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Abstract. We present a novel technique which allows a virtual
increase of the bitlength of a crypto-coprocessor in an efficient and
elegant way. The proposed algorithms assume that the coprocessor
is equipped with a special modular multiplication instruction. This
instruction, called MultModDiv(A, B, N) computes A ∗ B mod N and
�(A ∗ B)/N�. In addition to the doubling algorithm, we also present two
conceivable economic implementations of the MultModDiv instruction:
one hardware and one software realization. The hardware realization of
the MultModDiv instruction has the same performance as the modular
multiplication presented in the paper. The software realization requires
two calls of the modular multiplication instruction. Our most efficient
algorithm needs only six calls to an n-bit MultModDiv instruction to
compute a modular 2n-bit multiplication. Obviously, special variants of
our algorithm, e.g., squaring, require fewer calls.

Keywords: Arithmetical coprocessor, Hardware architecture, Modular
multiplication, Hardware/Software codesign.

1 Introduction

Fast modular multiplication algorithms have been extensively studied [Ba,DQ,
HP1,HP2,Knu,Mo,Om,Pai,Q,Sed,WQ,Wa]. This is due to the fact that large
integer arithmetic is essential for public-key cryptography. Recently, we have
seen some progress of integer factorization [C+] which demands for higher RSA
bit lengths. On the other hand, for low cost and low power devices (e.g., in
Smartcards, PDAs, Cellular Phones, etc.) one has to use hardware which does
not provide sufficient bitlengths.

Unfortunately, these two requirements lead to a burden of the system issuer,
e.g., the card industry. The source of this burden is the fact that, say 2048-bit
RSA, cannot be handled efficiently on a 1024 bit device. Only with some work-
around this problem becomes a manageable task. Namely, as it is now commonly
known, one can use the Chinese Remainder Theorem for the RSA signature, see
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[CQ]. To keep the RSA verification also relatively simple, most often the fourth
Fermat number is used as public exponent. Only recently it was shown how
to efficiently reduce such modular 2048-bit multiplications to 1024-bit modular
multiplications, see [HP1,HP2,Pai]. Pailler [Pai] initiated this doubling research
topic and formulated the following research problem:

Problem. Find an nk-bit modular multiplication algorithm using a minimal
number of n-bit modular operations.

His algorithm needs nine modular multiplications for the case k = 2, see
[Pai]. In this paper we will provide an answer to his question by presenting a
novel doubling algorithm. Our most general and most efficient algorithm needs
only six n-bit modular operations to compute a 2n-bit modular multiplication.
The idea for our family of algorithms is based on the fact that the coprocessor is
equipped with a special modular multiplication instruction. This instruction is
called MultModDiv and defined within the next section. An optimal realization is
clearly achieved using an enhanced hardware modular multiplication instruction.
Nevertheless, an efficient software realization of this instruction is possible. The
software realization requires two calls to the modular multiplication instruction.
Both realizations of this MultModDiv instruction will be presented.

The present paper is organized as follows: The next section gives the neces-
sary definitions of MultModDiv. Section 3 explains our basic doubling algorithm,
an enhanced version and also our special purpose variants. In section 4 we in-
troduce the simple software emulation of the MultModDiv instruction. Finally,
in section 5 we show how to realize the MultModDiv instruction in hardware.

2 Preliminaries

2.1 The Instructions MultMod and MultModInitn

The following definition is the usual modular multiplication.

Definition 1. For numbers A, B and N , N > 0, the MultMod instruction is
defined as

R = MultMod(A, B, N)

with
R := (A ∗B) mod N.

The following extension of the modular multiplication is already a feature of
today’s existing crypto coprocessors.

Definition 2. For a fixed integer n and numbers A, B, C and N , N > 0, the
MultModInitn instruction is defined as

R = MultModInitn(A, B, C, N)

with
R := (A ∗B + C ∗ 2n) mod N.
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2.2 The Instructions MultModDiv and MultModDivInitn

The following definition is a natural extension of the usual modular multiplica-
tion.

Definition 3. For a fixed integer n and numbers A, B and N , N > 0, the
MultModDiv is defined as

(Q, R) = MultModDiv(A, B, N)

with

Q :=
⌊

A ∗B

N

⌋
and R := (A ∗B)−Q ∗N.

Definition 4. For a fixed integer n and numbers A, B, C and N , N > 0, the
MultModDivInitn instruction is defined as

(Q, R) = MultModDivInitn(A, B, C, N)

with

Q :=
⌊

A ∗B + C ∗ 2n

N

⌋
and R := (A ∗B + C ∗ 2n)−Q ∗N.

3 The Doubling Algorithm

3.1 Modular Multiplication without Initialization

We will start with the easiest of our algorithms, which needs 7 MultModDiv
instructions on an n-bit processor.

Theorem 1. There exists an algorithm to compute A ∗ B mod N using seven
MultModDiv instructions of length n, provided that 22n−1 ≤ N < 22n and 0 ≤
A, B < N .

Proof. We will first present the algorithm.
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Basic Doubling Algorithm:
input: N = Nt2n + Nb with 0 ≤ Nb < 2n,

A = At2n + Ab with 0 ≤ Ab < 2n,
B = Bt2n + Bb with 0 ≤ Bb < 2n

(Q(1), R(1)) := MultModDiv(Bt, 2n, Nt)
(Q(2), R(2)) := MultModDiv(Q(1), Nb, 2n)
(Q(3), R(3)) := MultModDiv(At, R

(1) −Q(2) + Bb, Nt)
(Q(4), R(4)) := MultModDiv(Ab, Bt, Nt)
(Q(5), R(5)) := MultModDiv(Q(3) + Q(4), Nb, 2n)
(Q(6), R(6)) := MultModDiv(At, R

(2), 2n)
(Q(7), R(7)) := MultModDiv(Ab, Bb, 2n)

Q := (R(3) + R(4) −Q(5) −Q(6) + Q(7))
R := (R(7) −R(6) −R(5))
make final reduction on (Q ∗ 2n + R)

output: Q ∗ 2n + R

We will prove that (R(3)+R(4)−Q(5)−Q(6)+Q(7))∗2n+(R(7)−R(6)−R(5)) is
indeed congruent to A∗B modulo N . This can easily be seen from the following,
where we use Z = 2n as abbreviation.

(AtZ + Ab) ∗ (BtZ + Bb)
= AtBtZZ + AtBbZ + AbBtZ + AbBb

= At(Q(1)Nt + R(1))Z + AtBbZ + AbBtZ + AbBb

≡ AtR
(1)Z −AtQ

(1)Nb + AtBbZ + AbBtZ + AbBb

= AtR
(1)Z −At(Q(2)Z + R(2)) + AtBbZ + AbBtZ + AbBb

= At(R(1) −Q(2) + Bb)Z −AtR
(2) + AbBtZ + AbBb

= (Q(3)Nt + R(3))Z −AtR
(2) + AbBtZ + AbBb

= (Q(3)Nt + R(3))Z −AtR
(2) + (Q(4)Nt + R(4))Z + AbBb

≡ (R(3) + R(4))Z − (Q(3) + Q(4))Nb −AtR
(2) + AbBb

= (R(3) + R(4))Z − (Q(5)Z + R(5))−AtR
(2) + AbBb

= (R(3) + R(4))Z − (Q(5)Z + R(5))− (Q(6)Z + R(6)) + AbBb

= (R(3) + R(4))Z − (Q(5)Z + R(5))− (Q(6)Z + R(6)) + (Q(7)Z + R(7))
= (R(3) + R(4) −Q(5) −Q(6) + Q(7))Z + (R(7) −R(6) −R(5)) mod N

The two congruences above are based on the fact that NtZ ≡ −Nb mod N .
Apart from the fact that this result still has to be reduced modulo N , this
completes the proof. ��
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Practical Implementation Issues

1. Observe that in steps three and five negative numbers may occur. This
can be resolved by the fact that for positive numbers A, B and N the
equation (Q, R) = MultModDiv(A, B, N) implies (−Q − 1, N − R) =
MultModDiv(A,−B, N), if R �= 0.

2. It is possible that the intermediary output (Q, R) is not reduced, i.e., 0 ≤
R < 2n and 0 ≤ Q < Nt is not fulfilled. In this case one has to do a final
reduction: first, do (Q, R) ← (Q ± Nt, R ± Nb) until Q is reduced modulo
Nt. Then, do (Q, R)← (Q± 1, R∓ 2n) until R is reduced modulo 2n.

3. Using two parallel n-bit processors one only needs the time of four
MultModDiv instructions.

4. If the given module N has an odd bitlength, then one has to compute with
2 ∗N .

3.2 Modular Multiplication with Initialization

By using a MultModDivInitn instruction we can reduce the number of steps to
six.

Theorem 2. There exists an algorithm to compute A ∗ B mod N using five
MultModDiv and one MultModDivInitn instruction of length n, provided that
22n−1 ≤ N < 22n and 0 ≤ A, B < N .

Proof. We first present the algorithm.

Enhanced Basic Doubling Algorithm:
input: N = Nt2n + Nb with 0 ≤ Nb < 2n,

A = At2n + Ab with 0 ≤ Ab < 2n,
B = Bt2n + Bb with 0 ≤ Bb < 2n

(Q(1), R(1)) := MultModDiv(At, Bt, Nt)
(Q(2), R(2)) := MultModDivInitn(Nb,−Q(1), R(1), Nt)
(Q(3), R(3)) := MultModDiv(At, Bb, Nt)
(Q(4), R(4)) := MultModDiv(Ab, Bt, Nt)
(Q(5), R(5)) := MultModDiv(Ab, Bb, 2n)
(Q(6), R(6)) := MultModDiv(Q(2) + Q(3) + Q(3), Nb, 2n)

Q := (R(2) + R(3) + R(4) + Q(5) −Q(6))
R := (R(5) −R(6))
make final reduction on (Q ∗ 2n + R)

output: Q ∗ 2n + R

We will prove that (R(2) + R(3) + R(4) + Q(5) − Q(6)) ∗ 2n + (R(5) − R(6))
is indeed congruent to A ∗ B modulo N . This can be seen from the following,
where we use Z = 2n as abbreviation.
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(AtZ + Ab) ∗ (BtZ + Bb)
= AtBtZZ + AtBbZ + AbBtZ + AbBb

= (Q(1)Nt + R(1))ZZ + AtBbZ + AbBtZ + AbBb

≡ (R(1)Z −Q(1)Nb)Z + AtBbZ + AbBtZ + AbBb

= (Q(2)Nt + R(2))Z + AtBbZ + AbBtZ + AbBb

≡ (R(2)Z −Q(2)Nb) + AtBbZ + AbBtZ + AbBb

= (R(2)Z −Q(2)Nb) + (Q(3)Nt + R(3))Z + AbBtZ + AbBb

= (R(2)Z −Q(2)Nb) + (Q(3)Nt + R(3))Z + (Q(4)Nt + R(4))Z + AbBb

= (R(2)Z −Q(2)Nb) + (Q(3)Nt + R(3))Z + (Q(4)Nt + R(4))Z + (Q(5)Z + R(5))
≡ (R(2) + R(3) + R(4) + Q(5))Z − (Q(2) + Q(3) + Q(4))Nb + R(5)

= (R(2) + R(3) + R(4) + Q(5))Z − (Q(6)Z + R(6)) + R(5)

= (R(2) + R(3) + R(4) + Q(5) −Q(6))Z + (R(5) −R(6)) mod N

The three congruences above are based on the fact that NtZ ≡ −Nb mod N .
Apart from the fact that this result still has to be reduced modulo N , this
completes the proof. ��

Practical Implementation Issues

1. Observe that in steps two and six negative numbers may occur. This can be
resolved as shown above.

2. It is possible that the intermediary output (Q, R) is not reduced. This can
be resolved as shown above.

3. Using two parallel n-bit processors one only needs the time of three
MultModDiv instructions.

4. Again, if the given module N has an odd bitlength, then one has to compute
with 2 ∗N .

3.3 Optimized Special Purpose Variants

Now the basic strategy of our algorithms should be clear. Therefore, we will
present the results for special purpose variants.

Squaring

Theorem 3. There exists an algorithm to compute A2 mod N using six
MultModDiv instructions of length n, provided that 22n−1 ≤ N < 22n and
0 ≤ A < N .

If we consider the algorithm of section 3.2 for the case A = B, we see that
steps three and four are identical. Therefore, we get the following result:

Theorem 4. There exists an algorithm to compute A2 mod N using four
MultModDiv and one MultModDivInitn instruction of length n, provided that
22n−1 ≤ N < 22n and 0 ≤ A < N .
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Precomputation
If the factor B is known in advance (e.g., square and multiply for exponentiation),
then the first and second computation of the algorithm of section 3.1 can be
carried out in advance. Therefore, the multiplication can be done in five steps.

Theorem 5. There exists an algorithm to compute A ∗ B mod N using five
MultModDiv instructions of length n, provided that 22n−1 ≤ N < 22n and 0 ≤
A, B < N , where B is known in advance.

Using a completely different idea, one needs only six MultModDiv steps. This
time, one uses a special representation of A and B. Namely, A = At ∗Nt + Ab

and B = Bt ∗Nt + Bb, where Nt := 	√N�.
Theorem 6. There exists an algorithm to compute A ∗ B mod N using six
MultModDiv instructions of length n, provided that 22n−1 ≤ N < 22n and
0 ≤ A, B < N , where N is known in advance..

4 Software Realization of the MultModDiv and
MultModDivInitn Instructions

This section presents a software emulation of the MultModDiv and
MultModDivInitn instructions.

Theorem 7. There exists an algorithm to compute MultModDiv(A, B, N) using
two MultMod instructions, provided that 0 ≤ A, B < N .

Proof. We present the simple algorithm.

Simulation of MultModDiv:
input: A, B, N with 0 ≤ A, B < N

R := MultMod(A, B, N)
N ′ := N + 1
R′ := MultMod(A, B, N ′)
Q := R−R′

if (Q < 0) then
Q := Q + N ′

fi

output: (Q, R)

We will prove that the former algorithm correctly computes the MultModDiv
instruction. For given inputs A, B and N there exists some Q and R with

A ∗B = Q ∗N + R and R = (A ∗B) mod N,

where 0 ≤ R < N and 0 ≤ Q < N − 1. Equivalently, we also have

A ∗B = Q ∗ (N + 1) + (R−Q).
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For (R−Q) ≥ 0 this means (R−Q) = (A∗B) mod (N +1) and for (R−Q) < 0
this means (R−Q) + (N + 1) = (A ∗B) mod (N + 1). Thus, for Q we have

Q = ((A ∗B) mod N)− ((A ∗B) mod (N + 1))

or, if this value is less than zero

Q = ((A ∗B) mod N)− ((A ∗B) mod (N + 1)) + (N + 1).

This completes the proof. ��

In a similar way the MultModDivInitn instruction is emulated by the
MultModInitn instruction.

Theorem 8. There exists an algorithm to compute MultModDivInitn

(A, B, C, N) using two MultModInitn instructions, provided that 2n−1 ≤ N < 2n

and 0 ≤ A, B, C < N .

Proof. We present the algorithm.

Simulation of MultModDivInitn:
input: A, B, C, N with 0 ≤ A, B, C < N

R := MultModInitn+2(2A, 2B, C, 4N)
N ′ := 4N + 1
R′ := MultModInitn+2(2A, 2B, C, N ′)
Q := R−R′

if (Q < 0) then
Q := Q + N ′

fi

output: (Q, R/4)

The proof is a derivation of the former one, leaving the modifications to the
reader. However, we note that bounding the size of the quotient Q is the crucial
point. ��

Both algorithms can be extended to algorithms also working for non-reduced
A, B and C. This is necessary for our doubling algorithms.

5 Hardware Realization of the MultModDiv and
MultModDivInitn Instructions

We will now sketch how an algorithm for the MultMod instruction can be ex-
tended into an algorithm for the MultModDiv instruction. We first consider the
textbook MultMod implementation.
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Textbook MultMod implementation:
input: A, B, N with 0 ≤ A, B < N , and A = (An−1, . . . , A0)
i := n; Z := 0
repeat

i := i− 1
case Ai is

0: Z := 2 ∗ Z
1: Z := 2 ∗ Z + B

end case
if (Z ≥ N) then

Z := Z −N
if (Z ≥ N) then

Z := Z −N
fi

fi
until (i = 0)
output: Z

The extension is rather trivial. During the modular multiplication we sim-
ply have to “count” the number of subtracted N ’s. Observe that during a
modular multiplication this implicit information is always known to the algo-
rithm/hardware.

MultModDiv implementation:
input: A, B, N with 0 ≤ A, B < N and A = (An−1, . . . , A0)
i := n; Z := 0
repeat

i := i− 1
case Ai is

0: Z := 2 ∗ Z
1: Z := 2 ∗ Z + B

end case
Qi := 0; Q′

i := 0
if (Z ≥ N) then

Z := Z −N
Qi := 1; Q′

i := 0
if (Z ≥ N) then

Z := Z −N
Qi := 1; Q′

i := 1
fi

fi
until (i = 0)
Q := Q + Q′

output: (Q, Z)
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In the paper’s full version we will actually show how the former algorithm
can be simply integrated into the modular multiplication algorithm due to H.
Sedlak [Sed].

The MultModDivInitn and MultModInitn are derived from the former ones
essentially by exchanging the step Z := 0 with Z := C.

6 Conclusion

In this paper we have introduced new efficient algorithms to compute 2n-bit
modular multiplications using only n-bit modular multiplications. Using the
MultModDiv and MultModDivInitn instructions we were able to improve the
results presented by Pailler [Pai]. The question of what is the minimal number
of multiplications is still open, as we currently have no proof of the optimality
of our algorithm.

Acknowledgments. We would like to thank Holger Sedlak for several valuable
discussions on this topic.
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