Scalable and Unified Hardware to Compute
Montgomery Inverse in GF(p) and GF(2")

Adnan Abdul-Aziz Gutu Alexandre F. Tenca, Erkay SavasE] and Cetin K. Kog

Department of Electrical & Computer Engineering
Oregon State University, Corvallis, Oregon 97331, USA
{gutub, tenca, savas, koc}@ece.orst.edu

Abstract. Computing the inverse of a number in finite fields GF(p) or GF(2")
is equally important for cryptographic applications. This paper proposes a novel
scalable and unified architecture for a Montgomery inverse hardware that
operates in both GF(p) and GF(2") fields. We adjust and modify a GF(2")
Montgomery inverse algorithm to accommodate multi-bit shifting hardware,
making it very similar to a previously proposed GF(p) algorithm. The
architecture is intended to be scalable, which allows the hardware to compute
the inverse of long precision numbers in a repetitive way. After implementing
this unified design it was compared with other designs. The unified hardware
was found to be eight times smaller than another reconfigurable design, with
comparable performance. Even though the unified design consumes slightly
more area and it is slightly slower than the scalable inverter implementations
for GF(p) only, it is a practical solution whenever arithmetic in the two finite
fields is needed.

1 Introduction

The modular inversion is an essential arithmetic operation for many cryptographic
applications, such as Diffe-Hellman key exchange algorithm, decipherment operation
of RSA algorithm, elliptic curve cryptography (ECC) [1,5], and the Digital Signature
Standard as well as the Elliptic Curve (EC) Digital Signature algorithm [4,5]. The
arithmetic performed in cryptographic applications consists mainly in modular
computations of addition, subtraction, multiplication, and inversion. Although
inversion is not as performance critical as all the others, it is the most time consuming
arithmetic operation [1,2,8-10,12,13]. Therefore, most of the practical
implementations try to avoid the use of inversion as much as possible. However, it is
not possible to avoid it completely [1,2,5], what motivates the implementation of
inversion as a hardware module in order to gain speed. In addition to that, hardware
implementations provide an increased level of security for cryptographic systems, as
discussed in [15].

Cryptographic inverse calculations are normally defined over either prime or
binary extension fields [5], more specifically Galois Fields GF(p) or GF(2"). All

! Now with King Fahd University, Dhahran, Saudi Arabia, gutub@k fupm.edu.sa
2 Now with Sabanci University, Istanbul, Turkey, erkays@sabanciuniv.edu

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 484-499, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2") 485

available application-specific integrated circuit (ASIC) implementations for inversion
computation [8-10,12,13] are modeled strictly for one finite field, either GF(p) or
GF(2"). If the hardware at hand is for GF(2") calculations, such as [9,10,12,13], and
the application this time needs GF(p) computation, a completely different hardware is
required [5]. It is inefficient to have two hardware designs (one for GF(p) and another
for GF(2")) when only one is needed each time. This issue motivated the search for a
single unified hardware architecture used to compute inversion in either finite field
GF(p) or GF(2"), similar, in principle, to the multiplier idea proposed in [4].

Cryptography is heavily based on modular multiplication [4,5], which involves
division by the modulus in its computations. Division, however, is a very expensive
operation [6]. P. Montgomery proposed an algorithm to perform modular
multiplication [7] that replaces the usual complex division with divisions by two,
which is easily performed in the binary representation of numbers. The cost behind
using Montgomery’s method is paid in some extra computations to convert the
numbers into Montgomery domain and vice-versa [7]. Once the numbers are
transformed into Montgomery domain, all operations (addition, subtraction,
multiplication, and inversion) are performed in this domain. The result is then
converted back to the original integer values. Few methods were aimed to compute
the inverse in the Montgomery domain [1-3] and are named Montgomery modular
inverse algorithms [1].

The GF(p) Montgomery inverse (Monlnv) algorithm [18] is an efficient method for
doing inversion with an odd modulus. The algorithm is particularly suitable for
implementation on application specific integrated circuits (ASICs). For GF(2")
inversion, the original inverse procedure (presented in [17]) has been extended to the
finite field GF(2") in [16]. It replaces the modulus (p) by an irreducible polynomial
(p(x)), and adjusts the algorithm according to the properties of polynomials. We
implemented the inversion algorithms in hardware based on the observation that the
Montgomery inverse algorithm for both fields GF(p) and GF(2") can be very similar.
We show that a unified architecture computing the Montgomery inversion in the
fields GF(p) and GF(2") is designed at a price only slightly higher than the one for
only the field GF(p), providing major savings when both types of inverters are
required.

A scalable Montgomery inverter design methodology for GF(p) was introduced in
[18]. This methodology allows the use of a fixed-area Montgomery inverter ASIC
design to perform the inversion of unlimited precision operands. The design tradeoffs
for best performance in a limited chip area were also analyzed in [18]. We use the
design approach as in [14,18] to obtain a scalable hardware module. Furthermore, the
scalable inverter described in this paper is capable of performing inversion in both
finite fields GF(p) and GF(2") and is for this reason called a scalable and unified
Montgomery inverter.

There are two main contributions of this paper. First, we show that a unified
architecture for inversion can be easily designed without compromising scalability
and without significantly affecting delay and area. Second, we investigate the effect
of word length (w) and the actual number of bits (n) on the hardware area, based on
actual implementation results obtained by synthesis tools. We start with a brief
explanation of scalability in Section 2. In Section 3, we propose the GF(2") extended
Montgomery inverse procedure that has several features suitable for an efficient
hardware implementation. The unified architecture and its operation in both types of

486 A. A.-A. Gutub et al.

finite fields, GF(p) and GF(2"), are described in Section 4. Section 5 presents the
area/time tradeoffs and appropriate choices for the word length of the scalable
module. Finally, a summary and conclusions are presented in Section 6.

2 Scalable Architecture

Hardware architectures are generally designed for an exact number of operand bits. If
this number of bits needs to be increased, even by one bit, the complete hardware
needs to be replaced. In addition to that, if the design is implemented for a large
number of bits, the hardware will be huge and usually slow. These issues motivated
the search for the scalable inversion hardware proposed in [14].

The scalable architecture [14] solves the previous problems with the following
three hardware features. First, the design’s longest path should be short and
independent of the operands’ length. Second, it is designed in such a way that it fits in
restricted spaces (flexible area). Finally, it can handle the computation of numbers in
a repetitive way, up to a certain limit that is usually imposed by the size of the
memory in the design. If the amount of data exceeds the memory capacity, the
memory unit is replaced while the scalable computing unit may remain the same.
Therefore, the scalable hardware design is built of two main parts, a memory unit and
a computing unit. The memory unit is not scalable because it has a limited storage
that imposes an upper bound on the number of bits that can be handled by the
hardware (n,,). The computing unit read/write the data bits using another word size
of w bits, normally much smaller than . The computing unit is completely scalable.
It is designed to handle w bits every clock cycle. The computing unit does not know
the total number of bits that the memory is holding. It computes until the actual
number of operand bits (n) is processed.

3 Montgomery Inverse Procedures for GF(p) and GF(2")

In order to design a unified Montgomery inverse architecture, the GF(p) and GF(2")
algorithms need to be very similar and this way consume the least amount of extra
hardware. Extending the GF(p) Montgomery inverse algorithm to GF(2") is practical
due to the removal of carry propagation required in GF(p) and simple adjustments of
test conditions. In other words, the GF(2") algorithm is like a simplification of the
GF(p) algorithm. The converse (modifying GF(2") algorithms for GF(p)), on the other
hand, is very difficult [4,5,16].

The scalable GF(p) Montgomery inverse (Monlnv) procedure suitable for this work
consists in two phases: the almost Montgomery inverse (AlmMonlnv) and the
correction phase (CorPh) [18]. The AlmMoniInv has a2 as input and produces r and k,
where r = a'2"" mod p, 2"' <p<2" and n< k<2n. The factor 2" (of the AlmMonlInv
input a2") is related to Montgomery arithmetic [4,5,16]. The only restriction on the
value of m is that it should not be less than the number of bits (n), i.e., m >n, as
discussed in [1]. The CorPh takes r and k to generate the Montgomery inverse
a'2"mod p. Both GF(p) AlmMonlInv and CorPh algorithms were mapped to hardware
features and further modified for multi-bit shifting, a concept discussed in [18], which

Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2")

487

resulted in an efficient implementation of the GF(p) Montgomery inverse. The GF(p)
multi-bit shifting AlmMonInv and CorPh hardware algorithms (HW-Algl and HW-

Alg?2, respectively), are outlined in Figure 1.

GF(p) Multi-Bit Shifting AlmMonInv HW Algorithm (HW-Algl)
0 DILS)

Registers: u, v, 1, 8, X, y, Z, and p (all registers hold n
Input: a2"e[1, p-1]; Where p = modulus, and m >n (2" < p<2")
Output: resulte[1, p-1] & k; Where result = a'2""mod p & n< k< 2n
1. u=p;v=a2"1r=0;s=1;x=0;y=0;z=0;k=0

2. if (uu,u,=000) then {u=ShiftR(u,3);s=ShiftL(s,3);k=k+3}; goto 8
2.1.if (u,u,u,=100) then {u=ShiftR(u,2);s=ShiftL(s,2);k=k+2}; goto 8
2.2.if (u,u,u,=110) then {u=ShiftR(u,1);s=ShiftL(s,1)}; goto 7

3. if (v,v,v,=000) then {v=ShiftR(v,3);r=ShiftL(r,3);k=k+3}; goto 8
3.1.if (v,v,v,=100) then {v=ShiftR(v,2);r=ShiftL(r,2);k=k+2}; goto 8
3.2.if (v,v,v,=110) then {v=ShiftR(v,1);r=ShiftL(r,1)}; goto 8

4. x = Subtract(u, v); y = Subtract(v, u); z = Add(r, s)
5. if (x,,,,=0) then {u=ShiftR(x,1); r=z; s=ShiftL(s,1)}; goto 7
6. s=z;v=ShiftR(y,1); r = ShiftL(r,1)

7. k=k+1

8. if (v #0) goto step 2

9. x = Subtract(p, r); y = Subtract(2p, r)

10. if (x,,,,, = 0) then {result=x}; else{result =y}

borrow

GF(p) Multi-Bit Shifting CorPh HW Algorithm (HW-Alg2)

Registers: r, u, v, X, y, z, and p (all registers hold n,_ bits)

‘max

Input: 1, p, n, k; Where r (r=a"'2""mod p)&k from HW-Algl

Output: result; Where result = a”2" (mod p).

1. j=2m-k;x=0;y=0;2=0

12 v=2p;u=3p

13. Whilej >0

14. if j =1 then {r = ShiftL(r,1); j=j-1}

15. else {r = ShiftL(r,2); j=j-2}

16. x=Subtract(r,p); y=Subtract(r,v); z=Subtract(r,u)
17. if (z,,,.,,=0) then {r=1z}

18. else if (y,,.., = 0) then {r=y}

19. else if (x,,, =0) then {r=x}

20. result=r

Fig. 1. Montgomery inverse hardware algorithm for GF(p)

Differently from what normally happens in a full-precision hardware design, the
scalable hardware, as in [4,14,18], has multi-precision operators for shifting, addition,
subtraction, and comparison. Observe the AlmMonlnv algorithm in Figure 1, for
example, the scalable subtraction (step 4) is also used for comparison (# > v), which is
performed on a word-by-word basis (w-bit words) until all the actual data words (all n
bits) are processed. Then, borrow-out bit of the most-significant word is used to
decide on the result. Also, depending on the subtraction’s completion, variable r or s
has to be shifted. All variables, u, v, r and s, need to remain as is until the subtraction
process is complete, and the borrow-out bit appears. For this reason, eight registers

are required, as shown in Figure 1.

488 A. A.-A. Gutub et al.

3.1 Representation and Manipulation of Elements in GF(2")

The inversion algorithm for GF(2") used in this work was presented in [16]. Although
prime and binary extension fields, GF(p) and GF(2"), have different properties, the
elements of either field are represented using similar data structures. The elements of
the field GF(2") can be represented in several different ways [5]. The polynomial
representation, however, is a useful and appropriate form to the unified
implementation, as used for the unified multiplier in [4]. According to the GF(2")
polynomial representation, an element a(x)e GF(2") is a polynomial of length n, i.e.,
of degree less than or equal to n-1, written as a(x)=a_x"'+a _x"+ ... +ax'+ax+a,,
where a,€ GF(2). These coefficients a, are represented as bits in the computer and the
element a(x) is represented as a bit vectora = (a,, a,, ... a, a, a,).

The addition/subtraction of two elements a(x) and b(x) in GF(2") is performed by
adding/subtracting the polynomials a(x) and b(x), where the coefficients are
added/subtracted in the field GF(2). As a consequence, both addition and subtraction
operations are exactly the same and equivalent to bit-wise XOR operations on the bit-
vectors a and b (a, ® b)). In order to compute the inverse of element a(x) in GF(2"), we
need an irreducible polynomial of degree n. Let the irreducible polynomial be p(x)=
X'+p, X +p, X7+ ... +p X’ +px+p,. Whenever the degree of a polynomial obtained in
intermediate inversion calculations equals n, the polynomial is reduced (XORed) by
p(x). For example, if ||r(x)|| = ||p(x)|| (degree of r(x) equals degree of p(x)) then r is
replaced by p@r. Note that in some cases ||[r(x)|| = ||p(x)|| while » < p. These cases
restrict the comparison of r to 2" only (x" not p(x)) to indicate if r(x) needs to be
reduced by p(x) (r = p®r); where 2" is the binary representation of x".

3.2 Montgomery Inverse in GF(2")

The GF(2") Montgomery inverse of a(x)x" mod p(x) is a(x)'x" mod p(x) [5]. The
Montgomery factor 2" of GF(p) is replaced by x" in GF(2"), which is exactly equal to
2" in a binary representations [4,5,16], where m > n. The elements of GF(p) and
GF(2") are represented using similar binary data structures, a for both GF(p) and
GF(2") equals (a,, a,, ... a,a,a,) while p=(p,,p,,..p,p,p,) for GF(p) and p=(1
Doy Poa - P, P, P,) for GF(2") [5]. Our adjusted binary GF(2") Montgomery inverse
(Monlnv) procedure consists in a GF(2") AlmMonlInv and a GF(2") CorPh routines as
outlined in Figure 2.

For more clarification of the GF(2") Monlnv computation, see the numerical
example in Figure 3. It takes as inputs the polynomial a(x)= x'+1, represented into
Montgomery domain as a(x)x’ mod p(x)= x'+x* (m=9>n=5), and p(x)= X' +x°+1 as
the irreducible polynomial. All the data are shown in its binary representation
(a=1001, a2"=10100, and p=100101). The example (Figure 3) follows the
convention:

Met condition = affected registers with their updated values.
The AlmMonlInv routine generates the results a'2“" = 1000, and k = (10),, (k is a
normal decimal counter), which are used by the CorPh to provide the Montgomery
inverse result /77 (xX’+x+1 in the polynomial form). The reader is referred to the
Appendix for checking the result of this example.

Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2") 489

GF(2") AlmMonlIny Algorithm
Input: a2"e GF(2") & p; (p=irreducible polynomial & m >n)
Output: resulte[1, p-1] & k (result = a'2""mod p & n< k < 2n)

. u=p;v=a2"r=0;8s=1;k=0

2. While (v>0)

3 ifu, =0 then {u=u/2; s = 2s}

4, else if v, = 0 then {v = v/2;1r=2r}

5. else if u>v then {u = (U®v)/2; r=1®s; s = 2s}
6 else {v=(u®v)/2; s =r@s; r=2r}

7 k=k+1

8. ifr=2"" (|lt]l > |lp|l) then {result = 2p @r}

9. elseifr =2" (||r]| = ||pl]) then {result = p@r}
10. else result = r

GF(2") CorPh Algorithm
Input: r, p, m, & cowherd r & k from AimMoniInv
Output: result, where result = a'2" (mod p)

1. j=2mk

12. Whilej >0

13. r=2r

14, ifr 22" (||l = [lpl)) then {r = p@r}
15, j=j-1

16. result=r

Fig. 2. GF(2") Montgomery inverse algorithm in its binary representation

Observe on Figure 2 the several hardware operations applied to compute the
Monlnv in finite field GF(2"). For example, the division and multiplication by two are
equivalent to one bit shifting the binary representation of polynomials to the right and
to the left, respectively. Checking the condition of step 5, if u>v, is performed
through normal (borrow propagate) subtraction and test of the borrow-out bit. The
subtraction result is completely discarded, only the borrow bit is observed. If the
borrow bit is zero, then u(x) is greater than v(x). Similarly, the conditions in steps 8, 9,
and 14 demand normal subtraction. However, the subtraction this time is used to
check ||7(x)||, which requires the availability of x" (2" in binary).

3.3 Multi-bit Shifting

A further improvement on the GF(2") MonlInv algorithm is performed based on a
multi-bit shifting method making it similar to the GF(p) algorithm in Figure 1. After
comparing different multi-bit shifting distances applied to reduce the number of
iterations of the GF(p) Monlnv algorithm [18,19], the best maximum distance for
multi-bit shifting was found to be three, as clarified in [18,19]. The GF(2") inverse
algorithm (Figure 2) is mapped to hardware involving multi-bit shifting and making it
very similar to the GF(p) algorithm (Figure 1) as shown in Figure 4. Note that x" is
required in the GF(2") algorithm as an extra variable that is needless in the GF(p)
Monlnv algorithm; x" (2") is saved in register y in HW-Alg3 (used in step 9), and in
register s in HW-Alg4 (used in step 16.1). These registers (y in HW-Alg3 and s in
HW-Alg4) are not changed during the algorithms’ execution.

490 A. A.-A. Gutub et al.

GF(2") AlmMonInv Numerical Example

a = 1001 € GF(2)), p=100101, m= 9, n=5

a2" mod p = 10100 € GF(2°) (a in Montgomery domain)
u=p=100101,v=a2"=10100,s=1,r=k=0
v,= 0> v=1010, r=0, k=1
v,=02v=101,r=0, k=2
u>v=>u=10000,r=1s=10 k=3
u,=0=>u=1000,s =100, k=4
u,=0=>u=100s= 1000, k=5
u,=0=>u=10s= 10000, k=6
u,=0=>u=1,s=100000, k=7

v>u=>v=10 5s=100001, r= 10, k=8
v,=0=>v=1r=100 k=9
u=v=>v=0,r=1000, s =100101, k=10
[Irll<|lp|] = result = r

GF(2") CorPh Numerical Example
p=100101, m= 9, n=5

r = 1000 € GF(2°), k=10 (from AlmMonInv)
j=8

= 10000, j=7

r = 100000, ||r]| = |Ipll & r = 101, j=6
r=1010, j=5

r=10100, j=4

r=101000, ||r|| = ||p|| = r =1101, j=3
r=11010,j=2

r=110100, ||| = ||p|| = r =10001, j=1
r=100010, ||r]| = |lp|| > r =111, j=0

~.GF(2") MonlInv of 10100 = 111 (a'2"); Where m=9 & n = 5

Fig. 3. GF(2") MonlInv computation numerical example

For both GF(p) and GF(2") MonInv hardware algorithms (Figure 1 and Figure 4,
respectively), the AlmMonlnv algorithm needs to finish its computation completely
before the CorPh begins processing. This data dependency allows the use of the same
hardware to execute both algorithms, i.e., both the AlmMonlnv and CorPh. The
algorithms are implemented in the unified and scalable hardware architecture as
described in the following section.

4 The Unified and Scalable Inverter Architecture

Taking into account the amount of effort, time, and money that must be invested in
designing an inverter, a scalable and unified architecture that can perform arithmetic
in two commonly used algebraic finite fields is clearly advantageous. In this section,
we present the hardware design of a Montgomery inverse architecture that can be
used for both types of fields following the design methodology presented in [14]. The
proposed unified architecture is obtained from the scalable architecture given in [14]
but with some modifications, which slightly increases the longest path propagation
delay and chip area. The scalable GF(p) Montgomery inverse architecture presented
in [14] consisted in two main units, a non-scalable memory unit and a scalable
computing unit. The memory unit is not scalable because it has a limited storage
defined by the value of n,_. The data values of a and p are first loaded in the memory

X

Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2") 491

unit. Then, the computing unit read/write (modify) the data using a word size of w
bits. The computing unit is completely scalable. It is designed to handle w bits every
clock cycle. The computing unit does not know the total number of bits, n, , the
memory is holding. It computes until the controller indicates that all operands’ words
were processed. Note that the precision of the actual numbers used may be way
smaller than n,, bits. The user needs to identify the type of finite field his application
needs at the beginning of the computation. An input signal FSEL (field select) is used
to tell the architecture weather GF(p) or GF(2") is the desired arithmetic domain.

GF(2") Multi-Bit Shifting AlmMonInv HW Algorithm (HW-Alg3)
Registers: u, v, 1,s,X,Y, z, & p (all registers hold n,_bits)
Input: a2", 2"e[1,p-1] (p=irreducible polynomial & m2n)
Output: resulte[1, p-1] & k (result=a"2""mod p & n<k<2n)
. u=p;v=a2"r=0;s=1;x=0,y=22=0,k=0
2. if (u,u,u,=000) then{u=ShiftR (u,3);s=ShiftL(s,3);k=k+3}; goto 8
2.1.if (u,u,u,=100) then{u=ShiftR (u,2);s=ShiftL(s,2);k=k+2}; goto 8
2.2.if (uu,u,=110) then{u=ShiftR(u,1);s=ShiftL(s,1)}; goto 7
3. if (v,v,v,=000) then{v=ShiftR(v,3);r=ShiftL(r,3);k=k+3}; goto 8
3.1.if (v,v,v,=100) then{v=ShiftR(v,2);r=ShiftL(r,2);k=k+2}; goto 8
3.2.if (v,v,v,=110) then{v=ShiftR(v,1);r=ShiftL(r,1)}; goto 8

4. S1 = Subtract(u, v); x =v@®u; z = r®s

5. if (S1,,...=0) then {u=ShiftR(x,1); r=z; s=ShiftL.(s,1)}; goto 7

6. s=z;v=ShiftR(x,1); r = ShiftL(r,1)

7

8

k=k+1
. if (v #0) go to step 2
9. x=p®r;z=2p®r;S1=Subtract (y,x); S2 = Subtract (y,z)
10. if (S1,,,.,=0) then {result=x}
10.1 elseif (S2,,,=0) then {result=z}
10.2 else {result =r}

GF(2") Multi-Bit Shifting CorPh HW Algorithm (HW-Alg4)
Input: r, p, m, 2" & k; Where r (r=a"'2""mod p)& k from HW-Alg3
Output: result; Where result = a”'2" (mod p).

1. j=2mk-1;x=0;y=0;z=0

12. v=2p; u=3p; s=2"

13. Whilej >0

14. if j =1 then {r = ShiftL(r,1); j=j-1}

15. else {r = ShiftL(r,2); j=j-2}

16. X=p@®r;y=u®r;z=u®r

16.1 S1=Subtract(s,x); S2=Subtract(s,y); S3=Subtract(s,z)
17. if (S3,,..=0)then {r=z}

18. else if (S2 =0) then {r=y}

19. else if (S1 =0) then {r=x}

20. result=r

‘borrow

borrow

Fig. 4. Montgomery inverse hardware algorithm for GF(2")

The block diagram for the Montgomery inverter hardware is shown in Figure 5.
The memory unit is connected to the computing unit components. The memory unit is
not changed from what is presented in [14]. It contains a counter to compute variable
k and eight first-in-first-out (FIFO) registers used to store the inversion algorithm’s
variables. All registers, u, v, r, s, x, ¥, z and p, are limited to hold at most n, bits.

Each FIFO register has its own reset signal generated by the controller. They have
counters to keep track of n (the number of bits actually used by the application).

492 A. A.-A. Gutub et al.

-,

— Control signals P Compuhng unit
— Daia bus: w bits e
1

s v

Subiractor] ouiput
Subiractor? output
g Adder/Subtractor3 outpt
X il Subtractord ind
v in Subiractor] in2
Z_JH Subitractor? inl
Subtractor? in2
Adder/Subtractor3 ind
Adder/Subtractor3d in2
NOR! ind
NORI in2
NOR2 ind
NOR2 il
N3 ind
NOR3Z in2
NORI_onl
NORZ ol
XOR3 out

u_in
v_in
roin

IYYYYYY Y
YyYyyy

Add/Subtract

P

A J

 J
Memory

o

(non-scalable part)

a

1 ol
ol
Ol
Ol
O

Ol

- ouf
Ol

YYyVv

result 4

Data Router

A J

k-

3

AAA

Y
Les
v ol

e == =l]=
YYVYYVYVYY

Yy

:l\ Shifter |

F5 ol

'Yy

FSEL i ¥
control 4
clk

L
-+

> Controller

Fig. 5. Scalable and unified inverter hardware

The computing unit is made of four hardware blocks: add/subtract, shifter, data
router, and controller block. The GF(p) add/subtract unit and the data router are the
only components that need to be adjusted to make the inverter hardware unified for
GF(p) and GF(2") finite fields.

The GF(p) add/subtract unit is originally built of two w-bit subtractors, a w-bit
adder/subtractor, four flip-flops, one multiplexer, a w-bit comparator, and logic gates,
as detailed in [14]. This unit is adjusted to operate for GF(2") by adding a set of 3w
parallel XOR gates used for steps 4 and 9 of HW-Alg3 and step 16 of HW-Alg4. The
new add/subtract unit is shown in Figure 6. The signal Control makes the unit
perform either two subtractions plus one addition (step 4 of HW-Algl), or three
subtractions (step 16 of HW-Alg2 and step 16.1 of HW-Alg4). Three flip-flops are
used to hold the intermediate borrow bits of the subtractors and the carry bit of the
adder to implement the multi-precision operations. The fourth flip-flop is used to store
a flag that keeps track of the comparison between u and v, which is used to perform
step 8 of HW-Algl and HW-Alg3. The subtractors borrow-out bits are connected to
the controller through signals that are useful only at the end of each multi-precision
addition/subtraction operation. Subtractor]l borrow-out bit will affect the flow of the
operation to choose either step 5 or step 6 of both HW-Algl and HW-Alg3. It is also
essential in electing the result observed in step 10 of HW-Algl and of HW-Alg2. The
three subtractors borrow-out bits (S1, ...» S2, e O3, ar€ likewise necessary for
selecting the correct solution of the ‘if’ condition to be one of the steps 17, 18, or 19,
from the HW-Alg2 and from the HW-Alg4 algorithms.

Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2") 493

comparatar Subtractor? output borrow bit
a . FF
b :@— 1ita=h . - botrow bit Subtractor?
FF

borrow bit

FD borrow bit
Ly 1
Subtracor? + Syhtractor?
i output

4
Subtractorl—1—y Subtractorl

multiplexer

Subtractor?_inl
Subtracior?_inZ

|

Subtractor!_inl output
Subtractor! inZ L
star_add/subtract—e — Subtractorl

horrow bit

FF ’
L 1'!:'7_’ step & flag
FF
clk

[—D_ Adder carry out bit / Subtractor3 borrovi_r bit

Control 1

AdderfSubiractor3_ini A dderSubtractor3 —_—
AdderSublractor3_in2 Adder/Subtracor3_output
YORI_ini .

YORI 2 :)D » XORI_out
YORZ _inl .

YORY 12 D v YOR? out
YORZ ini .

YOR3 2 D » XORS out

Fig. 6. Add/Subtract unit of the scalable and unified hardware

The shifter is made of two multiplexers and two registers with special mapping of
some data bits, as shown in Figure 7. Depending on the controller signal Distance, the
shifter acts as a one, two, or three-bit shifter. Two types of shifting operations are
needed in the HW-Algl and the HW-Alg3 algorithms, shifting an operand (u or v)
through the uv bus one, two, or three bits to the right, and shifting another operand (r
or s) through the rs bus by a similar number of bits to the left. Shifting u or v is
performed through Registerl, which is of size w-1 bits. For each word, all the bits of
uv are stored in Register]l except for the least significant bit(s) to be shifted, it is (or
they are) read out immediately as the most significant bit(s) of the output bus uv_out.
Shifting r or s to the left is performed via Register2, which is of size w+3 bits similar
to shifting uv but to the other direction. When executing the HW-Alg2 or HW-Alg4,
the shifting is performed either to one or two bits to the left only, which is via MUX2
and Register2 ignoring MUX1 and Register].

The data router capabilities are extended to satisfy the unified architecture
requirements. It interconnects the memory, add/subtract, and shifter units. The
possible configurations of the data router are shown in Figure 8.

494

A. A.-A. Gutub et al.

Wiy . W = R1_out, w
i = R1_out W
20 = R1_out, W T g uv_out
I " N
Wizg
uv W . ¥ = s
T Wy Wiss T - 1 3
[w-1:0) ! g 2 5 - =
22 o 3 3
start_shifing t » DT b <! |
L L pr z
14
clk . > e -
A J
Y
Distance > >
2
o
» Feal wed W rs out
2 ;
S Bug [T R T e
{01
W IS, IS0 o w3
s y S U LN 7 rs_out,,,,
MSiwszg R =
1 IS0~ MS_0Ut, -
MSpj = 1S_0UL,. s ‘1 rs_outy,.
15 = rs_out. .
]] < rS—OUtI\'-I
Fig. 7. Shifter unit hardware
¢ Subtractor] outpud
¢ Sibtractor2 outpud
P Adder/Sitbtractor 3 output
X in - Subtractor] ind »
S in Subtractor] in2 o
< Stibtractor2 inl |l
A e e Subtractor2 in2 ol
dva Adder/Subtractor3 ind -
—— Adder/Subtractor3_in2 = oo10 o011 Ui
-— = 7] ZOR1_InT > = =
s in = ORI in2 = g g g
Q% XOR2 il » \ - -
u out = YOR2 in2 ol
— o KOR3 i o
v_out = il » v
—a? S S EN rE B
5 oiil > o < ZORL ot — — —
——l|] XORZ onif T T
i out o o XOR3 out 0110 ot 1001 1010
out hl
—sout = = = 1,
Z ot = Wy . ——F
P oul o i > Wk
——— i | ~ FrTR— Lt f 3
~ s out 3
“*
< = = = =
:‘l :B: :FI
Control * X
1100 1101 1110 1111

Fig. 8. Data router configurations

Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2") 495
S Modeling and Analysis

The unified and scalable inverter was modeled and simulated in VHDL. Previously, a
fixed design (full precision) and other scalable inverter designs for inversion in GF(p)
were also described in VHDL. All VHDL descriptions of the scalable designs,
including the new unified ones, have two main parameters, namely n, and w. The
fixed hardware, however, is parameterized by n,, only. Their area and speed are
presented in this section. Also a reconfigurable hardware [16] that can perform the
inversion in both GF(p) and GF(2"), besides other functions, is considered in the
comparison. We didn’t define a specific architecture for the adders and subtractors
used in our VHDL implementations. Thus, the synthesis tool chooses the best option
in terms of area from its library of standard cells. As a result, all proposed designs use
the same type of adders and subtractors.

5.1 Area Comparison

The exact area of any design depends on the technology and minimum feature size.
For technology independence, we use the equivalent number of NOT-gates as an area
measure [6]. A CAD tool from Mentor Graphics (Leonardo) was used. Leonardo
takes the VHDL design code and provides a synthesized model with its area and
longest path delay. The target technology is a 0.5um CMOS defined by the ‘AMIO0.5
fast’ library provided in the ASIC Design Kit (ADK) from the same Mentor Graphics
Company [11]. It has to be mentioned here that the ADK is developed for educational
purposes and cannot be thoroughly compared to technologies adopted for marketable
ASICs. It however, provides a framework to contrast all scalable hardware designs
together and with the fixed one. The sizes of the designs are compared in Figure 9.
Observe that the fixed design has a better area if the maximum number of bits used
(n_) is small which is useless in cryptographic applications [5]. The unified designs

‘max

are larger than the GF(p) ones with a calculated average of 8.4% more hardware area.

70.000 7 —{+— GF(p) Scalable Hardware|
65.000 with w=4 bits
’ —&— GF(p) Scalable Hardware|
60,000 + with w=8 hits
—— GF{p) Scalable Hardware|
55,000 + with w=16 hits
—— GF{p) Scalable Hardware|
50,000 with w=32 bits
7 —O— GF(p) Scalable Hardware|
g 45,000 with w=64 bits
2 —®— GF(p) Scalable Hardware|
§ 40.000 with w=128 bits
= 35,000 Fixed Hardware
30000 --[}-- Unified & Scalable with
’ w=4 bits
25,000 - - @ - - Unified & Scalable with
w=38 hits
20,000 -- Unified & Scalable with
w=14 bits

15,000
10,000

- - Unified & Scalable with
w=32 bits

- - Unified & Scalable with
w=04 bits

- - Unified & Scalable with
w=128 bits

L R R R

5,000

Fig. 9. Area comparison

496 A. A.-A. Gutub et al.

The area of the unified designs were also compared with the reconfigurable
hardware [16], but not shown in Figure 9. The reconfigurable design core is built of
880,000 devices [16]. Assume a device is corresponding to a transistor and our NOT-
gate is equivalent to two transistors [6], so the reconfigurable hardware core is
equivalent to 440,000 gates, which means that the reconfigurable design is eight times
greater than the largest unified hardware shown in Figure 9. Of course, the design in
[16] does more than inversion, but its datapath is responsible for most of the area, and
would be used anyway for the inversion computation.

5.2 Speed Comparison

The total computation time is a product of the number of clock cycles the algorithm
takes and the clock period of the final implementation. This clock period changes
with the value of w in the unified and scalable hardware, and changes with the value
of n,, in the fixed hardware. This is because w = n,, in the fixed hardware. All
VHDL coded designs clock cycle periods are generated automatically by Leonardo,
which determines the longest path delay of the hardware circuits. The clock period of
the reconfigurable design was considered as being 20ns/cycle (operates at SOMHz
clock rate frequency) [16].

The number of clock cycles depends completely on the data and the algorithm. A
probabilistic study described in [18] is used to estimate the average number of clock
cycles. For the fixed design, the average number of clock cycles equal to C, = 1.525n.
For all scalable designs, the average number of clock cycles is C,=(2.4125n+1 nw]
which is exactly the same for the unified designs presented in this paper. Hence,
adjusting the scalable designs to be unified did not change the number of clock cycles
of the inverse computation. However, the clock cycle period of the unified designs
increased slightly, making the total computation time of the unified hardware
different than what was given in [18]. The number of clock cycles for the
reconfigurable hardware to complete the inversion process is C,=14.5n [16].

Similar to the GF(p) scalable hardware of [18], the unified and scalable hardware
can have several designs for each n,,, depending on w. For example, Figure 10 shows
the delay of several designs of the unified and scalable hardware compared to the
reconfigurable, GF(p) scalable, and fixed hardware designs, all modeled for n,, =512
bits, which is a practical number for future cryptographic applications [5]. Observe
how the actual data size (n) plays a big role on the speed of the designs. In other
words, as n reduces and w is small, the number of clock cycles decrease significantly,
which considerably reduces the overall computing time of all scalable designs
(including the unified ones) compared to the others. This is a major advantage of the
scalable hardware over the fixed [14,18] and reconfigurable ones.

The new unified designs when compared to the scalable design for GF(p) only
have very similar characteristics. Overall, it needs an average of 19.8% more time
than the designs for GF(p) [18]. Another observation from Figure 10 is that the
unified designs are faster than the fixed one as long as:

_ [(log, W)nmac /8 whenw < Npax /8
YU Nmar WHen w 3 o /8

Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2") 497

which is generalized for different n,, values. Several experimental tests were done for
n,,.= 32, 64, 128, 512 and 1024 bits. Figure 10 also shows that the unified designs are
comparable to the reconfigurable one giving better performance when:

(log, W) nmac /32 when w<nma/S
< (log, w) /25 when w2hpax/S

Consider the case when n=n, =512 bits in Figure 10, the unified design with
w=64 bits has almost the same speed as the fixed one, but the ones with w=128 bits
remain faster. In fact, as w gets bigger the total time decreases, which is also true
when comparing among the different unified designs while n > w, as also proven
before in [18] for the GF(p) scalable designs. Whenever n < w considering the unified
and scalable designs, the scalability advantage of these designs is reduced since the
number of words to be processed reached its lower limit, but still the unified and

scalable designs are faster than the fixed one.

o~ GF(p) Scalable Hardware with w = 4 bits

- (GF(p) Scalable Hardware with w= 8 bits

1 000.000 GF(_p} Scalable Hardware wi_th w=16 b@ts
T | =+ GF(p) Scalable Hardware with w = 32 bits

{ = GF(p) Scalable Hardware with w = 64 bits

1 = GF(p) Scalable Hardware with w = 128 bits

| — Fixed Hardware

100,000 -

-
i
L}

£

total time (nsec)

10.000 -

7 Reconfigurable Hardware
Unified & Scalable with w = 4 bits
+ Unified & Scalable with w = 8 bits

B b oan

b .'- (-1

|
!
1.000 ¥

| o L Unified & Scalable with w = 16 bits

+ Unified & Scalable with w = 32 bits

$ Unified & Scalable with w = 64 bits

o = Unified & Scalable with w = 128 bits
100 il) _ .) . _ :

4 8 16 32 64 128 256 512

n (bits)

Fig. 10. Delay comparison of designs with n,,,, = 512 bits

6 Conclusion

This paper presents a scalable inverter for both finite fields GF(p) and GF(2") in a
unified hardware module that applies the design approach proposed in [14,18,19]. The

498 A. A.-A. Gutub et al.

primary contribution of this research is to show that it is possible to design a unified
hardware without compromising scalability and area efficiency. The unified inverter
hardware is built of two main units, a memory unit and a computing unit. The
memory unit defines the upper bound of the number of bits that the hardware can
handle. The computing unit is the real scalable hardware, it is designed to fit in
constrained areas and perform the computation of numbers in a repetitive way. Our
analysis shows that as the word size of the scalable computing unit reduces, the
hardware area decreases and the possible clock frequency increases. However, if we
increase the computing unit word size, the clock frequency is reduced, but for n > w
the overall computing time is also reduced, which is considered a normal area-time
tradeoff.

Several configurations of the proposed inverter hardware (different word lengths)
were described and synthesized using Mentor Graphics CAD tools. They were
compared with equivalent configurations of a previously proposed inversion hardware
design for inversion in GF(p) only. The comparisons show that this unified and
scalable structure is very attractive for cryptographic systems, particularly for ECC
where there is a need for modular inversion of large numbers in both finite fields
GF(p) and GF(2") depending on the application usage.

Acknowledgments. The authors would like to thank KFUPM-Saudi Arabia and NSF
under the CAREER grant CCR-0093434-“Computer Arithmetic Algorithms and
Scalable Hardware Designs for Cryptographic Applications” for providing financial
support toward this research.

References

1. E. Savas and C. K. Ko¢. The Montgomery Modular Inverse — Revisited. IEEE Trans. on
Computers, 49(7): 763-766, July 2000.

2. T. Kobayashi and H. Morita. Fast Modular Inversion Algorithm to Match Any Operation
Unit. IEICE Trans. Fundamentals, E82-A(5):733-740, May 1999.

3. B. S. Kaliski. The Montgomery Inverse and its Applications. IEEE Trans. on Computers,
44(8):1064-1065, Aug. 1995.

4. E. Savas, A. F. Tenca, and C. K. Kog¢. A Scalable and Unified Multiplier Architecture for
Finite Fields GF(p) and GF(2"). In Cryptographic Hardware and Embedded Systems,
Lecture notes in Computer Science. Springer, Berlin, Germany, 2000.

5. L. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cambridge
University Press: New York, 1999.

6. M. D. Ercegovac, T. Lang, and J. H. Moreno. Introduction to Digital System. John Wiley
& Sons, Inc., New York, 1999.

7. P. Montgomery. Modular Multiplication without Trail Division. Mathematics of
Computation, 44(170): 519-521, April 1985.

8. N. Takagi. Modular Inversion Hardware with a Redundant Binary Representation. /[EICE
Trans. on Information and Systems, E76-D(8): 863-869, Aug. 1993.

9. J.-H. Guo, and C.-L. Wang. Hardware-Efficient Systolic Architecture for Inversion and
Division in GF(2"). IEE Proceedings: Computers and Digital Techniques, 145(4): 272-
278, July 1998.

10. Choudhury, Pal, and Barua. Cellular Automata Based VLSI Architecture for Computing
Multiplication and Inverses in GF(2"). Proceedings of the 7th IEEE International
Conference on VLSI Design, Calcutta, India, January 5-8 1994.

11. Mentor Graphics Co., ASIC Design Kit, http://www.mentor.com/partners/hep/AsicDesign
Kit/dsheet/ami05data book.html

Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2") 499

12. M. A. Hasan. Efficient Computation of Multiplicative Inverses for Cryptographic
Applications. Proceeding of the 15th IEEE Symposium on Computer Arithmetic, June
2001.

13. M. Feng. A VLSI Architecture for Fast Inversion in GF(2"). IEEE Trans. on Computers,
38(10):1383-1386, Oct. 1989.

14. A. A.-A. Gutub, A. F. Tenca, and C. K. Kog. Scalable VLSI Architecture for GF(p)
Montgomery Modular Inverse Computation. ISVLSI 2002: IEEE Computer Society
Annual Symposium on VLSI, Pittsburgh, Pennsylvania, April 25-26 2002.

15. J. R. Michener and S. D. Mohan. Clothing the E-Emperor. IEEE Compute, 34(9):116-
118, Sep. 2001.

16. J. Goodman and A. P. Chandrakasan. An Energy-Efficient Reconfigurable Public-Key
Cryptogrphy Processor. IEEE Journal of Solid-State Circuits, 36(11):1808-1820, Nov.
2001.

17. D. Knuth. The Art of Computer Programming — Seminumerical Algorithms, 2nd ed. Vol.
2, Reading, MA: Addison-Wesley, 1981.

18. A. A-A. Gutub and A. F. Tenca. A Scalable VLSI Architecture for Montgomery
Inversion in GF(p). Submitted for publication in March 2002 to IEEE Trans. on VLSI.

19. A. A-A. Gutub, New Hardware Algorithms and Designs for Montgomery Modular
Inverse Computation in Galois Fields GF(p) and GF(2"), Ph.D. thesis, Oregon State
University, 2002.

Appendix

This Appendix details the computations and verifies the results used in the GF(2") MonInv
numerical example shown in Figure 3. The example defines m=9 and n=>5; where n is the
degree of the irreducible polynomial and m (of the Montgomery constant 2") is any
number as long as m >n. To simplify the arithmetic lets only use the binary representation
of polynomials. The Monlnv takes the inputs a=/00] and p=100101. However, a is
represented into Montgomery domain as a2”, which is calculated as follows:
a=1001 = a2"=a2’=1001000000000

but since 1001000000000 needs to be reduced by p or a multiple of p until the number of
significant bits of a2’ is less or equal to 7 (the degree of polynomial a(x)x"mod p(x) should
be less than the degree of the irreducible polynomial (p(x))), so

a2’ @2"p=1001000000000 &1001010000000=10000000
and /0000000 also needs reduction

10000000 @2°p =10000000 @ 10010100 = 10100.

So

a2" mod p = a2’ mod p = 1001000000000 mod p =10100.
The fact that GF(2") MonlInv of 10100 is ¢ '2"=111, can be similarly verified. The MonInv
numerical example in Figure 3 calculated that a'2’= 111 = o' = 111/2".
Any congruent polynomial can be XORed with the irreducible polynomial, such as:

a'2’=111=111®100101 =100010 = a'2"=10001
a'2'=10001=10001 ®@100101=1101002 a'2°=1101
a'2’=1101=1101 @100101=101000= a'2’=101
a'2'=101=101 ®100101=1000002 a'=100
To confirm that the GF(2") Monlnv of 10100 is 111, when m=9 and n=35, it is enough to
show that a . a”’ mod p= 1, as follows:
a.a'=1001. 100 = 100100
100100 mod p = 100100 @100101=1

	1	Introduction
	2	Scalable Architecture
	3	Montgomery Inverse Procedures for GF(p) and GF(2n)
	3.1	Representation and Manipulation of Elements in GF(2n)
	3.2	Montgomery Inverse in GF(2n)
	3.3	Multi-bit Shifting

	4	The Unified and Scalable Inverter Architecture
	5	Modeling and Analysis
	5.1	Area Comparison
	5.2	Speed Comparison

	6	Conclusion
	Acknowledgments. The authors would like to thank KFUPM-Saudi Arabia and NSF under the CAREER grant CCR-0093434-ﬁComputer Arithmetic Algorithms and Scalable Hardware Designs for Cryptographic Applicationsﬂ for providing financial support toward this research.

	References
	Appendix

