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Abstract. Our development of efficient methods for the precompu-
tation of multi-scalar multiplication for elliptic curve cryptosystems
(ECCs) is presented. Multi-scalar multiplication is required in many
forms of ECC, including schemes for the verification of ECDSA
signatures. The simultaneous method is one known method for fast
multi-scalar multiplication. The method has two stages: a precomputa-
tion stage and an evaluation stage. Points for use in the evaluation stage
are computed in the precomputation stage. The actual multi-scalar
multiplication is carried out on the basis of the precomputed points
in the evaluation stage. In the evaluation stage of the simultaneous
method, we are able to quickly compute the points of the multi-scalar
multiple because few additions are required. On the other hand, if we
use a large window width, we have to compute an enormous number
of points in the precomputation stage. Hence, we have to compute an
abundance of inversions, which carries a high computational cost. The
result is that a large amount of time is required by the precomputation
stage. This is the well-known draw-back of the simultaneous method.
In our proposed method, we apply the Montgomery trick to reduce the
number of inversions required with a width window w from O(2?*)
to O(w). In addition, our proposed method computes uP and vQ@ for
any u,v, then compute uP + vQ, where P,Q are elliptic points. This
procedure enables us to remove points that will not be used later
from the process of precomputation. Without our proposed method,
an algorithm to compute precomputation table would have to be
changed dependently on unused points. Compared with the method
without Montgomery trick, our proposed method is 3.6 times faster
than the conventional simultaneous method, i.e., than in the absence
of the Montgomery trick. Moreover, the optimal window width for our
proposed method is 3, whereas the corresponding width for conventional
simultaneous methods is 2.
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1 Introduction

During the world-wide deployment of the electronic-signature law, the infrastruc-
ture for digital signatures is spreading. To support the expected rapid growth
in the scale of electronic commerce, efficient implementation of public key cryp-
tosystems such as digital signatures is becoming more and more important. Sev-
eral digital signature schemes have been developed, studied, and to some extent,
applied; these include RSA [RSAT8] and DSA [DSA] schemes. The ECDSA signa-
ture scheme [ANSITEEEp1363/SEC-1], which is based on elliptic curve cryptog-
raphy [Kob87IMil86], is particularly noteworthy, because it provides high levels
of security with short keys. In this article, we will propose an elliptic multi-
scalar multiplication method that includes an efficient form of precomputation.
This method provides a faster way to carry out the multi-scalar multiplication
that is required in such elliptic curve cryptosystems as the signature verification
procedure of an ECDSA signature scheme.

1.1 Elliptic Curve Operations

Some elliptic curve cryptosystems such as signature generation of ECDSA sig-
nature scheme need operations of scalar multiplication. In many cases, scalar
multiplication is dominant in the overall time taken in computation. Several
methods for the fast computation of scalar multiplication have been proposed;
these include methods base on the use of more efficient coordinate systems (such
as projective coordinates [CC87] and Jacobian coordinates [CC87TJCMO9S]), on
the use of precomputation tables (such as the window method [KnufT] and
comb method [LI94]), on the subtraction of points (such as NAF [MO90]),
and on the non-use of the y-coordinate (such as the Montgomery-form elliptic
curve [Mon8&7]), and others.

On the other hand, verifying an ECDSA signature requires an operation in
which the point kP+I1Q is computed from the elliptic points P, ) and the integers
k,l. This operation is referred to as multi-scalar multiplication. While two rounds
of scalar multiplication are conventionally used to obtain kP and [Q, certain
methods operate by the direct computation of the multi-scalar multiple, i.e., by
the simultaneous computation of kP + IQ. The simultaneous method [Elg85]
HHMOO/BHLMOT] and interleaving exponentiation [Mal01] are two examples of
methods that operate in this way.

Multi-scalar multiplication has other applications. A method of scalar mul-
tiplication in which endomorphisms [GLV(T] are applied for faster computation
has recently been proposed. This method requires multi-scalar multiplication.
Thus, fast methods of multi-scalar multiplication are desirable for use in elliptic
curve cryptosystems.

1.2 Owur Contributions

We propose a simultaneous method of multi-scalar multiplication in which Mont-
gomery trick [Coh93] is applied to obtain an efficient form of precomputation.



566 K. Okeya and K. Sakurai

A simultaneous method for calculating multi-scalar multiple consists of two
stages: a stage of precomputation and a stage of evaluation [Mol01]. Points for
use in multi-scalar multiplication in the evaluation stage are computed in the
precomputation stage. The additions calculated in the precomputation stage
are in affine coordinates, since the points have to be in this form for the fast
computation of elliptic addition in the evaluation stage. However, each addition
of points in affine coordinates requires a finite field operation of inversion, and
inversion carries a high computational cost. In particular, a given increase in
the number of points to be precomputed leads to a much greater increase in the
computational cost of precomputation.

The main contribution of our method is that Montgomery trick is used in
the precomputation of additions of points in affine coordinates. Montgomery
trick [Coh93| provides a way of inverting n elements of a finite field with a single
inversion operation and 3(n — 1) multiplications rather than with n inversion
operations. A further advantage of Montgomery trick is that no more memory is
consumed in computation than with the straightforward method. Montgomery
trick thus reduces the number of inversion operations required in plural additions
of points in affine coordinates, while taking up no more memory. This reduction
allows us to compute O(w) inversions instead of O(22%) inversions for a window
width w. As a result, precomputation according to our proposed method is 3.6
times faster than with an otherwise equivalent method in which Montgomery
trick is not applied.

Another known example of the use of Montgomery trick in fast compu-
tation is in precomputation for elliptic scalar multiplication by the window
method [CMO98|. While uP is computed in precomputation for scalar multi-
plication, uP +v(@ is precomputed in multi-scalar multiplication, so the relation
between the procedures of computation is complicated. This is particularly, in
cases where some pairs (u,v) need not be computed and in the case of NAF
(Non Adjacent Form) pairs (+u,£v). In our proposed method, uP and vQ are
computed first, and this is followed by the computation of uP + v@. Following
this procedure simplifies the relation between the procedures of computation.

This simplification adds a further improvement to that which we obtain by
using Montgomery trick. As the window width is increased, increasingly large
numbers of precomputed points go unused in the evaluation stage. We eliminate
the computation of such points in the precomputation stage. The simplification
allows us to discard such points without modifying the procedure of computa-
tion for the remainder of the points of precomputation. Without our proposed
method, the algorithm for computing the precomputation table would have to
be changed according to the unused points. Eliminating the computation of the
unused points achieves further speedup and further reduces the consumption of
memory. The respective effects are estimated as a 20% speedup and a reduction
of about ten points in the precomputation stage for the simultaneous sliding
window NAF method with a window width w of 3 and 160-bit scalars. More-
over, the optimum window width for our proposed method is 3, whereas the
corresponding width for conventional simultaneous methods is 2.
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As well as the simultaneous sliding window NAF method, our proposed
method is adaptable to simultaneous methods in general, including the NAF
method [AkiO1], the interleaving exponentiation method [M6l01], and so on.

The remainder of this article is organized as follows: Section 2 explains multi-
scalar multiplication. Section 3 is a review of conventional simultaneous methods
of scalar multiplication. Section 4 outlines the efficient method of precomputa-
tion in which Montgomery trick is applied. Section 5 gives a comparison of the
method and conventional methods in terms of computational cost. We confirm
that the proposed method is faster than an otherwise equivalent method in which
Montgomery trick is not applied.

2  Multi-scalar Multiplication

Let P and @ be elliptic points, and k and [ be integers. In multi-scalar multipli-
cation, an elliptic point kP +1(Q is computed from points P and @) and integers k
and [. Multi-scalar multiplication is widely used in such elliptic curve cryptosys-
tems as the procedure for signature verification in the ECDSA signature [ANSI]
[EEEpI363SEC-1], and EC-MQV [IEEEp1363JSEC-T] schemes. Furthermore,
multi-scalar multiplication has other applications. Recently, a method of scalar
multiplication [GLVO0I] in which endomorphisms are used for fast computation
has been proposed. This method of scalar multiplication involves multi-scalar
multiplication. In most cases where multi-scalar multiplication is applied, the
process is dominant in determining the overall computational cost.

Methods for the computation of multi-scalar multiples can be classified into
two types. In methods of one type, independent computation of the scalar multi-
ples kP and [Q is followed by addition (kP)+ (IQ). In methods of the other type,
the multi-scalar multiple kP + IQ is computed in one stage, without separate
computation of kP and Q). An example of the former type is a method in which
kP is computed by a comb method [LLI4] and IQ is computed by a window
method; these steps are followed by computation of kP + Q. This approach has
been applied in the signature verification process of the ECDSA, where we can
assume that the point P is fixed; we can thus use a fixed-base comb method to
compute kP and a window method to compute [(), then compute the addition
of the two. Examples of the latter type are examples of simultaneous methods.
This article is mainly concerned with such examples.

3 Simultaneous Scalar Multiplication

A simultaneous method for scalar multiplication has two stages; one of precom-
putation and the other of evaluation. All of the elliptic points which will be
required in the evaluation stage are computed and stored in a table during the
precomputation stage. In the evaluation stage, the multi-scalar multiplied point
is computed by using the table which was prepared in the precomputation stage.

Concrete algorithms for the precomputation stage of conventional simulta-
neous methods of scalar multiplication are often omitted; for example, this step
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will be given as “Compute points of precomputation”. In the remainder of this
section, we describe some actual algorithms for the precomputation stage and
review simultaneous methods of scalar multiplication.

Hereafter, we assume that p is a prime and F,, is the prime field of character-
istic p, and we limit our discussion to those elliptic curves which are defined over
the finite field F;,. The argument applies to all elliptic curves defined over finite
fields of characteristic 2 and those over optimal extension fields (OEF) [BP9S].
In that case, while our proposed method may be fast, it is unfortunately, not
particularly fast. This is because there are fast methods for inversion in such
fields [HHMOOIBP99]. For further details on elliptic curve cryptography, see
[BSSI9Eng99/Men93]Silsa) .

We choose the simultaneous sliding window NAF method from among the
simultaneous methods, and now explain this method. However, the method
we propose below is adaptable to the other simultaneous methods. The NAF
and sliding window tricks are applied in the simultaneous sliding window NAF
method. The original simultaneous method is known as Shamir’s trick [Elg85]
HHMOOIBHLMOT]. We assume that w > 2 applies to the window width w in the
simultaneous sliding window NAF method.

Precomputation Stage. In the precomputation stage of the simultaneous
sliding window NAF method, we compute elliptic points uP + v@ for all u,v €

[—f(w), f(w)] such that u #0 (mod 2) or v #0 (mod 2), where f(w) is the

integer which is given by f(w) = %. Here, the condition u # 0

(mod 2) or v # 0 (mod 2) is needed because the least significant bits of v and
v which are equal to 0 are not used in the evaluation stage when we apply the
sliding window technique.

The relation —R = (z, —y) holds for any elliptic point R = (,y). Thus, once
we have computed uP +vQ and —uP + v(Q, we are easily able to get the points
—uP —v@Q and uP —v(Q without significantly adding to computational costs, by
simply substituting —y for the y-coordinate y.

The formulae for the addition of points in affine coordinates are as follows:
w3 = (222 — 21 — 2, y3 = (L=2)(21 — 23) — y1, where P1 = (z1,31),
Py = (22,y2), Ps = (x3,y3) and P3 = P; + P». Hence, the addition formulae
require an inversion, (z2 —z1)~'. Since the points uP and —uP have the same x-
coordinates, the inverse of the addition uP+v( is the same as that of —uP+vQ).

Algorithm 1 : The precomputation stage in the simultaneous sliding window
NAF method

INPUT : Elliptic points P and @) and the window width w

OUTPUT : The precomputation table {uP +vQ|u,v € [—f(w), f(w)] s.t. u #
0 (mod2)orv#0 (mod?2)}

1. for u =2 to f(w) do
1.1. uP+ (u—1)P+ P.

2. for u =1 to f(w) do
2.1. —uP < —(uP).

3. for v =2 to f(w) do
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3.1 vQ + (v—1)Q + Q.
4. PreComp = {(u,v) € [1,f(w)] x [1,f(w)]lu # 0 (mod 2)orv # 0
(mod 2)}.
5. for any (u,v) € PreComp do
5.1. uP 4+ vQ + (uP) + (vQ), —uP + vQ < (—uP) + (vQ).
6. for v =1 to f(w) do
6.1. —vQ + —(vQ).
7. for any (u,v) € PreComp do
71. —uP —vQ <+ —(uP +vQ), uP —vQ + —(—uP +vQ).

Evaluation Stage. In the evaluation stage, we use the table prepared in the
stage to compute the multi-scalar multiple kP + [Q.

Algorithm 2 : The evaluation stage in the simultaneous sliding window NAF
method

INPUT : ¢-bit integers k& and I, elliptic points P and (), the window width
w, and a precomputation table {uP + vQ|u,v € [—f(w), f(w)] s.t. w # 0
(mod 2) or v #0 (mod 2)}

OUTPUT : The multi-scalar multiple kP + 1Q

1. Write k = (kt—1, kt—2,- -+, ko) and I = (Iz_1,lt—2, - -,lp), where each k; and
l; is an NAF bit.
2. R+ 0,i+t—1
3. while ¢ > 0 do
31.ifk;=0,1; =0then R+ 2R, i+ i—1
else do
3.1.1 j + max{i —w+ 1,0}.
3.1.2 while k‘j = O, lj =0do
3121 j«+j+1.
3.1.3 k' + (ki, ki—l; HRIN ]Cj), U+ (li, li—la te, lj)
314 R+ 2 R+ (K P +1'Q).
315 i+ j—1.
4. Output R.

For fast computation, the precomputation stage uses the addition formulae
of A <+ A+ A and the doubling formulae of A <~ A, and the evaluation stage
uses the addition formulae of J™ < J + A, the doubling formulae of J <«
J™ for doubling prior to addition, and the doubling formulae of J™ « J™
for doubling prior to doubling, where A, J and J"* indicate affine coordinates,
Jacobian coordinates, and modified Jacobian coordinates [CMO98|, respectively.

Other examples of simultaneous methods of scalar multiplication are the
interleaving exponentiation method [Maol01] and the method of simultaneous
scalar multiplication [AkiOI] on a Montgomery-form elliptic curve [Mon87].
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4 Proposed Precomputation Stage

We explain our proposed method in this section, that is, the method of compu-
tation for use in the precomputation stage in which Montgomery trick is applied
to obtain efficiency. Our proposed method reduces the number of inversions re-
quired and thus provides a quick way of preparing the precomputation table.

Given a window width of w, precomputation for a simultaneous method
requires the computation of O(2%%). Thus, a large window width requires the
computation of an enormous number of points. Moreover, the computation of
points in affine coordinated] requires the computation of inversion, which carries
a high computational cost. Therefore, we have to reduce the number of inversion
operations to obtain faster computation in the precomputation stage.

For faster computation in our proposed method, Montgomery trick is applied
in computing plural inverses with a single inversion operation rather than with
plural inversion operations. Montgomery trick has been applied for fast com-
putation in, for example, precomputation for elliptic scalar multiplication with
the window method [CMO98|. While precomputation for scalar multiplication is
required to provide {uP|u € [0,2" — 1]}, precomputation for multi-scalar mul-
tiplication is required to provide {uP + vQ|u,v € [0,2% — 1]}. In the case of
scalar multiplication, u is the only variable we need to consider, so we compute
{2P},{3P,4P},{5P,6P,7TP,8P}, - - -. However, we have two variables in the case
of multi-scalar multiplication, namely u and v, so the relation between proce-
dures of computation is complicated. This is particular so in cases where some
pairs (u,v) need not be computed and in cases of NAF pairs (+u, +v). This is
because the flow of the algorithm used to compute the precomputation table may
have to change according to the presence of such unused points. In our proposed
method, {uP|u € [0,2" — 1]} and {vQv € [0,2¥ — 1]} are computed first, and
these are followed by computation of {uP 4+ vQ|(u,v) € [1,2% —1] x [1,2* —1]}.
This procedure simplifies the relation between procedures of computation.

In the rest of this section, after reviewing Montgomery trick, we go on to
describe our proposed method of precomputation in which we apply the trick.

4.1 Montgomery Trick

Given n elements a1, a9, -, a, from a finite field F),, Montgomery trick? may
be used to compute their inverses by, ba, - - -, by, in the following way [Coh93]:

Algorithm 3 : Montgomery trick
INPUT : ay,as,---,an
OUTPUT : Inverses by,by,---,b, of ay,a0, -+, an,

1 If the precomputation table is not represented in affine coordinates, computation of
the multi-scalar multiples in the evaluation stage will be slow.

2 The algorithm of Montgomery trick which is given in [Coh93] is for integer fac-
torization. We have modified algorithm 3 for use as the precomputation stage of
simultaneous scalar multiplication by removing the part that carries out integer
factorization.
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1. ¢1 < aq.

2. for ¢ =2 ton do
2.1. ¢; < c;—1a;.

3. u< ¢t

4. for i = n down to 2 do
4.1. bz <— Ci—1U.
4.2. u + ua;.

5. b1 — Uu.

The computational cost of Montgomery trick is 3(n —1)M + I, where M and
I respectively denote operations of multiplication and inversion in F,,.

Lemma 1. For n elements, we apply Montgomery trick m times, and compute
n inverses. The computational cost of this is then 3(n — m)M + mlI.

Proof. Assume that we separate n into ny + ns + - - - + n,,. The computational
cost is then

Z(3(nj—1)M+I): 3anM —3mM +ml
j=1 j=1
=3(n—m)M + ml.

Remark 1. Lemma 1 shows that dividing n elements into m groups and applying
Montgomery trick to each group leads to a computational cost of 3(n —m)M +
ml, which is independent of the division into m groups. This implies that the
computational cost of the precomputation stage is solely dependent on number
of times Montgomery trick is applied in the precomputation stage.

4.2 Simultaneous Sliding Window NAF Method

We describe a fast algorithm, in which Montgomery trick is applied, for the
precomputation stage of the simultaneous sliding window NAF method. For a
point R, xr and ygr respectively denote the x- and y-coordinates.

Algorithm 4 : Applying Montgomery trick in a precomputation stage for the
simultaneous sliding window NAF method

INPUT : Elliptic points P and @ and window width w

OUTPUT : The precomputation table {uP + vQ|u,v € [— f(w), f(w)] s.t. u #
0 (mod2)orv#0 (mod2)}

1. fori=1tow—1do
1.1. Compute points 20~ 1P + jP,2171Q + jQ for any j € [1,2'71]:
1.1.1 Use Montgomery trick to compute inverses of (x;jp — x9i-1p), (z;g —
T9i-1Q), (2y2i-1p) and (2ygi-1¢) for any j € [1,2°71 —1].



572 K. Okeya and K. Sakurai

1.1.2 Compute points (2°7! + j)P, (2"~ + 5)Q using (zjp — Tyi-1p) 7!,
(.TjQ — (1’,‘27;71(2)_17 <2y2i—lp)_1 and (2:{]21'71@)_1.
2. Compute points 2°~1P + jP,2*~1Q + jQ for any j € [1, f(w) — 2¥~1]:
2.1. Use Montgomery trick to compute inverses of (z;p — Zow-1p), (z;0 —
Tow-1g) for any j € [1, f(w) —2*~1].
2.2. Compute points (291 +4) P, (2¥~1 +5)Q using (;p —Tyw-1p) 1, (20—
Jfgwle)*l.
3. for u=1to f(w) do
3.1. —uP < —(uP).
4. PreComp = {(u,v) € [1,f(w)] x [1,f(w)]lu # 0 (mod2)orv # 0
(mod 2)}.
5. Compute points uP + vQ, —uP + vQ for any (u,v) € PreComp:
5.1. Use Montgomery trick to compute inverses of (2,9 —x,p) for any (u,v) €
PreComp.
5.2. Compute points uP + vQ,—uP + vQ using (zyg — Tup) L.
6. for v =1 to f(w) do
6.1. —v@Q + —(vQ).
7. for any (u,v) € PreComp do
7.1. —uP —vQ + —(uP +vQ), uP — vQ + —(—uP +vQ).

Remark 2. The use of a coordinate system other than affine coordinates leads
to greatly increased computational costs. This is because the computational
cost of the precomputation stage with affine coordinates is 5M + S per point
due to the application of Montgomery trick, whereas the equivalent cost with
Jacobian coordinates (J < J + A) is 8M + 35S per point; the former approach
thus provides a faster way to compute elliptic addition, where S denotes an
operation of squaring in Fy,.

4.3 Further Improvement: Reducing the Number of Points in
Precomputation

We now propose a further improvement to the precomputation stage. As was
mentioned above, while a larger window width requires the computation of larger
numbers of points in precomputation, it also leads to fewer additions in the eval-
uation stage. Hence, a relatively large window width requires the precomputation
of points which are not actually used in the evaluation stage. For example, in the
case of the simultaneous method with a window width w of 3, while 63 points
are precomputed, only 46 additions are computed, on average in the evaluation
stage for 160-bit scalars. Thus, about 17 points are unnecessarily precomputed.
Therefore, we thus use a trick to avoid the precomputation of points that will
not actually be used. This provides us with a further increase in speed along
with reduced memory consumption, since fewer points have to be stored. For
the simultaneous sliding window NAF method with a window width w of 3 and
160-bit scalars, the effects are estimated as a 20% speedup and the elimination
of about ten points in the precomputation stage.
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Remark 3. This improvement is only achieved within the framework of our pro-
posed method. For example, improvement in this way is not applicable to the
following method. P,Q — 2P, P+Q,2Q — 3P,4P,2P+Q,3P+Q, P+2Q,2P+
2Q,3Q,P + 3Q,4Q — ---. If P+ @ is an unused point which is eliminated
from the computation, then 3P + @ is not computable in the third phase, since
(P+ Q)+ 2P is the only available way to compute 3P + (. Thus, unused points
require modification of the algorithm.

Next, we show a concrete algorithm which determines precomputation points
that are used in the evaluation stage.

Algorithm : An algorithm which determines precomputation points that are
used in the evaluation stage of the simultaneous sliding window NAF method
INPUT : ¢-bit integers k, [, a window width w.

OUTPUT : Pairs of integers (k’,1’) that are used in the evaluation stage.

1. Write k = (ky—1, kt—2,- -, ko) and | = (l;_1,li—2, - ,lp), where each k;
and [; is an NAF bit.
2. i+ t—1, num <+ 0.
3. while 7 > 0 do
3.1, ifk; =0, 1; =0 then i ¢ i — 1
else do
3.1.1 j + max{i —w+ 1,0}.
3.1.2 while k; =0, 1, = 0 do
3121 j« j+1.
313 K (ki kica, - k), UV = (L Lo, -+, ).
3.14 for j =1 to num
3.1.4.1 If T[j] = (K¥',1’) then go to Step 3.1.6.
3.1.5 num < num + 1, T[num] < (K',1’).
31.6 i j— 1.
4. Output 7.

Algorithm 4, the proposed precomputation stage, computes points u; P + v;Q
for Tj] = (u;,v;) for j =1,---,num in Step 5.

5 Computational Cost and Comparison

5.1 Precomputation Stage

Here, we start by estimating the computational cost of Algorithm 1, which is the
conventional method of precomputation. Assume that w > 1. Doubling is the
operation at both Steps 1.1 and 3.1 if w or v is equal to 2. If not, both steps are
additions. The two elliptic additions in Step 5.1 only require a single 1 inversion,
because they have a common inverse. The number of iterations of Step 5 is

2
#PreComp = f(w)? — (L@J) . That is, (2#PreComp + 2f(w) — 4) elliptic
additions and 2 elliptic doublings are computed by Algorithm 1. Meanwhile, the
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number of inversions is reduced by (#PreComp). Thus, the computational cost
is

(2#PreComp + 2f(w) —4) (2M+ S+1) + 2(2M+ 2S+1) — (#PreComp) I
= (4#PreComp + 4f(w) — 4) M + (2#PreComp + 2f(w)) S

+ (#PreComp + 2f(w) — 2) I.

~— —

In the case of w = 1, the computational cost is 4M + 25 + I.

Next, we estimate the computational cost of Algorithm 4, our proposed
method. Assume that w > 2. In our proposed method, (2#PreComp+ 2f(w) —
2w) elliptic additions and (2w — 2) elliptic doublings are computed. Meanwhile,
the number of inversions is reduced by (#PreComp) and Montgomery trick is
applied (w + 1) times in computing (#PreComp + 2f(w) — 2) inverses. Using
Lemma 1, we obtain the following results for computational cost.

(2#PreComp +2f(w) —2w)(2M + S+ 1)
+(2w —2)(2M + 25 + I) — (#PreComp)I
= (4#PreComp + 4f(w) — 4)M + (2#PreComp + 2f(w) + 2w — 4)S
+(#PreComp + 2f(w) — 2)I
— (44 PreComp + 4f(w) — 4)M + (2#PreComp + 2f(w) + 2w — 4)S
+3(#PreComp+2f(w) —2—(w+ 1) M+ (w+1)I
= (7T#PreComp + 10f(w) — 3w — 13)M
+(2#PreComp + 2f(w) + 2w — 4)S + (w+ 1)1.

2
Here, #PreComp = f(w)?— (L%J) . In the case of w = 2, the computational
cost is 256M + 105 + 21.

5.2 Evaluation Stage

AD, DA and DD respectively denote addition prior to doubling, doubling prior
to addition and doubling prior to doubling in the evaluation stage. We use the
following coordinate systems for fast computation: AD : J+A — J™ (9IM +5S),
DA:J™ — J (3M +4S5), DD : J™ — J™ (4M + 485).

The white space of (0,0) between two consecutive windows has expected
length of W( 0.8), since the probability that a NAF bit is equal to 0

. As a result, an average of ——*

w+0 8
multl-scalar multiplication. Thus, the computational costls

additions have to be computed in the

t— t—w
AD+ DA t—w— DD
w+ 0.8 ( )+ w+ 0.8
3 Since 0 and non-zero bits are not randomly distributed, we need an estimate of the
number of computations in which the bit dependence is considered. The smaller
the window width, the larger the error in the estimate. In the case of w = 2, the
computational cost for a 160-bit scalar is about 1869.5M .
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t—w

=—(AD + DA —0.2)DD
w+0.8(A + + (w 0) )
t—w

= —((4 11.2)M 4 . .
g (W + 112)M + (4w +8.2)8)

Table 1. Computational cost for point multiplication kP + IQ)

Method Precomputation |Evaluation|| Total |Points
Proposed method Stored
Simultaneous (w = 1) 28M +1 2575.8M ||2608.6M| 3
28M +1 2608.6 M
Simultaneous (w = 2) 38.0M + 131 | 2039.2M ||2467.2M| 15
68.0M + 31 2197.2M
Simultaneous (w = 3) 172.4M + 611 | 1770.9M |(|3773.3M| 63
345.0M + 41 2235.9M
Simultaneous NAF (w = 1) 5.6M + 1 2204.8M |(|2240.4M| 8
5.6M + I 2240.4M
Simultaneous NAF (w = 2) 29.6M + 61 1910.4M ||2120.0M| 24
41.6M + 21 2012.0M
Simultaneous NAF (w = 3) 164.0M + 331 | 1725.0M [|2879.0M| 120
252.6 M + 41 2097.6 M
Simul. slid. window NAF(w = 2) 24.0M + 51 1869.5M ||2043.5M| 16
33.0M + 21 1962.5M
Simul. slid. window NAF(w = 3)| 141.6M + 291 | 1626.2M |2637.8M| 96
159.2M + 4T 1905.4M | (33.6)
Interleaving (w = 4) 35.2M + 121 | 1740.3M ||2135.5M| 20
52.4M + 41 1912.7M
Interleaving (w = 5) 68.8M + 241 1642.4M ||2431.2M| 44
119.0M + 51 1911.4M

“Precomputation”, “Proposed method” and “Evaluation” indicate the computational
cost of the conventional precomputation method, our proposed method of precompu-
tation, and the evaluation stage, respectively “Total” means the overall computational
cost of the precomputation and evaluation stages. “Points Stored” means the number
of points stored in the precomputed table. This number determines the consumption
of memory. We assume that t = 160, S = 0.8M, and I = 30M, where t is the number
of bits in the input integers k and .

5.3 Comparison

Firstly, we compare the computational cost of the respective precomputation
stages. The computational cost of Algorithm 1 is 16 M 4 105+ 51 for w = 2 and
100M + 525 + 291 for w = 3, while the corresponding figures for Algorithm 4,
our proposed method, are 25M + 105 + 21 and 175M + 545 + 4JE|, respectively.

4 When we take the elimination of unused points into consideration, this computational
cost is about 159.2M 441 and the number of the points stored in the precomputation
table is about 33.6.
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Table 2. Computational cost for point multiplication kP + [Q, with P fixed

Method Precomputation |Evaluation|| Total
Proposed method

Simultaneous (w = 1) 28M +1 2575.8M ||2608.6M
28M +1 2608.6 M
Simultaneous (w = 2) 31.6M + 111 | 2039.2M ||2400.8M
58.6M + 21 2157.8M
Simultaneous (w = 3) 155.0M + 551 | 1770.9M ||3575.9M
311.6M + 31 2172.5M
Simultaneous NAF (w = 1) 5.6M +1 2204.8M ||2240.4M
5.6M + 1 2240.4M
Simultaneous NAF (w = 2) 26.0M + 51 1910.4M {|2086.4M
35.0M + 21 2005.4M
Simultaneous NAF (w = 3) 152.0M + 29I | 1725.0M ||2747.0M
230.0M + 31 2045.0M
Simul. slid. window NAF(w = 2)| 20.4M + 41 1869.5M {|12009.9M
26.4M + 21 1955.9M
Simul. slid. window NAF(w = 3)| 129.6M + 25 | 1626.2M ||2505.8 M
137.4M + 31 1853.6 M
Interleaving (w = 4) 14.8M + 51 1740.3M ||1905.1M
31.0M + 41 1891.3M
Interleaving (w = 5) 31.6M + 111 | 1642.4M ||2004.0M
63.6M + 51 1856.0M

“Precomputation”, “Proposed method” and “Evaluation” indicate the computational
cost of the conventional precomputation method, our proposed method of precompu-
tation, and the evaluation stage, respectively. “Total” means the overall computational
cost of the precomputation and evaluation stages. We assume that t = 160, S = 0.8 M
and I = 30M, where t is the number of bits in the input integers k£ and [.

Secondly, we compare the respective results for total computational cost.
Assume that t = 160, where ¢ is the number of bits in the input integers k£ and [.
In the actual implementation [LH00], S/M = 0.8 and I/M = 30 are assumed?.
The computational cost of Algorithm 2 is 1869.5M for w = 2 and 1626.2M
for w = 3, respectively. Thus, the total computational cost with Algorithm 1 is
2043.5M for w = 2 and 2637.8M for w = 3, and the corresponding figures with
Algorithm 4 are 1962.5M and 1905.4M, respectively. The comparative results
on computational cost that we have covered thus far are covered in Table 1.

We see from Table 1, the simultaneous sliding window NAF method is the
fastest in terms of total computational cost. In the precomputation stage for the
simultaneous sliding window NAF method, Algorithm 4, our proposed method,
is 1.9 times faster than Algorithm 1 when w = 2, and 3.6 times faster when
w = 3. The best choice of window width for the simultaneous sliding window

5 If the ratio I/M is larger than 30, the proposed method is much more efficient than
the conventional method. If not, the proposed method is not so efficient.
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NAF method with our proposed method is 3, whereas the best width with the
conventional method is 2.

On the other hand, in the multi-scalar multiplication kP 4@ of the ECDSA
scheme’s signature-verification procedure, the point P is assumed to be fixed.
Thus, the computation of points uP for u € [0,2¥ — 1] or [0, f(w)] in advance
of the precomputation stage removes the cost of computing these points from
the precomputation stage. Moreover, the simultaneous computation of v@ and
uP + v@Q reduces the number of applications of Montgomery trick by one, that
is, the number of inversions is reduced by one. In a case where P is fixed, we
obtain Table 2 in the same wayll.

Acknowledgements. The authors would like to thank the anonymous referees
for their useful comments.
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