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Abstract. Recent applications of lattice attacks against elliptic curve
cryptosystems have shown that the protection of ephemeral keys in the
ECDSA is of greatest importance. This paper shows how to enhance
simple power-analysis attacks on elliptic-curve point-multiplication al-
gorithms by using Markov models. We demonstrate the attack on an
addition-subtraction algorithm (fixing the sequence of elliptic-curve op-
erations) which is similar to the one described by Morain et al. in [MO90]
and apply the method to the general addition-subtraction method de-
scribed in ANSI X9.62 [ANS99].

1 Introduction

Elliptic curve cryptosystems (ECC) have been introduced in 1985 by Miller
and Koblitz and are widely accepted. Since there are no sub-exponential algo-
rithms known for the elliptic-curve discrete-logarithm problem (ECDLP), the
keys can be much smaller in elliptic curve cryptography than in other public-
key cryptosystems. Consequently, elliptic-curve cryptography offers significant
advantages in many practical aspects. Due to their practical advantages, elliptic
curve cryptosystems can be expected to be incorporated in many future cryp-
tographic applications and protocols. The most effective cryptanalytic attacks
on implementations of elliptic curve cryptosystems nowadays are the power at-
tacks [KJJ99]1. They use the power consumption of a device performing an
elliptic-curve scalar point-multiplication as a side-channel. Both power-analysis
variants, the simple power analysis (SPA) and the differential power analysis
(DPA), are effective against unprotected implementations of an elliptic-curve
scalar point-multiplication. Due to the importance of elliptic curve cryptosys-
tems, many articles related to power analysis and elliptic curve cryptography
have recently been published. We want to mention one article especially. This
article [RS01] (which is based on [HGS01]) describes how to compute the se-
cret key of the ECDSA, if a few bits of the ephemeral key for several ECDSA
� The work in this paper was partially done while the author visited COSIC, KU
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1 EM attacks appear to become increasingly powerful as well, see for example [QS01]
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signatures are known. Consequently the protection of ephemeral keys is a very
important aspect that cannot be neglected. Therefore the implementation of an
elliptic-curve scalar point-multiplication algorithm should be resistant against
simple power-analysis attacks even if it is used only for signatures.

The main contribution of this paper is the development of a new and more
powerful simple power-analysis attack which is even applicable to elliptic-curve
scalar point-multiplication algorithms that do not fix the sequence of elliptic-
curve operations. This attack shows that certain attempts to counteract simple
power-analysis attacks by only obscuring2 the ephemeral key, fail.

This paper is organized as follows. Section 2 is dedicated to related work.
In section 3, the relationship between Markov models and point-multiplication
algorithms is established, and the general idea for the enhanced simple power-
analysis attack is presented. Finally, in section 4, we apply this method to a
addition-subtraction algorithm and to the scalar point-multiplication algorithm
defined in ANSI X9.62 ([ANS99] and IEEE P1363a [IEE99]). We also reason
about the applicability of this method to the randomized algorithms as presented
in [OA01].

2 Related Work

Finding efficient countermeasures to protect implementations of elliptic-curve
scalar point-multiplication against power attacks has proven to be a difficult
and challenging task. This is due to the fact that different constraints have to be
taken into account for an actual implementation. For example, legal issues such
as avoiding patents or implementation constraints. Implementations of elliptic
curve cryptosystems usually make use of so called EC-accelerator modules that
are very often connected via a slow bus to the rest of the IC. Depending on
the specific hardware architecture that is used, an algorithm may or may not
lead to an efficient (fast, small, or flexible, etc . . . ) implementation. Another
constraint for countermeasures, is due to the fact that NIST3 published a set of
recommended curves [NIS99] which can be used as ‘named curves’ in certificates
and protocols. These curves have one common property. They all have a cofactor
of 2. Because of this specific choice of the cofactor, none of these curves has
a Montgomery form. Therefore, countermeasures using the Montgomery form
cannot be applied to them. On the other hand, these curves have been given
OIDs and the set of elliptic-curve parameters can be replaced by these OIDs
in certificates. This is certainly a big advantage since certificate sizes can be
significantly reduced. Consequently, countermeasures should be applicable to all
recommended curves.

2 Obscuring means in this context, that there is a more complex relationship between
the bits of the ephemeral key and the performed elliptic-curve operations. We will
discuss this in more detail in section 3.1

3 There exists a second set of ‘named curves’ which has been selected by the SECG
[Cer00].
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2.1 Previous Results

The basic principles of how to apply power analysis attacks on elliptic curve
cryptosystems have been discussed in [Cor99]. To counteract both simple power-
analysis attacks and (first order) differential power-analysis attacks there are
basically two things that have to be done. Firstly, one has to randomize the
expressions (i.e. the coordinates) of calculated points. This can be done by using
randomized projective coordinates (DPA countermeasure). Secondly, one has to
conceal the ephemeral key. It would be optimal if there would be no statistical
relationship between the sequence of elliptic-curve operations and the bits of the
ephemeral key (SPA countermeasure). Countermeasures applicable to arbitrary
curves fixing the sequence of elliptic-curve operations have been presented by
Coron [Cor99], Möller [Möl01] and Izu et al. [IT02]. Countermeasures applicable
to arbitrary curves not fixing the sequence of elliptic-curve operations have been
presented by Oswald et al. [OA01] and Brier et al. [BJ02]. Countermeasures
applicable to special curves fixing the sequence of elliptic-curve operations have
been presented by Hasan [Has00] and by Okeya et al. [OS00]. Countermeasures
applicable to special curves not fixing the sequence of elliptic-curve operations
have been presented by Liardet et al. [LS01] and Joye et al. [JQ01].

In none of the papers it was ever tried to extend the obvious simple power-
analysis attack to more general point-multiplication algorithms, i.e. algorithms
that also use elliptic-curve point-subtraction or do not fix the sequence of elliptic-
curve operations.

3 An Attack Based on a Markov Model for the
Elliptic-Curve Scalar Point-Multiplication Algorithm

In a simple power-analysis attack, the adversary is assumed to be able to mon-
itor the power consumption of one scalar point-multiplication, Q = kP , where
Q and P are points on an elliptic curve E, and k ∈ Z is a scalar. The at-
tacker’s goal is to learn the key using the information obtained from carefully
observing the power trace of a complete scalar point-multiplication. Such a scalar
point-multiplication consists of a sequence of point-addition, point-subtraction
and point-doubling operations. Each elliptic-curve operation itself consists of
a sequence of elementary field-operations. The sequence of elementary field-
operations in an elliptic-curve point-addition operation differs from the sequence
of elementary field-operations in elliptic-curve point-doubling operation. Every
elementary field-operation has its unique power-consumption trace. Hence, the
sequence of elementary field-operations that form the point-addition operation
has a different power-consumption pattern than the sequence of elementary field-
operations that form the point-doubling operation. Because point addition and
point subtraction only differ slightly, they can be implemented in such a way that
they are indistinguishable for an attacker. This is why we will not distinguish
between these two operations in the subsequent sections.
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3.1 Elliptic-Curve Scalar Point-Multiplication Algorithms

The simplest way of performing a scalar point-multiplication is the binary algo-
rithm (see table 1 for the bottom-up version).

Table 1. Bottom-up version of the binary algorithm

binalg(P,M,k)
Q = M
if k0 = 1 then P = M else P = 0
for i = 1 to n − 1

Q = Q ∗ Q
if (ki == 1) then

P = P ∗ Q
return P

For validity and explanation see [Knu98]. In table 1 the operator ∗ denotes
the general elliptic-curve point-addition operation. The expression P ∗Q denotes
the point-addition operation (short A) which adds two distinct points P and Q
on the elliptic curve, while P ∗ P denotes the point-doubling operation (short
D) which adds P to itself.

What makes this algorithm so vulnerable to SPA is the strong relation be-
tween the multiplier bits (i.e. the ki) and the performed operation (i.e. the point
addition) in the conditional branch (see table 1). If and only if the i-th bit of
k is set, a point-addition operation is performed. Another way of saying this
is that the conditional probability that ki is non-zero equals 1 under the as-
sumption that an elliptic-curve point-addition operation has been observed. An
attacker can simply look for two different patterns in the power trace of the scalar
point-multiplication algorithm. One pattern corresponds to the point-addition
operation and the other pattern corresponds to the point-doubling operation.
Since only the point-addition operation can be induced from a non-zero bit,
the attacker learns where the non-zero bits in the binary representation of k are.
With this information the attacker has to test at most two values (this is because
the attacker does not know which of the two observed patterns corresponds to
the point addition-operation and which corresponds to the point-doubling oper-
ations) to determine the ephemeral key.

The usage of more sophisticated versions of the binary algorithm, like the
window-method, signed representations like the non-adjacent form (short NAF),
etc. . . . (see [Gor98] for an excellent survey), can obscure the private multiplier
to a certain extent. The main goal of these sophisticated algorithms is to speed
up the scalar point-multiplication. This is usually accomplished by recoding4

4 Well known methods referring to the same basic principle are for example Booth
recoding, or Canonical recoding or NAF.
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the multiplier k. The recoded form k′ leads to fewer operations that have to be
performed in the scalar point-multiplication. The arithmetic of elliptic curves
makes it possible to use signed representations, i.e. use digits −1, 0, 1, because
point subtraction is almost the same operation as point addition. The assump-
tion we made in the beginning of this section, namely that we cannot distinguish
between point addition and point subtraction, introduces an additional difficulty
in the task of the attacker. Observing a point-addition operation gives the at-
tacker less information, since a point addition corresponds to both −1 and 1 in
the digit-expansion of k. Having more difficult relations between certain occur-
rences of operations in the power trace and specific bits (or maybe combination
of bits) is what is meant by “obscuring” in this context. In general it can be
said that whenever we don’t have an “if and only if” relationship between bits
and operations, we are not able to mount a simple power-attack in the way we
described it for the standard binary algorithm. However, we show in this paper
how an ordinary simple power-analysis attack can be enhanced in order to mount
an efficient simple power-analysis attack on certain types of these algorithms.

3.2 The Attacker’s Task

The attacker has the ability to observe a sequence of elliptic curve operations,
thus, the attacker’s aim is to calculate and exploit the probabilities of certain
sequences of bits given an observed sequence of elliptic curve operations.

Using the information of such conditional probabilities, the key-space that
has to be searched to find the correct ephemeral key, can be significantly reduced.
This is because certain combinations of patterns in the power trace and certain
combination of digits are less likely than the others (or even not possible at all).
The attacker’s task can be stated in a more formal way.

Let X be a random variable that denotes a sequence of elliptic-curve op-
erations and |X| the length of X (i.e. the number of elliptic-curve operations
in this sequence). For example, X=“DDD” (i.e. the realization of the random
variable X consists of three consecutive elliptic-curve point-double operations)
thus |X| = 3, or X=“DAD” (i.e. the realization of the random variable X con-
sists of an elliptic-curve point-double operation, an elliptic-curve point-addition
operation and an elliptic-curve point-double operation) thus |X| = 3.

Let Y be a random variable that denotes a sequence of digits in the digit
representation of k and |Y | the length of Y (i.e. the number of digits). For
example Y = “000” (i.e. the realization of the random variable Y consists of
three consecutive zeros) thus |Y | = 3, or Y = “01” (i.e. the realization of the
random variable Y consists of a zero and an one digit) thus |Y | = 2.

Then the attackers goal is to calculate and exploit the conditional probability

P (Y = y|X = x) =
P (Y = y ∩ X = x)

P (X = x)
(1)

for many different realizations x of X and y and Y . Equation 1 is the mathe-
matical definition for the conditional probability.
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It is an important observation that the calculation of the right hand side of
(1) requires the knowledge of the probability to be in a specific state of the point-
multiplication algorithm (the terminology used here will be explained in the next
section). This is because in order to calculate the probabilities P (X = x), one
has to calculate the sum of the probabilities of all possible sequences of digits
that lead to the pattern x. Since such a sequence can basically start from any
state of the algorithm, the probabilities are dependent on the probability of the
starting-state. These probabilities can be calculated by using Markov models
which we are going to introduce in the following section.

3.3 Markov Models

The general assumption for the rest of this paper is that the multiplier bits
ki, are independently drawn and identically distributed. We can see a point-
multiplication algorithm as a Markov process (see for example [GS92]). A Markov
process in general can be used to analyze random, but dependent events. In a
Markov process, the next state (or event) is only dependent on the present
state but is independent of the way in which the present state arose from the
states before. This is often referred to as “memoryless” process. The transitions
between the states are determined by a random variable and occur with certain
probabilities, that are either known or have to be estimated. A common way to
work with Markov processes is to visualize them in so called transition graphs.
For example, figure 1 shows the transition graph for the binary algorithm as
presented in table 1.

0

0

0

Q=2Q

1

1

Q=2Q

P=P+Q
Q=2Q

Q=2Q
P=P+Q

1

Fig. 1. Transition-graph of the Binary Algorithm

According to the description given for table 1, P and Q denote elliptic-curve
points. Circles represent states (0 and 1 in this case) and the arrows between
the circles represent transition between the states. Output paths are marked by
an additional bar. In the binary algorithm, transitions are triggered by the bits
ki. Consequently, in figure 1 the values next to the arrows, correspond to the
possible values of ki (i.e. 0 and 1). The expressions Q = 2Q (point double) and
P = P + Q (point addition) indicate what operation is triggered by the value of
ki.
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This graph or Markov process, respectively, has two important properties.
The first property is that the graph is irreducible in the sense that all states
can be reached from all other states with a finite number of steps. The second
important property is that the graph is aperiodic, in the sense that all states are
aperiodic. A state is aperiodic, if the period (that is the greatest common divisor
of the set of times a chain has a positive probability of returning to the same
state) is equal to 1. These two properties are conditions for the main theorem of
Markov theory. This theorem states basically that for Markov processes having
the properties of being aperiodic and irreducible a steady state always exists5.
The row-vector π = (π1, . . . , πn) representing the steady state has the following
two properties:

n∑

i=1

πi = 1, (2)

πT = π. (3)

The variable T in the second equation is a matrix (subsequently referred to as
transition matrix ) containing the transition probabilities. (3) is the formal way
of saying that the distribution has become steady. (2) makes clear that we are
actually dealing with a probability distribution for the states (since all the in-
dividual probabilities sum up to 1). The entries of the row-vector π are simply
the probabilities of the states the algorithm can be in. What is important for
the attack presented in this paper is that π depends solely on the transition
matrix T and can be obtained by calculating the eigenvectors (with the associ-
ated eigenvalues) of the transition matrix (this follows directly from (3)). The
transition matrix itself can be obtained in a straightforward way. The transi-
tion probabilities associated with the transition variables can be written in the
transition matrix

T =
(

P (si+1 = 0|si = 0) P (si+1 = 0|si = 1)
P (si+1 = 1|si = 0) P (si+1 = 1|si = 1)

)
=

(
0.5 0.5
0.5 0.5

)
.

T contains the probabilities to get from one state to another state. The
random variable si denotes the state the algorithm is in. For example, the matrix
entry in the first row and the second column is the probability to get from state
1 to state 0. Calculating π = (1/2, 1/2) leads to the probabilities for being in
state 0 and state 1, respectively.

Additionally, we can deduce the number of elliptic-curve operations that
need to be executed. We know that every transition requires the calculation of
a point-doubling operation, but only a transition leading from state 0 to state
1 or a transition leading from state 1 to state 1 requires the computation of a
point-addition operation. Putting this all together and assuming that n denotes
5 There are several more expressions for the term “steady state”. Amongst others, the

most common terms seem to be “stationary distribution” and “invariant distribu-
tion”.
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the bit-length of k, we get n point-doubling operations and n/2 point-addition
operations. So, 3n/2 elliptic-curve operations have to be performed.

In this section, we have established a relationship between elliptic-curve scalar
point-multiplication algorithms and Markov processes. The most important ob-
servation was that the main theorem for an important class of Markov processes,
namely the irreducible and aperiodic Markov processes, also gives a solution to
the problem of calculating the conditional probability defined in (1). Further-
more we have shown how to calculate the number of elliptic-curve operations
that need to be performed in a point-multiplication algorithm, with the aid of
Markov models.

4 Results

In order to demonstrate that the observations presented in the previous sec-
tion lead to an effective attack, we apply the technique on well known point-
multiplication algorithms. The first algorithm we attack was introduced in the
article of Morain et al. [MO90] and belongs to the class of addition-subtraction
algorithms. We attack the modified version as given in [OA01]. The second al-
gorithm we discuss is the addition-subtraction method or NAF-method which is
used in important standards such as the ANSI X9.62 and the Annex A of IEEE
1363.

4.1 Analysis of a Double-Add and Subtract Algorithm

We demonstrate how this method can be used to construct a known-ciphertext
attack on the example of a modification ([OA01]) of the first algorithm given by
Morain et al. [MO90].

11
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1

0 1

P=P+Q

P=P−Q

P=P+Q
Q=2Q

Q=2Q Q=2Q

0

11

Q=2Q

Q=2Q

P=P+Q
Q=2Q

P

Fig. 2. Transition-graph of Double-Add and Subtract as proposed in [OA01]



90 E. Oswald

The idea of this point-multiplication algorithm is basically to replace a block
of at least two consecutive 1’s in the binary representation of the multiplier k, by
a block of 0’s and a −1 : 1a �→ 1 0a−1−1. The original proposal is modified in such
a way that for every transition a point-doubling operation or a point-doubling
and a point-addition operation has to be performed. Mounting a standard simple
power-attack is not possible since there is no “if and only if” relation between the
bits and the elliptic curve operations. For both, zero and non-zero bits, elliptic-
curve point-addition and elliptic-curve point-doubling operations can occur.

The transition graph of the finite state machine in figure 2 (the notation used
here is the same as used before in figure 1) visualizes this algorithm. From this
graph one can easily deduce the transition matrix

T =




0.5 0.5 0.5
0.5 0 0
0 0.5 0.5





and therefrom the steady-state vector which is (1/2, 1/4, 1/4). With this infor-
mation the conditional probabilities for many realizations of X and Y can be
calculated. With a modest computational effort, one can do this up to |Y | = 16.
The results we obtained show how poor the secret key is obscured. We found
out that for a chosen X and for fixed and small |Y |, only three bit-patterns
are possible, or there is no bit-pattern at all. We derived this result from our
computer program, which checked all conditional probabilities up to |Y | = 12.
For example, table 2 shows some of the results for small values of |Y |.

Table 2. Non-zero conditional probabilities. In this table we use an abbreviated no-
tation, i.e. we write p(000|DDD) instead of p(Y = 000|X = DDD). We use the LSB
first representation.

p(000|DDD) = 1/2 p(01|DAD) = 1/2 p(11|ADAD) = 1/2
p(100|DDD) = 1/4 p(10|DAD) = 1/4 p(10|ADAD) = 1/4
p(111|DDD) = 1/4 p(11|DAD) = 1/4 p(01|ADAD) = 1/4

p(001|DDAD) = 1/2 p(000|ADDD) = 1/4 p(110|ADADAD) = 1/2
p(101|DDAD) = 1/4 p(100|ADDD) = 1/2 p(101|ADADAD) = 1/4
p(110|DDAD) = 1/4 p(111|ADDD) = 1/4 p(011|ADADAD) = 1/4

The probabilities in table 2 can be derived with the help of the transition
matrix T and the Markov model for the point-multiplication algorithm. We
illustrate how to derive them on a simple example.

Example 1. Assume we want to calculate the probability that two consecutive
elliptic-curve point-doubling operations occur (under the assumption that we
only look at two transitions, i.e. |Y | = 2) when performing the scalar point-
multiplication algorithm depicted in figure 2. Table 3 lists all possible transi-
tions between two states of algorithm 2 in the leftmost column. The column in
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the middle lists the to the sequence of transitions corresponding elliptic-curve
operations. The rightmost column indicates the occurrence of two consecutive
point-doubling operations.

Table 3. The calculation of the probability p(X = DD) and p(Y = 00|X = DD)
can be done with this table. The leftmost part of the table shows the transitions,
the column in the middle shows the corresponding elliptic-curve operations and the
rightmost column indicates the occurrences of X = DD.

0 → 0 → 1 DAD
0 → 0 → 0 DD ⇐
0 → 1 → 0 ADD ⇐
0 → 1 → 11 ADAD
1 → 0 → 0 DD ⇐
1 → 0 → 1 DAD

1 → 11 → 11 ADD ⇐
1 → 11 → 0 ADAD

11 → 11 → 11 DD ⇐
11 → 11 → 0 DAD
11 → 0 → 0 ADD ⇐
11 → 0 → 1 ADAD

For each row of table 3 the corresponding probability can be calculated. This
can be done by using the steady state vector and the probabilities which we
already derived for the transition matrix. For example, the first row defines a
sequence of transitions that starts in state 0, then stays in state zero and ends
up in state 1. We know that the probability to be in state 0 is 1/2 and the
probability to go from state 0 to state 0 or state 1 is 1/2. Thus, the probability
that row one occurs is ( 1

2 )3. To calculate p(X = DD) one has to calculate the
sum of the probabilities of the six rows which are marked with an arrow. To
calculate the conditional probability p(Y = 00|X = DD) one has to calculate
the numerator of equation 1. This numerator can be calculated by summing up
the probabilities of those three rows of the six marked rows that assume two
consecutive zero bits (these are row two, row five and row eleven).

The Attack. The concrete attack works as follows.

1. Precomputation phase: Find the Markov model, i.e. the transition matrix
and the steady state vector, for the given point-multiplication algorithm.
Calculate the conditional probabilities for all combinations of X and Y up
to a suitable |Y |.

2. Data collection phase: Deduce from the power trace of an elliptic-curve scalar
point-multiplication operation the sequence of point additions and point
doublings. This stage is in fact the same as in an ordinary simple power-
analysis attack.
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3. Data analysis phase: Split this sequence into a number of sub-sequences,
whereby each sub-sequence must be chosen in a way that it can be produced
by a well defined sequence of digits. The number of digits in the sequence
have to sum up to the total number of digits of k to ensure a valid partitioning
in sub-sequences. Remark: After this step one knows for each sub-sequence
the number of digits that produced this subsequence. Of course in general,
there are several valid possibilities for a such a partitioning, but it is only
important to choose and fix one.

4. Key testing phase: Check all combinations of bit-patterns that have a non-
zero probability to occur, with the known pair of plain- and ciphertext. This
will lead finally to the secret key. Remark: One should check the combinations
of bit-patterns with the highest probabilities first.

We now illustrate the attack on a toy example.

Example 2. In this example, we use the scalar point-multiplication algorithm de-
picted in figure 2 which we discussed on beforehand. The scalar k which serves
as ephemeral key in this example is 560623. The first row shows the sequence
of observed point-doubling and point-addition operations. In the second row the
same sequence is split into sub-sequences that contain patterns for which we al-
ready calculated the conditional probabilities (see table 2). In the third, fourth
and fifth rows the possible bit-patterns are listed according to their conditional
probabilities. From all possible bit-pattern combinations the attacker can deter-
mine the correct one with the aid of the known plaintext-ciphertext pair.

Table 4. Example : k = 11110111101100010001, LSB first representation

ADADDDADADADDDADADADADDDADDDDAD
ADAD DDAD ADAD DDAD ADAD ADDD ADDD DAD

11 001 11 001 11 100 100 01
10 101 10 101 10 000 000 10
01 110 01 110 01 111 111 11

Effectiveness. We denote the ephemeral secret key with k, it’s bit-length by
n and the length of the sub-sequences by l. Then, in the worst case where we
only take the non-zero conditional probabilities into account but not their actual
values, we have to test 33n/2l keys on average (this is because 3n/2 elliptic-curve
operations are calculated on average in this point-multiplication algorithm). If
we take into account, that one of the three non-zero conditional probabilities is
always 1/2, we deduce that we only have to test 23n/2l keys on average. In the
case of n = 163 and l = 16 (the size of n is chosen according to the smallest
recommend curve by NIST) we can deduce that we only have to test 215.28 keys
on average.
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4.2 Application to the NAF-Method

This algorithm calculates the NAF of the multiplier k. The NAF of k has the
property that no two consecutive digits in the expansion of k are non-zero. As a
consequence, the average number of non-zero digits is reduced and fewer elliptic-
curve operations have to be performed.

Table 5. The NAF algorithm

NAF-mult(P,M,k)
Q = P
Set h = 3k. Let hl denote the most significant bit of h.
for i = l − 1 down to 1

Q = Q ∗ Q
if (hi == 1) and (ki = 0) then Q = Q + P .
if (hi == 0) and (ki = 1) then Q = Q − P .

return Q

Table 5 gives a brief description of the NAF algorithm. The finite-state ma-
chine describing this algorithm is depicted in figure 3.

0

Q=2Q

1 −1

P=P−Q

Q=2Q

Q=2Q

Q=2Q

P=P+Q
01

10

00,11

Q=2Q

Fig. 3. Transition graph of the NAF algorithm. The label “00”,“01”, “10” and “11”
correspond to the values of hi and ki in table 5.

Like in the previous section, we can derive the transition matrix from this
transition graph quite easily. The NAF property (i.e. that there are no consec-
utive non-zero digits allowed) is clearly visible in both the transition graph and
the transition matrix. The steady-state vector for the transition matrix
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T =




0.50 1 1
0.25 0 0
0.25 0 0





is (4/6, 1/6, 1/6).
We derived once again a well known result about the distribution of zero

and non-zero digits in the NAF-representation, which is, that about 2/3 of all
NAF-digits are zeros. We also know immediately from figure 3 that we have
an almost perfect and known statistical relationship between the NAF-digits
and the elliptic-curve operations. If and only if a non-zero NAF-digit occurs,
an elliptic-curve point-addition or an elliptic-curve point-subtraction, has to be
performed.

This means, that we not need to calculate conditional probabilities to mount
an attack. An attack can be mounted in the very straightforward way by just
searching the power trace for occurrences of point-addition patterns. Each such
pattern can be produced by either a point-addition or a point-subtraction oper-
ation. Since we know that about 1/3 of the NAF-digits are non-zero on average,
we know that we would have to test about 2n/3 keys on average (n denotes the
number of digits of the ephemeral key k).

4.3 A General Comment on the Key Testing Phase

The speed with which we can test all the possible ephemeral keys is also certainly
an important issue for the whole attack. The scalar point-multiplications which
we have to perform in the key testing phase can be done much faster than scalar
point-multiplications with random points. This is because the point which is
multiplied with a scalar is fixed, and due to elliptic curve protocols, almost
never changed. This means that one can use window-methods combined with
the NAF-method, for example, to speedup the key testing phase. We already
know that because of the NAF property, not all of the bit-patterns (and digit-
patterns resp.) are possible. In fact, when using a window-method for the point-
multiplication in the key testing phase, one can use rather large windows, since
not all, but only a very few points have to be precomputed. For example, for
a window with length ten only 144 points need to be calculated. An analysis
of window NAF-methods can be found for example in [BHLM01]. This means
that in an EC-accelerator module which is designed especially for the key testing
phase, one could possibly use such methods.

We now give some rough estimates for testing the number of possible keys if
the NAF-method was used on a 163-bit curve. Our analysis in section 4.2 showed
that we would have to test about 254,3 possible ephemeral keys to determine the
correct ephemeral key. Based on the performance data given in [OP00] it turns
out that a single device needs appr. 217 years to test all 254,3 possible ephemeral
keys. Modifying the architecture of [OP00] in such a way that it heavily makes use
of precomputed points and thus achieves a further speed-up should be possible.
Considering all this, we are concerned about the long-term security margin of
the NAF-method in the case of a 163−bit curve.
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4.4 A Note on the Application to Randomized Algorithms

In [OA01] the usage of randomized addition-subtraction chains was proposed
as a countermeasure against simple and differential power-analysis attacks. We
analyzed these randomized algorithms as well. It is clear that the attack as it
is described in this paper can directly be applied on the randomized algorithms
as well. One can derive the transition matrix for the randomized algorithms in
exactly the the same way as we demonstrated it in this paper. The steady state
can then be derived from the transition matrix and therefrom the conditional
probabilities can be calculated. Due to the limitations of the number of pages for
this paper we cannot present a full analysis, but in our investigations it turned
out that the Markov method on the randomized algorithms is not better than on
the NAF-method. Thus, we consider the randomized algorithms as more secure
than the NAF-method with respect to the attack presented in this paper.

5 Conclusion

We presented an enhanced simple power-analysis attack on elliptic-curve point-
multiplication algorithms. The method basically uses the information about the
conditional probabilities of observed sequences of elliptic-curve operations, and
bit-patterns that form the secret key. The method can be considered as an en-
hancement because it works even in cases where the standard simple-power at-
tack fails. The approach is a general method in the sense that it can be used to
attack arbitrary elliptic-curve point-multiplication algorithms that do not even
necessarily fix the sequence of instructions. We demonstrated that it can be
effectively applied on the example of a modification of a point-multiplication
algorithm originally proposed by Morain and Olivos where the standard simple
power-analysis attack fails. We also analyzed the security of the NAF-method
which is often used in standards. We pointed out that this method applies to
randomized algorithms as well. Based on the analysis we conjecture that meth-
ods that only use three digits for encoding the ephemeral key are susceptible to
this attack. To summarize the results, the method is new and more efficient than
the standard simple power-analysis attack and poses a serious threat against cer-
tain algorithms that only try to obscure the ephemeral key. Our analysis also
indicates that the long-term security margin of the NAF-method in the case of
a 163-bit curve is not too large.
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