Contract DE-
AC04-94AL85000.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 366-B80] 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Low-Power Design for an Elliptic Curve Digital Signature Chip 367

appropriate for hardware. Goodman and Chandrakasan [3] tackle the broader
problem of providing energy-efficient public-key cryptography in hardware while
supporting multiple algorithms, including elliptic curve-based algorithms. Mov-
ing closer to applications of elliptic curve cryptography (ECC), Aydos, et al, [4]
have implemented an ECC-based wireless authentication protocol that utilizes
the elliptic curve digital signature algorithm (ECDSA).

We present a vuDI[design that incorporates optimizations intended to
provide elliptic curve-based digital signature generation with as little power,
space, and time as possible. These three primary objectives of power, size, and
speed must be balanced along with other important goals, including flexibility
of the hardware (e.g., support of a class of elliptic curves) and ease of use (e.g.,
doesn’t require the user to supply or interpret complex parameters). Currently,
the highest-level function offered by our hardware design is digital signature gen-
eration. Our elliptic curve parameters are defined over the finite field GF(2!78),
which gives security roughly equivalent to that provided by 1500-bit RSA signa-
turedd. As we don’t currently have hardware and therefore explicit power mea-
surements, the emphasis of this paper is on a design that reflects many choices
promoting a low-power outcome. In addition to the obvious goal of minimizing
the number of gates, the speed of execution is critical to power consumption since
power can be removed from circuits as soon as they complete their functions.

ECC solutions are well-known for their suitability in smart-card applications
and wireless communications security. Our work was motivated by the need
to reduce the resources required to provide strong public-key authentication
for sensor-based monitoring systems and critical infrastructure protection. For
these applications, signature generation is often performed in highly constrained,
battery-operated environments, whereas signature verification is performed on
desktop systems with only the typical constraint of purchasing power. Hence, our
hardware design focused primarily on the signature generation, with signature
verification to follow. Here, we present a chip design represented in VHDL of the
best to date, in our minds and for our applications, digital signature generation
solution for low-power, resource-constrained environments.

In Section @] we start with the selection of an El Gamal digital signature
variant that minimizes the number of operations necessary for signature genera-
tion. Section B] presents algorithmic optimizations of the computational elements
necessary to compute a digital signature. We note that many of these elements

! VHDL stands for VHSIC Hardware Description Language, where VHSIC stands for
Very High Scale Integrated Circuit.
2 The number of computer instructions to factor a number, N, is estimated as

0.018¢(1:923 ¥/logN(loglogN)?) e multiplier 0.018 is selected to give a figure of 10,000
MIPS-years to factor a 512-bit number. The number of elliptic curve operations
(point addition or halving) to solve a discrete log problem (and discover a secret
signing key, or forge a signature on a given message) is roughly the square root of
the group size. Our group size is about 2'77 so the breaking work is about 2%%-° curve
operations. Assuming 1,000 computer instructions per elliptic curve operation, this
number of instructions would factor a 1570-bit number.

368 R. Schroeppel et al.

can be applied to other elliptic curve algorithms over GF(2™). The focus of
this paper is on the implementation of highly-optimized versions of these core
operations. Section [4 presents the VHDL implementation of the digital signa-
ture algorithm and elliptic curve arithmetic operations. In Section[5], we provide
results of the number of gates and time required to generate a digital signature
and perform many of the underlying primitive functions that might be used in
an elliptic curve coprocessor.

2 The ‘Optimal El Gamal’ Authentication Algorithm

2.1 Optimal El Gamal Scheme

The signature algorithm is the Optimal El Gamal digital signature scheme
adapted for use with elliptic curves (see [5], [6] for original description and se-
curity proofs). For an introduction to elliptic curves see [7]. This variant of the
El Gamal algorithm was chosen because it avoids the computationally expensive
modular reciprocal during signature generation and verification.

Parameters. The public parameters for the Optimal El Gamal Signature
scheme are (E,G,W,r) where E is a choice of an elliptic curve, G € FE is a
point of large order, r, and W = sG is the public key where s (1 < s < r) is the
long-term private key. We assume that the public key parameters and a common
hash function are available to all relevant algorithms.

We denote by zp (resp. yp) the x—coordinate of a point P € E (resp.
y—coordinate).

Alg. 1 Elliptic Curve Optimal El Gamal Signature Generation

Input: Private Key, s; Message, M Output: Signature (c,d) of M

1. Generate a key pair (v,V = vG), where v # 0 is a randomly chosen integer
modulo r

2. Compute ¢ = xy (mod r); If ¢ =0, then go to Step [l

3. Let f = Hash(M). Compute an integer d = (c¢fs +v) (mod r); If d = 0,
then go to Step[l

4. Output the pair (c,d) as the signature

Although our current chip design does not include signature verification, we
describe the algorithm for completeness. Most of the optimizations presented
later in the paper will benefit signature verification as well as generation.

A Low-Power Design for an Elliptic Curve Digital Signature Chip 369

Alg. 2 Signature Verification
Input: Signature (c,d) on Message M Output: Accept/Reject

1. Ifeg[1,...,r=1], ord &€ [1,...,m7 — 1], output “Reject” and stop

2. Compute f = Hash(M)

3. Compute the integer h = cf (mod r)

4. Compute an elliptic curve point P = dG — hW; If P = O, output “Reject”
and stop

Compute ¢ = zp (mod r)
6. If ¢ = ¢, then output “Accept”

&t

We note that anyone can forge a signature on a message that hashes to 0.
However, inverting the hash to find such a message is thought to be computa-
tionally infeasible.

3 Algorithmic Optimizations

The field of definition for the elliptic curve is important since it is the basis for
all elliptic curve operations. Generally the curve is defined over either GF(p)
for some large prime p, or GF(2™). Since the arithmetic in the latter field is
much faster, that was our choice. In particular, we use the field GF(2'®). One
reason for choosing this field is to make use of optimizations that can be derived
from the fact that it can be realized as a field tower: GF(2!7®) = GF((2%9)%).
In the case of characteristic two fields, the equation for the elliptic curve can
be given by E : y? + 2y = 2® + az? + b. For simplicity and saving on storage,
we assume that a = (1,0). This is useful since the point addition algorithms
use a but not b so we don’t need to store b (it is implied by the coordinates
of the generating point). Further, we exploit properties of GF(2%) to reduce
some of the basic arithmetic operations (e.g. squaring, square root) to simple
XOR gates which are very fast in hardware. The ‘almost inverse’ algorithm in [§]
is especially fast for smaller degree fields. Finally, we modify our elliptic curve
multiplication algorithm to use point halving [AT0] which offers a savings over
the usual point doubling.

3.1 Finite Field Arithmetic and Field Towers

Our first optimization involves field towers, which simplifies all underlying op-
erations. The finite field is

GF(2™) = GF(2)[z]/f(x)={ao+a1z+- - -+am_12™ Y mod f(z)) | a; € GF(2)}

where f(z) is an irreducible binary polynomial of degree m. An element a €
GF(2™) can therefore be represented as an m—tuple a = (ag, a1, ..., &m—1) of
zeros and ones. Addition of two elements is a bitwise exclusive-OR (XOR) op-
eration:

a,b € GF(2™), a+ b= (ag® by, a1 Db1,...,am—1 D byp_1)

370 R. Schroeppel et al.

and multiplication is like a plain multiplication without any carries but with
the XOR accumulation only. The result of the multiplication must, however, be
reduced by the field polynomial f(z). As the degree m of the field gets large, the
multiplication can become time-consuming and the representation of the num-
bers can become cumbersome. For a general reference on finite field arithmetic,
see [11].

If m is a composite number, we can use field towers to speed-up the computa-
tions. Suppose m = ns. Then we can think of GF'(2™) = GF((2")®) as a degree
s extension of GF(2"). The elements are a € GF(2™),a = (g, 1, ..., 5_1),
where a; € GF(2").

For this work, we use the finite field GF(2'™®) and the corresponding field
tower GF((2%%)?). Our choice of irreducible polynomial for GF(2%%) over GF(2)
is f(u) = v 4+ 43 + 1, and the irreducible polynomial we use for GF((2%)?)
over GF(2%) is g(V) = V2 4+ V + 1. We note that this field is not susceptible
to known attacks on elliptic curves over composite degree fields (see [12]). Using
a trinomial for the field polynomial over GF(2%%) makes the modular reduction
easy and also helps with squaring, square root, Qsolve, and the finishing step in
the almost inverse algorithm.

3.2 Finite Field Algorithms

As elements of GF(217®) are represented as pairs of GF(2%%) elements, all al-
gorithms can be described using the arithmetic over GF(2%9). While some of
our optimizations are for general fields, some are specific to our chosen field. We
first describe any optimizations over GF(28%) and then give algorithms for the
extension to GF(2178).

Algorithms over GF(2%°). Unlike the situation with real numbers, squar-
ing and square-rooting are one-to-one operations in characteristic 2 finite fields.
Every field element has a single unique square root and square. The following
algorithms are specific to GF(2%9) with field polynomial f(u) = u8® + u3® + 1.
In the case of squaring, square root, and solving the equation a = 22 + z for
z (which we call “QSolve”), we note that the algorithmic descriptions can be
reduced to simple XORs of the input bits.

Alg. 3 Squaring
Input: a = (ago, ..., ass) € GF(2%%)
Output: z = (20, ..., 288) € GF(2%) where z = a?

z even bits: 200 — 236 © Zon = Qn D Gni70
238 — R74 . R2n = An 5> Ap+51

276 — %88 + Z2n = Qn

z odd bits: 201 — 237 : Z2n4+1 = Gn445

239 — 287 1 Z2n+1 = Qnt45 D Anto6

A Low-Power Design for an Elliptic Curve Digital Signature Chip 371

Alg. 4 Square Root
Input: a = (aoo, ...7a88) S GF(QSQ)
Output: z = (209, ..., 288) € GF(2%) where z = \/a

200 — 212 1 Zn = G2pn D G2p451 D 21413

213 — 218 1 Zn = Q2n D A2n451 D A2n413 O a2n—25
219 — 231 : Zn = Q2n D A2n+13 D a2n-25

232 — 237 1 Zn = G2n D G2n—63 D A2n+13 D G2n—25
238 T %44 1 Zn = A2n

Z45 — 263 1 Zn = A2n—89

Z64 — 282 1 Zn = G2n—89 D A2n—127

283 — 288 1 Zn = A2n—89 D A2n—127 ® A2n—165

Quadratic Solve. We developed a special circuit for computing QSolve with
a relatively small number of XOR gates (387) and depth (35). The full circuit
and detailed derivation are in [13].

Alg. 5 Qsolve
Input: a = (a()o, ...7a88) S GF(289)
Output: z = (200, ..., 288) € GF(2%) where a = 2° + 2
Except for odd z in the range zo1 — 219 (which are computed directly),
the bits of z are computed from the following equations:

a even bits: ago — a36 : A2n = Z2n D 2n D Znt70
a38 — Q74 ¢ Q2n = Z2n D Zn D Zn4s51

Q76 — ags : QA2n = Z2n D 2n

a odd bits:) .
ap1 — G371 A2n+1 = Z2n+1 D Znt4s

a39 — ag7 * A2n+41 = 22n+1 D Znt4a5 D 2n426
This derivation uses several observations to reduce the number of gates.

1. QSolve is linear, so we could precompute QSolve(u”) for each N. The run-
time circuit XORs together the appropriate subset for a general polynomial
(see [14] for one method of doing the precomputation). This is fast, but uses
a lot of gates. We traded speed for size, getting a slower but smaller circuit.

2. We reduced the number of required QSolve(u”) values by removing some
powers of u from the problem. For example, the substitution QSolve(u?")
= u® + QSolve(u) eliminates even powers of u. The substitution u” =
uN =38 L 4N +51 removes some odd powers of u. After repeated substitutions
like these, QSolve(u") is only needed for odd N in the range 1...19.

3. Only some of the answer bits are required: z,qq in the range zp;...z19. This
reduces the number of gates considerably. The remaining bits can be recov-
ered by solving the bit equations for QSolve. For example, we compute 245
from the equation agy = zo1 @ z45.

372 R. Schroeppel et al.

4. We assume that agg is equal to as;. The actual value of agg is ignored.
Furthermore, zgg is irrelevant, and is set equal to 0.

Our minimal size QSolve circuit used only 287 XOR gates, but had depth
65. We moved back from this extreme point on the speed-size tradeoff curve to
a circuit with 387 XOR gates and depth 35.

Division. Inversion over GF(28) is performed with an “almost inverse” algo-
rithm [§]. Division is a reciprocal followed by a multiply.

Algorithms over GF(2178). We consider GF(2'7®) as a degree two extension
of GF(2%) with field polynomial V? + V + 1. Elements of w € GF(2'®) are
pairs of elements from GF(2%). So w = (u1,v1) where uy,v; € GF(28); i.e.
w = w1V +v; where V2 = V + 1. The algorithms from GF(2%9) are extended
to GF(2'7®) in the obvious way. We give here some examples where some opti-
mizations have been made.

Alg. 6 Multiplication GF(217®)
Input: z = (u1,v1), y = (ug, v2); Output: z = z xy = (us,v3)

1. ug = (u1 + v1)(ug + v2) + v1v9
2. v3 = ULus + V1V

Alg. 7 Inversion GF(2'78)

Input: z = (uy,v1); Output: 27! = (ug,vs)
— U1

1. uz = (u14v1)?2+uivy
— w1 vy

2. vp = (u1+v1)?+uiv1

Alg. 8 Squaring GF(2'®)
Input: z = (uy,v1); Output: 2% = (ug,vs)

1. UQ:’LL%
— 2 2
2. vo = ui + vy

Alg. 9 Square Root GF(2'™®)
Input: z = (u1,v1); Output: /= = (uz,vs)

1. U2 = /U1
2. v2 = \J/u1 + /o1

Alg. 10 Qsolve GF(217®)
Input: a = (ug,v1); Output: z = (ug,v2) such that a = 2% + z

A Low-Power Design for an Elliptic Curve Digital Signature Chip 373

1. us = Qsolve(uy) (per Alg.[d)

2. Sett = Uy + vy +uUg = totl...tgg

S Ifto®ts; =1, thenus =us+1 andt=1t+1
4. vg = Qsolve(t)

In both GF(2%) and GF(2'™®), only half of the field elements, a, have a
corresponding solution, z. Moreover, when z is a solution, so is z 4+ 1. In step 3
of Algorithm 10, we choose the Qsolve solution uy so that ¢t can be Qsolved in
step 4.

3.3 Point Halving Algorithm

The slowest part of the signature algorithm is the multiplication of points. We
modified the point multiplication algorithm to use a point halving algorithm in
place of a doubling algorithm. The idea of “halving” a point P = (xp,yp) is
to find a point @ = (2g,yg) such that 20 = P. Note this is the inverse of
the point doubling problem. The point halving can nevertheless be used in our
algorithm by a simple adjustment on the base point of the elliptic curve used.
The algorithm offers a speed-up in software of a factor of about two to three
over the point doubling algorithm. We follow the algorithm of [9].

For this algorithm we sometimes write the coordinates of the points P € E as
(zp,rp) where rp = xp/yp. In fact, we use the (xp,rp) form whenever possible,
but the input and output of the point addition algorithm need the Y coordinate,
so the halving algorithm must handle Y outputs and inputs. When the yg output
is not required, the point halving algorithm needs only one field multiplication. It
is most efficient when point halvings are consecutive. Our signed sliding window
multiplication method uses about five halvings between additions.

Alg. 11 Point Halving over GF(2™)
Input: Pe FE Output: Q = %P eFE

1. My, = Qsolve(xp + a), where a is the curve parameter

2. T=xp*x(My+rp) orT=uxzpx*xM,+yp

3. If parity(T and t,,,)=0, then M =M, +1; T =T +ap

Here t,, is a mask that depends upon the modulus polynomial. In our case,
tm = (ut +1,0).
rQ = \/T
rQ = My, + rQ + 1
If needed, yg = xg *7Q

S Guds

3.4 Sliding Window Multiplication with Precomputation

The computation of elliptic curve multiplication, nP, is performed using a
4-bit signed sliding window algorithm [8]. The table of precomputed values
{1,3,5,7}G are stored and the circuit automatically computes the negatives
{=1,-3,—5,—7}G as needed on the fly. On average there are 5 halvings per
addition.

374 R. Schroeppel et al.

4 Hardware Architecture and Design

The hardware design is a full VHDL implementation of the Elliptic Curve Opti-
mal El Gamal Signature algorithm that can be targeted to a Field Programmable
Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). The
implementation is a VHDL Register-Transfer-Level design. The goal is to maxi-
mize speed and functionality while conserving area and therefore power.

The overall strategy was first to develop a set of basic GF(2™) arithmetic
blocks (in VHDL) that would be used throughout the design. Basic building
blocks include addition, multiplication, reciprocal, squaring, etc. The design was
then built with these blocks to create the full algorithm implementation for
point addition, point halving, point multiplication, and signature generation.
The VHDL implementation was created using a bottom-up approach. This al-
lowed a great deal of flexibility throughout the development. As algorithms were
improved and/or optimized, the design was easily adaptable.

4.1 Hardware Implementation

The VHDL implementation consists of mapping algorithms discussed in the
previous sections to hardware functions and optimizing area and speed, where
possible, while allowing user flexibility.

The hardware was organized into four functional design blocks (Fig.). The
control block contains all the I/O interface circuitry and controls the flow of the
digital signature algorithm. The remainder is used for modular reduction in the
signature as well as in the pseudo-random number generation process. The SHA-
1 hash function serves a dual purpose in hashing the input message and creating
the pseudo-random number required for signature generation. The signature
algorithm block controls and performs the actual signing of the message.

Secure Signature Generation

= Control [<—
Circuits [——

Hash
Function

Fig. 1. Top Level Architecture.

Signature
Algorithm

4.2 Command, Configuration, and Control

The command, configuration, and control circuitry is responsible for all the high-
level control and configuration of the device. It controls the external interface

A Low-Power Design for an Elliptic Curve Digital Signature Chip 375

to the chip, message input and signature output, random number generation
control, power management, and algorithm flow control.

The external I/O interface to this chip is intended to hang off of a micro-
processor bus. There is a 16-bit address bus, an 8-bit data bus, and control
signals. The device is intended to be used as a memory-mapped device in which
communication to the device is via a read and write interface similar to that of
random access memory (RAM). In addition, there are interrupt signals that are
used to indicate to the host system signature status, error status, and signature
completion (Fig. 2.

Clk *

rstN —=irq(3:0)

addr(15:0) —= Secure
Signature
data(7:0)«—- Generation
Chip

csMN — &
welN —*

oeN *

Fig. 2. Secure Signature Generation Chip Interface

The architecture gives the end user a great deal of flexibility. The device
can be used in conjunction with any microprocessor that contains a memory-
mapped interface. Within the chip, there is a memory map for a full suite of
initialization, configuration, result, and status registers. In this respect, the as-
pects of the signature algorithm are programmable. The following parameters
can be programmed (i.e. written) into the Secure Signature Generation Chip.

Message (up to 512 bits at a time) or Message Digest (based on configuration)
Generating Point on the Elliptic Curve, G = (zg,7¢)

Order, r, of the Point G

Private Key, s

Random Number (178 bits) or Random Seed (320 bits) (based on configu-
ration), used to generate the per-message nonce

e Configuration Variables (message format, random number format, sleep
mode, 1st Message, etc.)

In addition, the signature algorithm generates a set of variables that can be
polled (i.e. read).

e Public Key Output
e Output Signature (¢, d)

376 R. Schroeppel et al.

The power management circuitry (in the control section) is essentially a clock-
gating circuit that controls when a certain functional area is receiving a clock.
The power management is used on a function-by-function basis. That is, the
clock-gating follows the circuit function, and, when a circuit is not calculating a
value (i.e. idling), the clock to that respective circuit is disabled. This logic is used
to reduce overall power consumption by controlling the switching capacitance of
respective functional blocks.

4.3 Random Number Generation

There are two methods for generating the per-message nonce needed for the El
Gamal signature generation. The first is to simply input the random number via
the I/O memory mapped interface. This allows the user to use a true-random
number if so desired, but has the obvious overhead of needing to input that
random number for each message to be signed.

The second approach is to use the on-chip pseudo-random number generator.
This method follows the updated pseudo-random number generation algorithm
of the Digital Signature Standard [15]. This circuit uses the remainder circuit
and the hash function to create the pseudo-random number. The methodology
is to use two 160-bit seeds to create two independent 160-bit hash values. These
values are fed back into the random seed registers for further creation of pseudo-
random numbers. They are then concatenated together to produce a 320-bit
value, from which the remainder (mod r) is extracted. This value is then used
as a 178-bit random number.

4.4 Message Input

There are two methods for message input. The user can configure the device to
accept a 160-bit message digest. This allows the user to generate the hash of the
message and input the message digest via the memory-mapped interface. The
hashing overhead would be under user control.

Alternatively, the user can have the on-chip circuitry hash a raw input mes-
sage using SHA-1. The SHA-1 VHDL was implemented per FIPS Standard [16]
and computes a 160-bit message digest from the incoming message.

4.5 Signature Algorithm

The VHDL implementation of the Elliptic Curve Optimal El Gamal Signature
Algorithm is a direct implementation of the algorithm described in Section
As with the full-chip implementation, the control circuit is responsible for oper-
ation of the algorithm and data flow between the various blocks. The multiply
and remainder functions exist to compute the products and modular reductions
needed in the signature. They are both simple ripple/shift implementations of
the mathematical operations. The block diagram is shown in Fig. 3.

A Low-Power Design for an Elliptic Curve Digital Signature Chip 377

Signature Algorithm

““|control Point
— Circuits Multiplication
A 0T
‘ Remainder
Multiply ‘

Fig. 3. Signature Algorithm Architecture

4.6 Hardware Optimizations

There were several design optimizations that were used to improve area and
performance. Some of the more prominent and significant improvements are
discussed below.

For multiplication in a finite field (Section B]), which operates with a simple
shift and add, the radix of the multiply was increased to 16. This allowed us
to perform the multiply in 4-bit fragments, which provided a dramatic speed
increase with a slight area penalty. This operation was a bottleneck in the design,
thus this improvement provided a speed-up of about a factor of two.

In the Almost Inverse Algorithm ([g], p.50), there were three optimizations
that were implemented. The 1st is a parallel degree comparator circuit, which
was optimized for both area and speed. The 2nd optimizes the search for a 1 in
the LSB of a variable by using a “look ahead” technique with 4-bit blocks before
defaulting to operating on the data 1 bit at a time. This increased speed with
a very small area penalty. In a similar manner, the 3rd optimization is applied
to the last step in the algorithm, which divides and shifts the result a variable
number of times. This too performs a “look ahead” using 8-bit data blocks before
defaulting to the single-bit implementation.

The Qsolve Algorithm Blwas parallelized and the depth of the XOR tree has
been reduced to increase the speed as described in Section B.2.

The implementation of the SHA-1 algorithm has been optimized to use a
shift register for the main data storage, which reduced the area used, with a
corresponding increase in speed.

5 Hardware Design Results

This design has not been realized in silicon. However, the design has been synthe-
sized to a target CMOS 0.5um, 5V library. It has also undergone static timing
analysis, timing simulations, and power analysis. The following is a summary of
results for this target library.

378 R. Schroeppel et al.

Signature Generation Time Using a 20 Mhz System Clock:

e Initialization: 0.25 ms
(Necessary any time the Generating Point is initialized and/or changed)
e Signature Generation: 4.4 ms

Synthesized Gate Count Approximations (target library 0.5um, 5V,
25°C) of major sub-blocks, where a gate is equivalent to a standard library
NAND Cell.

— Chip: 191,000 Gates
Control: 27,000 Gates
SHA-1: 13,000 Gates
Remainder: 6,700 Gates
Signature Algorithm: 143,000 Gates
x Control: 15,000 Gates
+x Multiply: 6,200 Gates
* Remainder: 6,800 Gates
* Point Multiplication: 112,000 Gates
- Register & Control: 30,000 Gates
- Point Addition: 52,000 Gates
- Point Halving: 29,000 Gates

Critical Timing Path (Setup Timing) (target library 0.5um, 5V,
25°C):

e Critical Setup Timing Path (register to register): 48 ns

The critical timing path is located at the Signature Algorithm Level in the com-
putation of ¢fs + u (mod 7). Specifically, it is located in the subtract circuit
within the Remainder that computes the modulo r value for the signature. Op-
timizations are still being performed to improve timing critical paths that affect
the overall performance of the device.

Power Analysis and Estimation Using 20 Mhz System Clock (target
library 0.5um, 5V, 25°C):

— Dynamic Power Consumption Estimation: 150 mW
— Static (Idle) Power Consumption Estimation: 6 puW

The above numbers were generated using the Synopsys Power Compiler (power
analysis tool) which uses gate switching data (based on typical simulation re-
sults) to generate power estimates. These estimates are library dependent and
are based on the accuracy of the library models provided.

Please note that these design results (performance/speed, gate count, and
power estimation) are only applicable to the target hardware process technol-
ogy, which is not the most advanced technology available today, but was the

A Low-Power Design for an Elliptic Curve Digital Signature Chip 379

most accessible and complete for this analysis. If one were to target a more ad-
vanced technology, the design would certainly improve in performance (speed),
area (gate count), and power consumption. Specifically, the Critical Setup Tim-
ing Path could significantly improve, thus improving the overall speed of the
chip. Using power P = V2/R, where V=operating voltage and R=operating
resistance, which is fixed, lowering V from 5V to 3.3V (1.8V) would result in
a 56%(87%) reduction in power consumption. At 1.8V, the estimated dynamic
power consumption is 19mW.

6 Conclusions

Low-power hardware implementations of public-key cryptography continue to
enable its use in resource-constrained environments. Wireless applications alone
will further drive this market. In this paper, our VHDL design takes advantage
of several optimizations of both finite field and elliptic curve arithmetic for the
specific function of digital signature generation. We use hardware techniques to
reduce the overall power consumption by switching the clock off to areas that
are not currently being used. This reduces the power by reducing the effective
switching capacitance of the clock. Our design has been successful in achieving
performance attributes that are attractive to low-power applications requiring
strong public-key authentication. Opportunities to further develop optimized im-
plementations of elliptic curve-based signature algorithms include the following.

1. Further utilization of extension fields.
2. Additional improvements to point multiplication.
3. Improvement of the worst case setup timing path.

Finally, since our main focus was minimizing power consumption, we note
that we have ignored the problem of side channel attacks. Countermeasures
against such attacks are important and should be the subject of future work.
Under the auspices of technology transfer, anyone interested in employing our
current and future developments in their application is encouraged to contact
the authors.

Acknowledgements. The authors would like to thank Mark Torgerson for
many useful discussions and comments.

References

1. Kim, C., Oh S., and Lim, Jongin, “A new hardware architecture for operations in
GF(2")?, IEEE Transactions on Computers v 51 n 1 January 2002. p. 90-92.

2. S. Moon, J. Park, and Y. Lee, “Fast VLSI arithmetic algorithms for high-security
elliptic curve cryptographic applications” , Proceedings of ICCE. International Con-
ference on Consumer Electronics, 19-21 June 2001, Los Angeles, CA.

380

3.

10.

11.

12.

13.

14.

15.
16.

R. Schroeppel et al.

J. Goodman and A. Chandrakasan, “An energy-efficient reconfigurable public-key
cryptography processor”, IEEE Journal of Solid-State Circuits, vol.36, no.11, p.
1808—20. Feb. 2001, San Francisco, CA.

. M. Aydos, T. Yanik, and C. Koc, “High-speed implementation of an ECC-

based wireless authentication protocol on an ARM microprocessor”, in IEEE
Proceedings-Communications, vol.148, no.5, p. 273-9, Oct. 2001.

Nyberg, K. and R. A. Rueppel, “Message recovery for signature schemes based
on the discrete logarithm problem”, Advances in Cryptography — Eurocrypt ’94,
Springer LNCS 950, 1994, p. 182—193.

L. Harn and Y. Xu, “Design of Generalised El Gamal Type Digital Signa-
ture Schemes Based on Discrete Logarithm”, in Electronics Letters Online,
No0.19941398, September 30, 1994. IEEE.

J. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.

R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck, “Fast Key Exchange
with Elliptic Curve Systems”, in Advances in Cryptology — Crypto ’95, Springer
LNCS 963, 1995, p. 43-56.

. R. Schroeppel, “Elliptic Curves — Twice as Fast”, Midwest Algebraic Geometry

Conference, Urbana, IL, November 2000.

E. Knudsen, “Elliptic Scalar Multiplication Using Point Halving”, Advances in
Cryptology — Asiacrypt ’99, Springer LNCS 1716, 1999, p. 135-149.

IEEE P1363, Standard Specifications for Public Key Cryptography. Appendix A,
1997.

N. Smart, “How Secure Are Elliptic Curves over Composite Extension Fields?”, in
Eurocrypt 2001, LNCS 2045, May 2001, p. 30-39.

Schroeppel, R. “Circuits for Solving a Quadratic Equation in GF[2V]”, in prepa-
ration, 2002.

M. Rosing, Implementing Elliptic Curve Cryptography, Manning Publications,
1999.

FIPSPUB 186-2 + change notice 1.

FIPSPUB 180-1.

	Introduction
	The `Optimal El Gamal' Authentication Algorithm
	Optimal El Gamal Scheme

	Algorithmic Optimizations
	Finite Field Arithmetic and Field Towers
	Finite Field Algorithms
	Point Halving Algorithm
	Sliding Window Multiplication with Precomputation

	Hardware Architecture and Design
	Hardware Implementation
	Command, Configuration, and Control
	Random Number Generation
	Message Input
	Signature Algorithm
	Hardware Optimizations

	Hardware Design Results
	Conclusions

