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Abstract. In this article we present a hardware solution for finite
field arithmetic with application in asymmetric cryptography. It
supports calculation in GF (p) as well as in GF (2m). Addition and
multiplication with interleaved modular reduction are the main func-
tionality of the unit. Additional functions—like shift operations and
integer incrementation—allow the calculation of the multiplicative
inverse and covering all operations required to implement Elliptic
Curve Cryptography. Redundant number representation and efficient
modular reduction make it ready for future cryptographic bitlengths and
allow operation at high clock frequency on moderate hardware resources.

Keywords: Finite field arithmetic, multiplication, modular reduction,
inversion, redundant number representation, hardware implementation.

1 Introduction

Finite field arithmetic is the backbone for nearly all public-key algorithms cur-
rently used. Widespread techniques like RSA encryption and Diffie-Hellman key
agreement operate on finite fields with modular integer arithmetic. These algo-
rithms have bitlengths up to 2048-bit to ensure information security for the next
decade [3]. The calculation of these algorithms relies on exponentiation, which
is computational intensive and demands dedicated hardware solutions when
throughput is of concern. More recently, Elliptic Curve Cryptography (ECC)
made the application of another type of finite fields popular: binary extension
fields where elements can be represented as polynomials instead of integers. Bi-
nary fields GF (2m) are considered advantageous for hardware solutions because
addition and modular reduction of polynomials are somewhat easier than those
of integers.

ECC has the advantage of shorter bitlengths while offering the same level
of security (163-bit up to 571-bit). That makes ECC attractive for application
in constrained systems like smartcards where chip area is limited and the com-
putational power of microprocessors is sparse. Applications of ECC are digital
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signature schemes, encryption schemes, and key agreement schemes [5,6,7]. The
Elliptic Curve Digital Signature Standard [8,4] defines prime fields GF (p) and
binary fields GF (2m) as underlying fields for elliptic curves. For a full support
of the standard, both type of fields have to be supported. This gives reason to
search for hardware architectures that operate in both fields. Such a dual-field
arithmetic unit can be realized and most of the hardware resources required for
calculations in the prime field GF (p) can be reused for operation in GF (2m).
The cost of such an unified arithmetic unit for GF (p) and Gf(2m) is only slightly
higher than for a mere GF (p)-multiplier [15,16].

Former arithmetic units have focused on an efficient implementation of the
multiplication and have neglected other operations. This is justified by the ob-
servation that the core operation of algorithms like RSA and Diffie-Hellman is
modular exponentiation, which is calculated by repeated multiplications. The
situation for ECC is slightly different. Although, the performance of ECC is also
determined by multiplication, ECC requires besides multiplication and squaring
also inversion, addition, and subtraction.

We will present a dual-field arithmetic unit that is capable to calculate all
these operations in both types of fields: GF (p) and GF (2m). The architecture
takes low-power design considerations into account and assures a short critical
path to enable operation at high clock frequencies. The intended applications
of the arithmetic unit are systems with limited silicon area where both types
of arithmetic are required and performance is not of utmost importance. The
main motivation for the design was to develop an unit that is capable to perform
all calculations of the Elliptic Curve Digital Signature Algorithm (ECDSA) and
key-agreement protocols defined by the American National Standards Institute
(ANSI) [4,5]. Further relevant ECC standards are published by the Institute
of Electrical and Electronic Engineers (IEEE) [6], the International Standards
Organization (ISO) [7], and the National Institute of Standards and Technology
(NIST) [8].

The proposed architecture of the dual-field arithmetic unit focuses on an
efficient implementation of operations in the finite fields GF (p) and GF (2m).
Operands are processed at full precision and most operations are executed
within a single clock cycle. Multiplication is a multi-cycle operation with bitserial
scheduling of the multiplier. Modular reduction is interleaved and uses quotient
prediction for operation in GF (p). Intermediate results of GF (p)-operations have
a redundant number representation which permits to scale the architecture’s
precision without affecting the maximum clock frequency. The architecture even
allows to calculate the Extended Euclidean Algorithm for inverting field ele-
ments. The architecture is highly regular and has only a small number of leaf
cells—which is a desired property for a full-custom implementation.

The remainder of this article presents related work in §2. In §3 the mathemat-
ical background of operations in prime fields and in binary fields is covered. §4
presents the proposed architecture and discusses design considerations. Finally,
we present results in §5 and draw conclusions in §6.
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2 Related Work

E. Savaş et al. published in 2000 a unified multiplier for GF (p) and GF (2m)
which uses Montgomery multiplication for both fields [15]. Multiplication is done
bitserial and the multiplicand is processed in blocks. Arbitrary precision multi-
plication is possible and precision is only constrained by memory. Their archi-
tecture is based on a pipeline of block-sized processing elements. The pipeline
can have different configurations to trade area for speed. This approach has the
smartness to process arbitrary precision numbers, which comes at the cost of
a more complicated architecture that seems to be challenging for a full-custom
implementation. Another restraint is the need of the Montgomery algorithm for
precomputed constants and the need of transformations.

J. Großschädl’s unified multiplier is bitserial too but processes the multipli-
cand in full precision [16]. Modular reduction is done by an interleaved quotient
prediction and a conditional modulus subtraction, which does not require any
pre-computations or transformations. Multiplication in GF (2m) takes m cycles,
whereas multiplication in GF (p) takes between log2 p and 2 log2 p cycles due
to a conditional extra modular reduction cycle. Intermediate results of GF (p)-
operations are stored in redundant representation because partial-product ac-
cumulation is done with carry-save adders. A carry-propagate adder with lower
wordsize converts redundant results iteratively into their binary representation.
The proposed architecture is simple, requires little hardware resources and has
a regular structure that is convenient for a full-custom implementation. The low
GF (p)-performance is a disadvantage. It is caused by the reduction algorithm
and the redundant-to-binary conversion.

J. Goodman et al. presented in [17] a VLSI implementation of a dual-field
arithmetic unit. Their so-called Domain-Specific Reconfigurable Cryptographic
Processor (DSRCP) is not a mere multiplier for GF (p) and GF (2m). It can cal-
culate all operations required for elliptic curve cryptography including inversion
and comparisons. These operations are executed on an extensive datapath which
is controlled by a microcoded control unit. Main components of the datapath are
a carry-propagate adder for operation in GF (p) that takes three cycles for an
addition and a reconfigurable datapath for operation in GF (2m). An additional
comparator allows comparisons of integers or polynomials. The Montgomery al-
gorithm is used for multiplication in GF (p). Multiplication in GF (2m) obeys an
iterative MSB-first scheme with interleaved modular reduction.

3 Mathematical Background

This section describes the representation of prime field elements and binary field
elements and presents operations on these elements.

Prime field elements A ∈ GF (p) are integers in the set {0, 1, . . . p − 1} where
p is prime. Binary field elements A(x) ∈ GF (2m) are polynomials of degree less
than m when a polynomial basis is used to represent the field elements. These
polynomials have coefficients in the set {0, 1}. Both types of field elements can
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be represented with bitstrings as shown in (1) and (2). The binary representa-
tion of a prime field element needs n = �log2 p� bits for storage. Elements of
GF (2m) require m bits to store all coefficients of the polynomial. The memory
requirement to store both types of elements is max(n, m) bits.

A ∈ GF (p) : A =
n−1∑

i=0

ai2i with n = �log2 p�, ai ∈ {0, 1} (1)

A(x) ∈ GF (2m) : A(x) =
m−1∑

i=0

aix
i, ai ∈ {0, 1} (2)

Although elements of both fields are stored uniformly, their field operations
differ. Addition of prime field elements is an integer addition with modular re-
duction, whereas addition of polynomials is done coefficient-wise without the
need of modular reduction. Multiplication requires modular reduction in both
cases because the result of an integer multiplication as well as the result of
a polynomial multiplication could have double the bitlength of their operands.
Surprisingly, an almost identical algorithm can calculate multiplication in GF (p)
and in GF (2m) which facilitates an unified hardware approach.

Not all cryptographic algorithms require the inversion of field elements. For
instance, the RSA algorithm and the Diffie-Hellman key-exchange are based
on exponentiation and require only multiplications and square operations. On
the other hand, elliptic-curve cryptography and the digital signature algorithm
require inversion too. The inverse of field elements can be calculated by expo-
nentiation using the Fermat theorem or by applying the Extended Euclidean
Algorithm (EEA) [1]. The latter has better running time but is more diffi-
cult to implement in hardware because it requires inconvenient operations like
magnitude-comparisons of integers or bitlength-comparisons of polynomials.

3.1 Addition and Modular Reduction in GF (p)

Addition of two integers A, B ∈ GF (p) is done by calculating the sum A+B with
carry propagation. In case, the sum A + B exceeds p − 1, a modular reduction
is necessary to obtain the result of A + B mod p in the range [0, p − 1].

In general, the result of a modular reduction of an integer I mod p is the
remainder of the integer division I

p . The remainder can be calculated using (3).

I mod p = I − q · p with q =
⌊

I

p

⌋
(3)

Equation (3) is not very practical because it determines the quotient q by
division of large integers. Division can be avoided when the reduction result
may exceed the desired interval [0, p − 1]. In this case, it possible to estimate a
quotient q̂ by comparing I with a number N in the magnitude of the modulus
p. A good choice is N = 2�log2 p� where only the most significant bit of p is set.
In case p is a generalized Mersenne prime, this estimation is very close.
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3.2 Multiplication and Squaring in GF (p)

Multiplication A ·B is a heavyweight operation compared to addition. The prod-
uct of two large integers cannot be calculated in a single step. The product is
calculated by accumulating partial products A · bi iteratively—this algorithm
is known as the double-and-add algorithm. Bitserial multiplication obeys the
double-and-add algorithm. It scans all bits bi of the multiplier B iteratively. If
the actual multiplier bit bi = 1, the multiplicand A is accumulated to the in-
termediate result as done in (4). Two different schemes are possible to scan the
multiplier bits: the LSB-first scheme and the MSB-first scheme. The LSB-first
scheme starts to scan multiplier bit b0 and ends with bn−1. The MSB-first scheme
operates in the opposite direction.

C = A · B = A ·
(

n−1∑

i=0

bi2i

)
=

n−1∑

i=0

(A · bi)2i, n = �log2 B� (4)

Bitserial multiplication can easily be extended to modular multiplication
mod p. Extending Equation (4) by an interleaved modular reduction step will
reduce the intermediate result in each iteration and yield Algorithm 1. As men-
tioned above, exact modular reduction would require the calculation of the quo-
tient q = �C

p � which involves division. Algorithm 1 avoids division by estimating
the quotient q̂. The estimation simplifies the algorithm substantially but the re-
sult C may exceed the desired range [0, p − 1]. To obtain a fully reduced result,
the modulus p has to be added up to two times.

Algorithm 1 Multiplication in GF (p) with interleaved modular reduction
Input: A, B ∈ [0, p − 1], 2n−1 ≤ p < 2n

Output: C = A · B mod p

1: C ⇐ 0
2: for i = n − 1 to 0 do
3: C ⇐ 2 · C + A · bi

4: q̂ ⇐ Q ESTIM(C)
5: C ⇐ C − q̂ · p
6: end for
7: while C < 0 do
8: C ⇐ c + p
9: end while

10: return C

Squaring is closely related to multiplication because A2 mod p = A·A mod p.
Systems that operate with wordsizes smaller than the bitlength of the operands—
like microprocessors—usually have an extra square function to exploit common
sub-expressions on wordsize-level. This could save nearly 50 percent of the re-
quired wordsize multiplications. For systems that operate on full-length operands
there is not such a short cut and squaring is done most efficiently by multipli-
cation.
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3.3 Inversion in GF (p)

Inversion calculates the multiplicative inverse A−1 of an element A. The inverse
has the property that A · A−1 mod p = 1. There are two different methods
to calculate the inverse. One is based on the theorem of Fermat that states
Ap−1 mod p = 1 and implies that Ap−2 mod p = A−1 mod p [1]. Using
this theorem, the inverse is calculated by exponentiation which requires about
1.5 log2 p multiplications—an expensive operation. The other method to calcu-
late the inverse is the Extended Euclidean Algorithm (EEA). It solves the equa-
tion A · X + p · Y = D for X, Y and D = gcd(A, p). The EEA’s procedure to
calculate the inverse is given in Algorithm 2. It is a slightly modified version of
the algorithm given in [13].

Algorithm 2 Inversion in GF (p): Extended Euclidean Algorithm (EEA)
Input: A ∈ [0, p − 1], p prime
Output: A−1 mod p

1: Y ⇐ A, D ⇐ p, B ⇐ 1, X ⇐ 0
2: while Y �= 0 do
3: while y0 = 0 do
4: Y ⇐ Y/2, B ⇐ (B + b0p)/2
5: end while
6: while d0 = 0 do
7: D ⇐ D/2, X ⇐ (X + x0p)/2
8: end while
9: if Y ≥ D then

10: Y ⇐ Y − D, B ⇐ (B − X) mod p
11: else
12: D ⇐ D − Y , X ⇐ (X − B) mod p
13: end if
14: end while
15: return X

3.4 Addition in GF (2m)

Addition in GF (2m) is done coefficient-wise as shown in Equation (5).

A(x) + B(x) =
m−1∑

i=0

aix
i +

m−1∑

i=0

bix
i =

m−1∑

i=0

(ai + bi)xi =
m−1∑

i=0

(ai xor bi)xi (5)

Coefficients of polynomials are elements of GF (2) = Z2 and therefore, ad-
dition of coefficients is done modulo 2 which corresponds to the Boolean XOR-
function. Multiplication of coefficients matches the Boolean AND-function. Sub-
traction in GF (2m) is identical with addition because the additive inverse of an
element is its identity: A(x) + A(x) = 0.



506 J. Wolkerstorfer

3.5 Multiplication in GF (2m)

Multiplication in GF (2m) calculates the product of two polynomials and applies
modular reduction. Although, polynomial multiplication is completely different
from integer multiplication, the resulting algorithm for multiplication in GF (2m)
is very similar to Algorithm 1 for multiplication in GF (p). This property allows
building an efficient unified multiplier that supports both fields.

Multiplication in GF (2m) can also use the double-and-add approach used
for multiplication in GF (p) which accumulates partial products as shown in (6).
Partial products have to be aligned to the intermediate result which is indicated
in (6) by a multiplication by xi. Multiplication by xi can easily be computed by
shifting the binary representation of the partial product i positions to the left.

A(x) · B(x) = A(x) ·
(

m−1∑

i=0

bix
i

)
=

m−1∑

i=0

(
A(x)bi

) · xi (6)

A modular reduction step after the polynomial multiplication assures that
the result is an element of GF (2m) with an degree less than m. Alternatively,
the reduction can be done during the accumulation of partial products as shown
in Algorithm 3.

Algorithm 3 Multiplication in GF (2m) with interleaved modular reduction
Input: A(x), B(x) ∈ GF (2m), irreducible polynomial P (x) of degree m
Output: C(x) = A(x) · B(x) mod P (x)
1: C(x) ⇐ 0
2: for i = m − 1 to 0 do
3: C(x) ⇐ C(x) · x + A(x)bi

4: C(x) ⇐ C(x) + cmP (x)
5: end for
6: return C(x)

The modular reduction A(x) mod P (x) in GF (2m) is done modulo an irre-
ducible polynomial P (x). This operation calculates in principle the remainder
of the polynomial division A(x)/P (x). Efficient implementations avoid division
by iterated subtraction of the product P (x) · xi. During bitserial multiplication
with interleaved modular reduction the intermediate result C(x) can not have
higher degree than m. Thus, modular reduction is only necessary when C(x) has
degree m. This condition is indicated by cm = 1.

3.6 Squaring in GF (2m)

In contrast to GF (p), squaring in GF (2m) has lower complexity than multi-
plication. One reason for this is, that A(x)2 mod P (x) is a linear operation in
GF (2m). Based on this observation one could square efficiently by calculating
A(x)2 =

∑m−1
i=0 aix

2i. A subsequent modular reduction will yield the desired
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result. This method is used in software implementations like [14]. Hardware im-
plementations can exploit this feature when the extension degree m and the
irreducible polynomial P (x) are fixed.

3.7 Inversion in GF (2m)

The inverse of an element A(x) ∈ GF (2m) can be calculated by the exponen-
tiation A(x)2

m−2 mod P (x) or by the Extended Euclidean Algorithm for poly-
nomials (EEA). An improvement of the EEA algorithm is the Modified Almost
Inverse Algorithm presented in [14]. Algorithm 4 is a slightly modified version
of this. Almost all calculations of the algorithm operate on polynomials but
comparisons of polynomials are replaced by integer subtractions and sign test-
ing to avoid additional circuitry in a hardware implementation. In Algorithm 4,
polynomials are multiplied by x−1 which is a simple shift-right operation.

Algorithm 4 Inversion in GF (2m): Modified Almost Inverse Algorithm
Input: 0 �= A(x) ∈ GF (2m), irreducible polynomial P (x) of degree m
Output: A(x)−1 mod P (x)
1: Y (x) ⇐ A(x), D(x) ⇐ P (x), B(x) ⇐ 0, X(x) ⇐ 1
2: loop
3: while y0 = 0 do
4: Y (x) ⇐ Y (x) · x−1, X(x) ⇐ (X(x) + x0P (x)) · x−1

5: end while
6: if not (1 − Y < 0) then {comparison Y (x) = 1 by integer subtraction}
7: return X(x)
8: end if
9: if Y − D < 0 then {comparison deg Y (x) < deg D(x) by integer subtraction}

10: Y (x) ⇐ Y (x) + D(x), X(x) ⇐ X(x) + B(x)
11: D(x) ⇐ D(x) + Y (x), B(x) ⇐ B(x) + X(x)
12: else
13: Y (x) ⇐ Y (x) + D(x), X(x) ⇐ X(x) + B(x)
14: end if
15: end loop

4 Architecture

The Elliptic Curve Digital Signature Algorithm (ECDSA) [8] is the target appli-
cation of the dual-field arithmetic unit. The desired functionality of the unit can
be clearly derived from this application. Off course, multiplications in GF (p)
and GF (2m) are the most important functions, but addition and subtraction
are required too. In order to calculate the inverse, it is necessary to increment
integers, to check whether integer values are negative, and to shift values one
position to the left or to the right. Operations like holding the result or clearing
the result are obviously useful. The required operations can be summarized in
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the following categories: integer arithmetic, modular integer arithmetic, modular
polynomial arithmetic, and comparisons.

Functionality is one important aspect of a hardware module. Other quality
aspects of a circuit are its size, its speed, and its energy consumption. These
factors cannot be optimized independently because they influence each other.
Energy efficiency was a prime objective in the design of the arithmetic unit,
so the unit was not optimized for lowest gate-count or for a high degree of
parallelism. High throughput is achieved by keeping the critical path short to
enable operation at high clock frequencies. The architecture is scalable for the
maximum bitlength of integers respectively polynomials. Adjusting the bitlength
to the requirements of the application (e.g. 192-bit) keeps the gate-count low. It
is possible to process smaller integers/polynomials by pre-shifting them in order
to align them to the physical dimension of the unit.

A

SUM CARRY

PPG

MODRED

C

SHIFT SHIFT

CSAsS SC

CSAsS sC

C
SA FA FA FA c

in

cout

a0
b0 c0a1

b1 c1an-1
bn-1cn-1

sc0ss0sc0ss0scn-1ssn-1

Fig. 1. Architecture of the dual-field arithmetic unit

Figure 1 shows the architecture of the dual-field arithmetic unit. The unit has
three major components: a partial-product generator (PPG), a modular reduc-
tion unit (MODRED), and a shift unit (SHIFT). During bitserial multiplication,
which is done in the MSB-first scheme at full precision, the PPG masks the input
A with the actual multiplier bit bi to generate the partial product A · bi. The
partial product is generated the same way for GF (p) and for GF (2m). Note,
that the circuit which serializes the multiplier B is left out in the Figure 1. An
adder (CSA) accumulates the partial product to the intermediate result stored
in the registers SUM and CARRY. Prior to this addition the intermediate result
is shifted by the Shift unit one position to the left to align the last accumulation
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result. The MODRED unit inserts a modular reduction step by subtracting q̂ · p
in case of GF (p)-operation or q · P (x) in case of GF (2m)-operation. A datapath
cycle is finished when the new intermediate result is stored in the registers SUM
and CARRY.

The arithmetic unit uses Carry-Save Adders (CSA) to eliminate carry-propa-
gation delay during GF (p)-operation. Carry propagation in conventional adders
would cause significant delay. CS-adders prevent this by a redundant representa-
tion of the output sum. The redundant sum consists of two integers SS and SC ,
which are stored in the registers SUM and CARRY. The number of storage bits
used for this is twice the amount to store the sum in a binary representation. The
additional hardware resources are justifiable because they allow to add integers
of arbitrary length in constant time. Carry-save adders are based on Formula (7)
and are implemented with conventional full-adder cells. The delay of an adder
of arbitrary width is equal to the delay of a single full-adder cell.

A + B + C = CSA(A, B, C) = SS + 2SC (7)
with sSi = ai xor bi xor ci and sCi = aibi or aici or bici

Carries are only required for addition in GF (p). Addition in GF (2m) does
not use them because polynomials are added coefficient-wise with the Boolean
XOR-function. The XOR-function is a sub-function of an CS-adder as Formula
(7) reveals: Keeping input C = 0, makes the sum-component SS = A xor B. The
carry-component will be SC = A and B in this case. This property of carry-save
adders is used to configure the arithmetic unit for GF (2m)-operation. By forcing
the carry-output of both CS-adders to zero, all carries are eliminated and in turn
the CS-adders will have the desired functionality of an n-bit XOR-gate.

The input and the output of the dual-field arithmetic unit is restricted to
binary n-bit values (input A, output C). Therefore, it is necessary to convert
integers stored internally in a redundant representation into their binary repre-
sentation before output. The conversion of a redundant number into a binary
number requires addition with carry propagation. Usually, such a conversion is
done with a carry-propagation adder implicating the performance problems men-
tioned above. Carry-save adders offer another possibility to do the conversion.
The observation that the result of an repeated carry-save addition of an redun-
dant number (S = SS + 2SC) and zero is the binary number S after log2 log2 S
iterations on average, leads to Algorithm 5. Addition, subtraction and multi-
plication in GF (p) require this conversion before output. Both CS-adders of
the arithmetic unit can be used to execute this operation. Hence, the expected
running time of an n-bit architecture is halved to 0.5 log2 n cycles. During con-
version, the PPG and MODRED unit have to output 0 in order to keep the third
CSA input 0. Conversion is finished when SC = 0. An n-bit NOR-gate reports
this condition.

The MODRED unit calculates the correction term for the interleaved mod-
ular reduction. It has different functionality for GF (p) and GF (2m)-operations.
During GF (2m)-operations, the functionality of MODRED is simple. Whenever
the most-significant bit sSm of the intermediate result SS is set, MODRED has to
output the irreducible polynomial P (x), otherwise 0. The subsequent CS-adder
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Algorithm 5 Redundant-to-binary conversion with carry-save adders
Input: redundant number S = (SS + 2SC)
Output: binary number S

1: while SC �= 0 do
2: (SS , SC) ⇐ CSA(0, SS , 2SC)
3: end while
4: return SS

will execute the reduction by adding the correction term: SS mod sSmP (x)=
SS mod P (x). The reduction works for arbitrary irreducible polynomials and is
not restricted to a special kind of polynomials like trinomials or pentanomials.

Modular reduction by a prime integer is more complicated. The quotient
is estimated and causes a non-perfect reduction. The intermediate result can
exceed the bitlength of the modulus n = �log2 p�. Therefore, the datapath
is chosen to be n + 2 bits wide. The quotient estimation works as follows:
first the magnitude of the intermediate result is estimated by adding the three
highest bits of the redundant intermediate result with carry propagation Ŝ =
(sSn+1, sSn, sSn−1)+(sCn+1, sCn, sCn−1). Then the quotient q̂ ∈ {−2,−1, 0, 1, 2}
is determined by table-lookup. The table entries are chosen such that the de-
sired result of the reduction is in the range [0,−(p − 1)]. As a consequence of
this reduction algorithm the reduced intermediate result S − q̂ · p is usually neg-
ative and hence the datapath must be capable to handle signed numbers. This
reduction scheme works for arbitrary moduli p and is not restricted to gener-
alized Mersenne primes. To ensure that the final result of an operation is fully
reduced—or in other words is ∈ [0, p − 1]—, the modulus p may have to be
added up to two times until the result is positive. Positive results are indicated
by a cleared sign bit of SS and SC = 0. The sign bit is also used for integer
comparison, which are based on integer subtractions.

Signed numbers enable the calculation of subtractions. The arithmetic unit
can calculate a subtraction A − B by loading A in one cycle and adding −B in
the next cycle. −B is calculated by the PPG and a CSA: The PPG generates
the one’s-complement B̄ of B where b̄i = not bi by inverting all bits. The CSA
can turn B̄ into the two’s-complement −B by incrementation. Incrementation
is simply achieved by setting the lowest carry bit sC0 = 1 that is usually 0.

Shift operations are executed in the SHIFT unit. The SHIFT unit can output
either 0, its input I, I shift-left 1, or I shift-right 1.

5 Results

The different functionalities of all datapath components can be combined into
useful instructions of the whole arithmetic unit. The evolving instructions can be
summarized in four categories: load operations, shift operations, addition, and
multiplication. Load operations can either load the constants 0, 1 or the values
A, Ā, or −A. The shift operations can shift the stored value one position to the
left or to the right. In the addition category are the operations XOR, integer



Dual-Field Arithmetic Unit for GF (p) and GF (2m) 511

addition, integer subtraction, incrementation, and integer addition/subtraction
with modular reduction.

All the operations listed so far can be executed in one clock cycle. Multipli-
cation takes exactly n clock cycles and can calculate the product of two integers
smaller than 2n/2, or the product of two integers modulo p, or the product of
two polynomials mod P (x).

When the datapath is configured for GF (p)-operation and the MODRED
unit is inactive, the hold operation will convert redundant results into their
binary representation. On average, 192-bit numbers will be converted in 3.8
cycles, 224-bit numbers in 3.9 cycles, and 256-bit numbers in 4.0 cycles. Control
flags indicate whether the result is binary or it is negative. They are always
evaluated and are reused for comparisons.

Inversion is a compound operation that has to be controlled from outside.
Table 1 lists the estimated number of clock cycles for Algorithm 2 and Algorithm
4. These algorithms are about four times faster than calculating the inverse
by exponentiation. The clock-cycle ratio of inversion to multiplication is about
70 for GF (p) and 70 for GF (2m). This gives reason to avoid inversion when
possible and advises to use projective coordinates when implementing elliptic
curve cryptography. Table 1 also lists expected running times for a elliptic-curve
scalar-multiplication using projective coordinates. All estimates are conservative
and include the transformation to affine coordinates.

Table 1. Estimited cycles for inversion and ECC scalar multiplication

GF (p) INV (Alg. 2) ECC proj.
[cycles] [cycles]

192-bit 14,000 720,000
224-bit 16,500 900,000
256-bit 19,400 1,150,000

GF (2m) INV (Alg 4) ECC proj.
[cycles] [cycles]

163-bit 11,000 490,000
233-bit 16,200 905,000
283-bit 20,700 1,405,000

The dual-field arithmetic unit requires only a few hardware resources. Four
n+2-bit register are needed to store the modulus, the multiplier, and the result in
redundant representation. The two SHIFT units can be implemented with 2n+4
4-to-1 multiplexers. The PPG unit is built of n + 2 AND-gates and the same
amount of XOR-gates. The MODRED unit has the same complexity as PPG plus
n + 2 2-to-1 multiplexers. Two instances of CS-adders require 2n + 4 full-adder
cells and 2n + 4 AND-gates which eliminate carries during GF (2m)-operation.
Table 2 lists the gate count for different bitlengths and gives a rough estimation of
the area requirements of a standard-cell implementation on the 0.35 µm CMOS
process from Austriamicrosystems. The arithmetic unit is also well suited for a
full-custom implementation. The regular part of the datapath is composed of
only half a dozen of different gates. It should be of no difficulty to find a bitslice
architecture for that part and to design leaf-cells for the gates in an appropriate
logic style in order to obtain a sound full-custom layout. The datapath does not
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need sophisticated control because most instructions are executed in a single
cycle. Only multiplication consumes more cycles. The control unit for bitserial
multiplication can be used both for GF (p) and for GF (2m)-operation because
the same double-and-add algorithm in the MSB-first scheme is used.

Table 2. Gate count and estimated area on a 0.35 µm CMOS process

Size AND XOR MUX2 MUX4 FA REG area on 0,35 µm

163-bit 660 330 165 330 330 660 0.57 mm2

224-bit 904 452 226 452 452 904 0.78 mm2

283-bit 1140 570 285 570 570 1140 0.99 mm2

Most of the design decisions for the dual-field arithmetic unit were guided
by low-power considerations. Especially, the design on the algorithmic level and
the architectural level of a digital circuit offer promising options to save power
[9]. Contrary to low-power measures on logic level, they are difficult to estimate.
Therefore, a qualitative reasoning will be given. One design goal was to keep the
critical path short. This implicates on one hand a high clock frequency and gives
on the other hand the possibility to scale the supply voltage VDD of CMOS
circuits. Lowering VDD is an effective technique to save power as it contributes
quadratically to the dynamic power consumption [9]. A lowered supply voltage
will also slow down the circuit: VDD can be decreased until the critical path delay
reaches the clock period. Short critical paths have another advantage for low-
power circuit design: The probability of undesired signal transitions (glitches) is
lowered. Glitches will occur more frequently when the combinational logic-depth
is high. To ensure a short critical path of the arithmetic unit, CS-adders were
chosen. The critical path spans the partial product generator PPG, the modular
reduction unit MODRED and two CS-adders.

A low-power driven design decision on the architectural level is the modular
reduction unit MODRED. From the functional point of view, it would be pos-
sible to omit the MODRED unit and to cover its functionality by an enlarged
partial product generator PPG. Thereby, a former single-cycle operation with an
interleaved modular reduction would require two clock cycles: One cycle for the
operation itself and one for the modular reduction step. This would certainly in-
crease the energy-delay product. Furthermore, such an architecture would have
negative impact on the signal activity of the input A of the arithmetic unit:
During multiplication, this bus would always change between the multiplicand
A and the modulus p or P (x). The insertion of an extra MODRED trades in-
creased area-demands for lower power-consumption and helps to avoid wasteful
signal activity.
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6 Conclusion

In this article we presented a dual-field arithmetic unit that offers all instructions
to implement the elliptic curve digital signature standard over prime fields GF (p)
and binary extension fields GF (2m). Therefore, the unit can calculate shift-
operations, increments, and comparisons besides addition and multiplication.
These operations enable to calculate the inverse with the extended Euclidean
algorithm.

A design objective for the unit was energy efficiency, which yielded a low-
power architecture that can be realized on moderate silicon area. The unit re-
quires only little more hardware resources than a mere GF (p)-multiplier. The
GF (2m)-functionality and some other useful operations come at almost no ad-
ditional cost. The use of carry-save adders guarantees a short critical path that
allows operation at high clock frequencies—independent of the chosen datapath
precision. The simplicity of the architecture with its inherent regularity and its
limited number of leaf cells makes it well suited for a full-custom implementation.
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