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Abstract. Many software implementations of public key cryptosystems
have been concerned with efficiency. The advent of side channel attacks,
such as timing and power analysis attacks, force us to reconsider the
strategy of implementation of group arithmetic. This paper presents a
study of software counter measures against side channel attacks for el-
liptic curve cryptosystems.
We introduce two new counter measures. The first is a new implemen-
tation technique, namely, homogeneous group operations, which has the
property that addition and doubling on elliptic curves cannot be dis-
tinguished from side channel analysis. Being inexpensive time-wise, this
technique is an alternative to a well-known Montgomery ladder. The sec-
ond is a non-deterministic method of point exponentiation with precom-
putations. Although requiring rather large ROM, it provides an effective
resistance against high-order power analysis attacks for the price of index
re-computations and ROM accesses.
An experimental implementation of NIST-recommended elliptic curves
over binary fields with a balanced suite of counter measures built-in in
group arithmetic is presented, and the penalty paid is analyzed. The
results of the implementation in C on an AMD Duron 600 MHz running
Linux are included in the paper.

1 Introduction

With the advance of side channel attacks both hard- and software implementa-
tions of cryptosystems have to take into account various protection techniques.
It has been claimed that all “naive” implementations can succumb to attacks
by power analysis. In this paper we do not detail the principles and techniques
of different side channel attacks; it had been done elsewhere [17,18,22,10,23].
Instead, we survey and systematize different software counter measures against
such attacks, including a couple of new techniques, and suggest a balanced ap-
proach to their implementation in the context of elliptic curve cryptosystems
(ECC) in binary fields. Giving a due to other excellent papers on practical re-
alizations of ECC [29,31,19], we claim that the contribution of our paper is an
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attempt to extend the work in [11] to an implementation in which a balanced
suite of counter measures against side channel attacks have been built-in on a
group operation level.

An implementation of an elliptic curve cryptosystem involves many choices;
not only domain parameters (e.g., underlying finite fields, field representations,
particular elliptic curves) and group arithmetic, but also field arithmetic, which,
in its turn, includes many different methods and algorithms. It is not surprising
therefore that although numerous papers on various aspects of ECC implemen-
tations had been written, there are only a handful of those that constitute an
extensive and careful study that includes all factors involved in the efficient
software implementation, notably [11] and [4]. These papers present C imple-
mentations on the Pentium 400 MHz workstation of the NIST-recommended
elliptic curves over binary and prime fields, respectively.

All published so far complete implementations of ECC have been concerned
with efficiency. The advent of side channel attacks force us to reconsider the de-
velopment cycle. As had been demonstrated in a break-through work by Kocher
et al. [17,18], for real life implementations an attacker can be able to perform
measurements on the device. If the different operations present different charac-
teristics detectable from the outside (like power consumption profile or duration),
the sequence of operations can be discovered by the attacker.

In the most widely used cryptographic systems, an exponentiation with a
secret exponent is required at some stage. “Exponentiation” in this context is
the repeated application of a group operation to the same element. Efficient
exponentiation algorithms involve a sequence of squarings, multiplications and
possibly divisions (respectively doublings, additions and possibly subtractions in
additive notation). Finding out the sequence of operations gives information on
the exponent and in some cases uniquely determines it. A detailed systematic
description of power analysis attacks on modular exponentiation algorithms can
be found in the work of Messerges et al. [22].

Coron [7] generalized DPA attacks to elliptic curve cryptosystems and had
shown how to extend DPA to any scalar multiplication algorithm.

Since then, a plethora of papers suggesting various counter measures both,
in a general setting and for particular classes of elliptic curves, has been pub-
lished. We set upon identifying a set of sufficiently general protection techniques
that can be employed in a real life scenario. In what follows we survey algorith-
mic counter measures suggested in the literature, and introduce some original
methods. After which an outline of the ECC software implementation in binary
fields with a balanced choice of counter measures against side channel attacks
is discussed. A description of the experiment with a C implementation on a PC
with AMD Duron 600 MHZ running Linux, concludes the paper.

2 Preliminaries and Notation

Since we are interested in elliptic curves, the notation is additive. Thus the basic
operations are doubling, addition and subtraction. We focus on elliptic curves
over finite fields of characteristic 2, which have an affine equation of the form
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y2 + xy = x3 + ax2 + b

for two elements a and b in the base field. A point on the curve is either identified
by a couple of affine coordinates (Px, Py) or is the special point P∞. If P and Q
are points on the curve, then an addition ⊕ is defined so that P ⊕ Q is also a
point on the curve and P∞ is the neutral element. Thus one can also define a
subtraction P �Q. In what follows, notation from [2] is used.

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the curve. Assume P1, P2 �=
P∞ and P1 �= −P2. The sum P3 = (x3, y3) = P1 ⊕ P2 is computed as follows.

x3 = λ2 + λ + x1 + x2 + a, y3 = (x1 + x3)λ + x3 + y1,

where λ = (y1 + y2)/(x1 + x2) if P1 �= P2, and λ = (y1)/(x1) + x1 if P1 = P2.
Each point has also a projective expression of the form (PX , PY , PZ). If the

point is P∞ then its projective coordinates are (1, 1, 0). Else they are related to
the affine coordinates via the transformation rules

(Px, Py) �→ (Px, Py, 1)

(PX , PY , PZ) �→ (PX/P 2
Z , PY /P 3

Z).

A curve then is specified by the equation Y 2 + XY Z = X3 + aX2Z2 + bZ6.
Doubling formulas (X3, Y3, Z3) = 2(X1, Y1, Z1) for the projective equation is:

Z3 = X2
1Z2

1 , X3 = X4
1 + bZ4

1 , Y3 = bZ4
1Z3 + X3(aZ3 + Y 2

1 + bZ4
1 ).

Addition (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, 1) in mixed coordinates is:

A = Y2Z
2
1 , B = X2Z1 + X1, C = Z1B, D = B2(C + aZ2

1 ), Z3 = C2, E = AC,

X3 = A2 + D + E, F = X3 + X2Z3, G = X3 + Y2Z3, Y3 = EF + Z3G.

ECC is based on the general problem of exponentiation in Abelian groups. Var-
ious algorithms for exponentiation in the context of cryptography are presented
in [21,2]. The survey [8] describes fast methods, including those specialized for
elliptic curves. Due to a short bit-length of the exponent, and that it is often
generated on-the-fly, sophisticated techniques do not show their advantage. How-
ever, certain idiosyncrasies of elliptic curves (e.g., subtraction and addition are
almost identical), prompt us to consider together with a classical binary method
signed and non-adjacent form (NAF) representation of the exponent [21].

Some algorithms described in this paper work with different exponentiation
procedures. In order to be able to interchange them, we rely on a routine that
transforms an integer into a sequence indicating the order of operations to per-
form. Possible contents of the resulting sequence elements are D (double), A
(add), S (subtract), suitably encoded.

3 Taxonomy of Software Counter Measures

Three main techniques developed by Kocher et al., are timing attacks [17], and
simple (SPA) and differential power analysis (DPA) attacks [18]. Among them,
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the DPA is the most sophisticated; nevertheless, there are references in the lit-
erature when a DPA-protected implementation could be SPA-vulnerable [9].
Moreover, for ECC it seems more difficult to prevent SPA than DPA, as there
are good solutions for the latter[7,15,22].

Side channel attacks work because there is a correlation between the physical
measurements taken during computations (e.g., power consumption, computing
time, EMF radiation, etc.) and the internal state of the processing device, which
is itself related to the secret key. While some authors insist on so-called provable
resistance [6,9] to specific classes of attacks, we share an attitude of [5] and
state that, unlike in classical cryptology, in a case of side-channel attacks the
definition of an adversarial model is not absolute. Thus, rather than having a
proof of security, one can have only a strong evidence that the countermeasure
resists an attack. Note that the security is assessed at the implementation level.

Three general algorithmic techniques to defy side channel attacks are:

1. Indistinguishability, which basically means that the only strategy for an ad-
versary is to guess at random. It can be partially achieved by eliminating
disparity between group operations involved in exponentiation.

2. Random splitting of every bit of the original computation into k shares where
each share is equiprobably distributed. Computation then will be carried se-
curely by performing computation only on shares, without reconstructing the
original bit [6,9]. In practice, an implementation of this technique for ECC
amounts to blinding an exponent or/and a base point with some random
mask generated for every run.

3. Randomization of the execution sequence which, in order to be successful,
must be carried out extensively [6] and, ideally, supported by hardware [27].

In what follows we systematically describe a wide range of counter measures
proposed so far for ECC in a general setting.

3.1 Indistinguishability

The first requirement to an effective protection against timing and SPA attacks
is to ensure that an instruction performed during an execution of a cryptographic
algorithm should not be directly dependent on the data being processed.

Double-and-Add Always. Introduced in [7], this counter measure eliminates
branch instructions, conditioned by secret data.

Algorithm 1 (Double-and-add) ==> Algorithm 2 (Double-and-add always)
Input: P, d=(d_m-1,...,d_0) Input: P, d=(d_m-1,...,d_0)
Q <- P Q[0] <- P
for i from m-1 down to 0 do for i from m-2 down to 0 do
Q <- 2Q Q[0] <- 2Q[0]
if d_i=1 then Q <-- Q + P Q[1] <- Q[0] + P

output Q Q[0] <- Q[d_i]
output Q[0]
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This method increases by 33% the amount of field operations by necessitating
“dummy” computations. As has been shown in [28], it makes it susceptible to a
new type of attacks, where an attacker induces any temporary random fault into
the ALU during the execution of Q[1]← Q[0]+P at iteration i. Then, according
to whether the final result is incorrect or not, the attacker may deduce if the di

bit of the exponent is 0 or 1!

The Universal Addition on Elliptic Curves. This method was suggested
in [20] for projective coordinates for a subclass of elliptic curves in finite fields
of characteristic greater than 3. The approach involves a representation of an
elliptic curve as the intersection of two quadric surfaces in P 3. A non-standard
definition of point addition has the advantage that the set of equations holds
when two points are equal, thus, naturally eliminating the difference between
point addition and doubling. The price to pay is that every point addition re-
quires 16 field multiplications and 3 squarings. Even after various optimizations
(that involve the Jacobi representation and a windowing method, and require
additional memory), a total increase in computation costs is 70% in comparison
with a standard projective coordinate method.

Independently, a similar approach was developed for Hessian curves in [14],
where due to the high symmetry of the Hessian parameterization, the same
algorithm can be used for point addition and point doubling. An implementation
of point addition requires 12 field multiplications, providing 33% improvement
over Jacobian curves.

Unfortunately, both Jacobian and Hessian parameterizations are not fully
general. Brier and Joye later extended the technique in [3] to general Weier-
strass elliptic curves and come up with the unified formulae, which requires 7
multiplications, 1 inversion and 3 squarings for affine coordinates and 18 multi-
plications for projective. This is very expensive in comparison with the method
proposed in this paper while providing the same protection.

A Montgomery Ladder. The advantages of Montgomery scalar multiplica-
tion [24] in the context of elliptic curves were re-discovered several times [19,25,
13,16]. The Montgomery ladder is based on the binary method and the observa-
tion that the x-coordinate of the sum of two points whose difference is known, can
be computed in terms of only x-coordinates of the involved points. Incidentally,
it is also the most promising candidate for a“side channel indistinguishable” ex-
ponentiation. The Montgomery ladder protected with a “no-branches” technique
is given below.

Algorithm 3 (Montgomery method) => Algorithm 4 (Modified Montgomery)
Input: P, d=(d_m-1,...,d_0) Input: P, d=(d_m-1,...,d_0)
Output: dP Output: dP
P[1] <- P P[1] <- P
P[0] <- 2P P[0] <- 2P
for i from m-2 down to 0 do for i from m-2 down to 0 do
if d_i=1 then b <- (1-d_i)
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P[1] <- P[1]+P[0] P[b] <- P[0]+P[1]
P[0] <- 2P[0] P[d_i] <- 2P[d_i]

else
P[0] <- P[1]+P[0] return P[1]
P[1] <- 2P[1]

return P[1]

The advantage of this method is perfectly symmetric, memory-efficient com-
putations. The disadvantage is increase in computation costs since both, point
addition and point doubling, are computed in each iteration.

An optimization of the Montgomery method based on a new formulae for
computing x-coordinate for addition of two points, was suggested in [19]. In affine
case, a new formulae requires 2 field inversions, 2 multiplications, 2 squarings
and 4 additions per iteration; for projective coordinates, it involves only 6 field
multiplications, 6 squarings, and 3 additions per iteration. This is comparable
cost-wise with our homogeneous group operation method described later, but
has an advantage of using less memory, since y-coordinate is not used.

Universal Exponentiation Algorithm. Introduced in [5], this is an elegant
attempt to design a provably SPA-resistant exponentiation method. Using a
representation of the exponent with addition chains, the authors “transfer” the
security of the exponentiation method actually implemented in the exponent
itself (i.e., in a secret data). The requirement here is that an exponent must be
represented as an addition chain in a secure environment. The algorithm works
with virtually all exponentiation methods. It reads triplets of values (γ(i) : α(i) :
β(i)) meaning that the content of register R[α(i)] must be multiplied by (added
to) the content of register R[β(i)] and the result must be written into register
R[γ(i)]. The exponent d then is represented by the register sequence Γ (d) =
{(γ(i) : α(i), β(i))}0≤i≤m−1. In order to break the algorithm, an adversary must
be able to differentiate among the triplets and to recover all their values. The
advantage of this method is that it introduces only a small amount of extra
computations; the disadvantage is large memory usage.

3.2 Splitting Variables

In practice, the general encoding proposed in [6,9] amounts to blinding an ex-
ponent and a base point with some random mask to prevent DPA attacks.

Blinding an Exponent. Randomization of the exponent is inexpensive and
useful technique. It comes in few flavors.

An additive mask is usually used in the ECC context [7]. It consists in adding
a multiple of the element order to the exponent. If N is the group order, then
(kN)P = 0 for any integer k and for any element P in the group. To compute
dP , where d is the secret exponent and P is a base point, one first blinds d
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with kN , where k is a (small) random number generated for every run, and N
is the group order. Hence, Q = (d + kN)P = dP + (kN)P = dP . As d usually
is the size of the group order, choosing a t-bit integer k increases the size of the
exponent by about t bits.

An exponent splitting [5] is a variant of this technique, where d is represented
as a sum of a random k and d−k, and exponentiation is carried out in two steps:
R → kP ; Q → (d − k)R. The values of both, k and d − k are required to
recover the value of d, which makes it less attractive than the method above.

A multiplicative mask is a multiplicative analogue of this idea. Let N be
the group order. If k is a unit in the multiplicative group (Z/ZN,×) and k−1

its inverse, then d = k(k−1d)( mod N) for any exponent d. This means that
calling d′ := k−1d( mod N), for any group element P one has the following
equivalent exponentiations:

(1) P
d�→ dP (3) P

d′
�→ d′P k�→ k(d′P )

(2) P
k�→ kP

d′
�→ d′(kP ) (4) P

kd′
�→ (kd′)P

Sequence (1) is a straightforward exponentiation; sequence (4) is a sub-case of the
additive blinding technique. Sequences (2) and (3) are performed in two phases.
We focus on (2). The overhead is given by the exponentiation with exponent k,
since both d and d′ are on average the size of N . To keep overhead low, one can
choose k to yield a fast exponentiation, for instance by choosing it randomly
among the elements of (Z/ZN)∗ of at most t bits, with a small t. As in the
additive blinding, one can trade-off the degree of randomization (and thus the
security) for speed.

If sequence (2) is used, the element fed to the second phase is not controlled
by an attacker. The first phase, on the other hand, doesn’t leak any information
whatsoever on the secret exponent, depending uniquely on the input element
and the random integer k. Thus one gets at the same time additional bonuses of
a change in the sequence of point operations and of randomization of the input
point. Cost-wise, the method is comparable with the additive mask, although
precomputations are somewhat slower.

Blinding a Base Point. Blinding a base point is necessary if we assume that
an attacker knows how points are represented in memory during computations
[7]. An accepted technique to mask the input by applying some bijective function
for which it is easy to compute the final correction.

Adding to the input a “perturbation point” [7] involves storing a couple
of “random” points (R,−dR) and updating it at each run by doubling both
elements. Exponentiation of an input P with an exponent d is performed in three
steps: (1)P ′ ← P + R, (2)Q′ ← dP ′ = dP + dR, (3)Q← Q′ + (−dR) = dP.
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As the argument P + R of the exponentiation phase does not depend exclu-
sively on the input, it is not possible to choose points with particular properties.
However, if d changes at each run, computing −dR for final correction doubles
group operations, and must be protected as well.

Randomizing projective coordinates of a point [7] is achieved almost
for free. Projective coordinates of a point is not unique because (X, Y, Z) =
(kX, kY, kZ) for every k �= 0 in the finite field. Hence, before each new execution
of dP , the projective coordinates of P can be randomized with a random k.
It makes it impossible for an attacker to predict any specific bit of the binary
representation of P , thus rending a DPA attack infeasible.

3.3 Randomization of the Execution Sequence

Non-deterministic execution of the sequence of instructions, although does not
provide perfect protection against statistical techniques, increases the number
of measurements.

Randomized Addition/Subtraction chain. [26] exploits the fact that dP
can be computed with different execution sequences; for instance, for 9P : P →
2P → 4P → 8P → 9P or P → 2P → 4P → 5P → 10P → 9P. Randomization
can be achieved by inserting a random decision that can rearrange a sequence
of additions, subtractions and doubling in a signed binary algorithm. The idea
is to randomly substitute a long chain of 1’s (which correspond to “double-and-
add”) in the signed binary representation of the exponent by a block of zeros
(“double”) followed by −1 (subtract). Similar substitution is applied to isolated
0’s inside a block of 1’s. The algorithm needs some 9% more additions. The
authors claim that it makes DPA attacks really difficult.

4 Homogeneous Group Operations

In the choice of doubling and addition algorithms for elliptic curves, it is often
advisable to work in projective coordinates, which allows us to avoid costly in-
versions in the field. For elliptic curves over fields of characteristic 2, complexities
for doubling performed on projective coordinates and addition and subtraction
on mixed affine-projective coordinates with projective result, are: Here Mult
stands for multiplication, Squar for squaring, and Add for addition.

The problem we address here is the relevant computational difference be-
tween addition/subtraction and doubling, which in implementation reflects in
differences detectable by an attacker. Observing that the complexity for point
doubling is about half of the complexity for addition/subtraction, one can think
of splitting the complex subroutines into two parts, each one approximately
equivalent to a point doubling. This is actually possible, as we show below.

When choosing an elliptic curve, setting a = 1 makes the total number of
products in addition and subtraction exactly twice the number for doubling,
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Table 1. Complexities of group operations in projective coordinates

General case Case a = 1
Curve operation Mult Squar Add Mult Squar Add
Doubling 5 5 4 5 5 4
Addition 11 3 7 10 3 7
Subtraction 11 3 8 10 3 8

thus avoiding dummy operations. We present atomic units of computations in
the case a = 1. A general case slightly differs in the addition/subtraction part,
while the doubling subroutine is the same.

Before proceeding, we observe that computing the subtraction P �Q of two
points corresponds to computing P ⊕(−Q). If Q has affine coordinates (Qx, Qy),
then −Q has affine coordinates (Qx, Qy +Qx). Thus, the algorithms for addition
and subtraction only differ by a field addition, and we will consider them at
the same time. Furthermore, if the affine point to be subtracted is the same
throughout a loop, one can compute Qx + Qy once. Here are the subroutines.

Doubling. The input is given by the coordinates (AX , AY , AZ) of the point.

λ1 ←− A2
Z λ6 ←− b̃λ1 λ11 ←− λ4

7

λ2 ←− AXλ1 λ7 ←− AX + λ6 λ12 ←− λ10λ11

λ3 ←− AY AZ λ8 ←− λ2
4 λ13 ←− λ9 + λ12

λ4 ←− A2
X λ9 ←− λ8λ2

λ5 ←− λ2 + λ4 λ10 ←− λ5 + λ3

Here b̃ is such that b̃4 = b. It can be computed once and for all when the curve
is set. The output point has projective coordinates (λ11, λ13, λ2). The sequence
of operations is SMMSAMASMASSMA.

Addition/Subtraction – Phase I (Case a = 1). The input is given by
projective coordinates (AX , AY , AZ) and affine coordinates (Bx, By).

µ1 ←− λ2
7 λ4 ←− By (addition) λ7 ←− AZλ6

λ1 ←− A2
Z or λ8 ←− AY + λ5

λ2 ←− λ1Bx λ4 ←− By + Bx (subtraction) λ9 ←− λ8Bx

λ3 ←− λ1AZ λ5 ←− λ4λ3 λ11 ←− λ7 + λ8

λ6 ←− AX + λ2

The sequence of operations is SMMAMAMAMA.
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Addition/Subtraction – Phase II (Case a = 1). This subroutine is exe-
cuted right after the previous one, of which it uses some of the partial results.

µ1 ←− λ2
7 µ5 ←− µ1 + µ3 µ9 ←− λ9 + µ2

µ2 ←− λ7λ4 µ6 ←− λ6µ4 µ10 ←− µ9µ1

µ3 ←− λ8λ11 µ7 ←− µ5 + µ6 µ11 ←− µ8 + µ10

µ4 ←− λ2
6 µ8 ←− µ7λ11

The output point has projective coordinates (µ7, µ11, λ7).The sequence of oper-
ations is SMMSAMAMAMA.

The shortest operation sequence (including a couple of dummy operations)
for all three subroutines is SMMSAMASMASSMA.

Table 2. Complexities of homogeneous vs normal group operations

General case Case a = 1
Curve operation Mult Squar Add Mult Squar Add
Doubling (old) 5 5 4 5 5 4
Doubling (new) 6 5 4 5 5 4
Addition (old) 11 3 7 10 3 7
Addition (new) 12 10 8 10 10 8
Subtraction (old) 11 3 8 10 3 8
Subtraction (new) 12 10 8 10 10 8

Table 2 gives the complexities for various options. Observe that squarings
and additions in the field of characteristic 2 are very cheap. Thus we are wasting
little more than one field multiplication per curve operation in the general case,
and just a few additions and squarings in the case a = 1.

An Exponentiation Algorithm Using Homogeneous Point Operations.
The classical algorithms can be used to implement an exponentiation that shows
to the outside world a sequence of homogeneous rounds. The subroutines for
doubling, addition-phase I, subtraction-phase I and addition/subtraction-phase
II have been implemented in C. In order to achieve homogeneity, they are invoked
with the same kind of parameters, i.e. with 5 field elements representing the
projective and affine coordinates of two curve points. The result is a point in
projective coordinates, i.e. a triplet of field elements.

Phase I of addition and subtraction returns the first input point (the one in
projective coordinates). The subroutines are called Fi with i being 0 for doubling,
1 for addition/I, 2 for subtraction/I and 3 for addition-subtraction/II. F1 and F2
also have side-effects, namely they store in memory partial results which are used
by F3. We suppose that at the precomputation step, the exponent is transformed
in a secure environment into a sequence b[1], ..., b[d] corresponding to procedure
calls.
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Algorithm 5 (Exponentiation with homogeneous group operations)
Input: point P=(P_x,P_y) in affine coordinates,

sequence b[1],...,b[d] of atomic unit calls for exponent d
Output: point dP in affine coordinates
(S_X,S_Y,S_Z) <- (1,1,0) (initialise the result)
for i from 1 to d-1 do

(S_X,S_Y,S_Z) <- F_{b[i]}(S_X,S_Y,S_Z,I_x,I_y)
Final conversion

S_x <- S_X/S_Zˆ2
S_y <- S_Y/S_Zˆ3

Return the point with affine coordinates (S_x,S_y)

5 Non-deterministic Right-to-Left Method with
Precomputations

Non-deterministic right-to-left method with precomputations had been actually
implemented in our experiment. It is very efficient but requires a lot of ROM.

An algorithm is based on the observation that dP = dm−12m−1P + ... +
d12P + d0P , where (dm−1, ..., d1, d0) is a binary representation of the exponent
d, d0 being the LSB, and dm−1 the MSB of d. Thus, if the multiples of point
P are precomputed in advance, it does not matter in which order the bits of
the exponent d are scanned as long as one can associate the bit di with the
precomputed multiple 2iP . Here is our solution.

Algorithm 6 (Non-deterministic right-to-left with precomputations)
Input: array A=[2ˆ{m-1}P,...,2P, P] of precomputed multiples of P

d = (d_{m-1},...,d_1, d_0) bits of an exponent
Output: dP
M <- 0 -- initialise M to zero
W <- permute([m-1, ...,0]) -- W contains randomly permuted indices
for all elements j from W do
M <- M + d_{W[j]}*A[W[j]]

return M

Instead of permutation, one can just rotate A and d simultaneously j posi-
tions to the left or to the right; 0 ≤ j ≤ m− 1 is a random updated at each run.
To enhance the randomization, the method of random splitting and rotating can
be applied recursively to the sub-arrays of indices. This method is beneficial for
protocols where the base point P does not change often. However, it requires
additional ROM to store precomputed multiples of P . Considering that the size
of field elements for the ECC is around 200 bits, the total amount of memory in
question is 25× log N bytes, where N is a group order.

6 A Point of a Small Order as a Perturbation Point

A point of a small order on the curve as a perturbation point is a variation
on the idea of blinding a base point. Elliptic curves of use for cryptographic
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purposes have a group of points with order a big prime N times a cofactor h,
where h is usually small. We suggest choosing as the perturbation point R a
point of order h. We suppose the cofactor not to be too small (a cofactor of 2
would be no good) but such that its bit-length lh is not bigger than, say, 1/5 of
bit-length lN of N .

This presents some disadvantages but allows on-the-fly computation of the
point and the correction at each run with much fewer group operations. To be
useful, a cofactor h has to be at least 4. Although [1] contains an example with
the bit-length lh = 16 and lN = 161, the trend to have a very small cofactor
weakens our method.

We compute a random point of order h as the multiple of Q by a random
factor r between 0 and h − 1. The final correction to apply is T := −drQ.
We can actually compute it as (−dr mod h)Q. The factor is again between 0
and h − 1. As the bit-length of h is considerably less than the bit-length of N ,
the exponentiations to get R and T are faster than the main exponentiation and
require some lh additions. The computation of rQ and (−dr mod h)Q must be
masked. As r changes after each run, one has to take care mostly of single-run
analysis.

One can speed up and simultaneously mask computations of rQ and (−dr
mod h)Q by storing 2Q, 4Q, . . . , 2lh−1Q and using fast right-to-left binary algo-
rithm in a non-deterministic manner, as described in the previous chapter. This
technique had actually been implemented.

7 Computer Experiments

We implemented some of the ideas explained in the previous chapters. For finite
fields, we implemented in C basic operations from scratch following [11].

Field Arithmetics. As polynomial basis, we followed [11] and [1], choosing the
following irreducible polynomials for the fields in our experiments.

F2163 = F2[x]/(x163 + x7 + x6 + x3 + 1)

F′
2163 = F2[x]/(x163 + x8 + x2 + x + 1)

F2233 = F2[x]/(x233 + x74 + 1)

F2283 = F2[x]/(x283 + x12 + x7 + x5 + 1)

For multiplication right to left and left to right comb methods, plus a base 16
left to right comb method were implemented. As the inversion algorithm
we chose the extended Euclidean algorithm. Sample timings taken on an
AMD Duron 600 MHz running Linux for selected fields are given in Table 3.

Exponentiation on Elliptic Curves. We implemented both binary and
signed NAF exponentiation for elliptic curves over F2163 , choosing a curve E1
with a = 1 and a general curve E2 with the parameters specified below.
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Table 3. Timing for field operations in µs for various fields

Operation F2163 F′
2163 F2233 F2283

Addition 0.16 0.16 0.17 0.16
Squaring 0.34 0.37 0.38 0.53
Product: RL comb 7.00 7.13 9.86 18.76
Product: LR comb 10.04 10.10 14.93 18.72
Product: Base 16 LR comb 2.78 2.80 3.61 4.59
Inversion 36.02 36.05 60.50 77.97

Point operations were performed using the standard sequence of operations
and the homogeneous versions. Table 4 summarizes the penalty for a side-channel
protection. To get the following timings, the generating points were multiplied
by a random exponent both with standard and homogeneous operations. For E1
the fact that a = 1 was taken into account in both versions.

As for a real-life scenario, a suite of built-in counter measures included:

– indistinguishability via homogeneous operations (3-17% overhead);
– a multiplicative exponent masking, where the first step (multiplication with

a small random k) had been implemented via a non-deterministic right-to-
left binary method with precomputations, providing an additional benefit of
blinding a base point in a process (15% overhead).

The total costs amounted to 2133 field multiplications, 1773 squarings, 1416
additions and 3 inversions, while a non-protected version would have had 1683
multiplications, 1121 squarings, 1200 additions and 1 inversion. In other words,
some 30% increase in computation time constitutes the total penalty.

Elliptic curve parameters
E1

F F2[x]/(x163 + x7 + x6 + x3 + 1)
a 01
b 02 0A601907 B8C953CA 1481EB10 512F7874 4A3205FD
N 04 00000000 00000000 000292FE 77E70C12 A4234C33
h 02
Qx 03 FB02D922 0A5E7980 D9C7C192 AFC7EDC4 19B261E4
Qy 05 F8692B70 5F82AAF2 7E41D4D3 82D9E359 98979F99

E2

F F2[x]/(x163 + x8 + x2 + x + 1)
a 07 2546B543 5234A422 E0789675 F432C894 35DE5242
b 00 C9517D06 D5240D3C FF38C74B 20B6CD4D 6F9DD4D9
N 04 00000000 00000000 000292FE 77E70C12 A4234C33
h 02
Qx 07 AF699895 46103D79 329FCC3D 74880F33 BBE803CB
Qy 06 434AB98E 1F769093 2FA04BCA 9ED0479D 4B5FC954
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8 Conclusion

From our experiment it follows that the cost of counter measures against side
channel attacks need not to be prohibitively high. With a choice of well-balanced
suite of complementary counter measures the total overhead can be as low
as 30%. We want to emphasize that the objective of the experiment was an

Table 4. Exponentiation timings in µs

binary NAF binary NAF
E1 E2

standard 5355 4699 standard 5642 4932
homogeneous 5512 4847 homogeneous 6581 5770
overhead 2.9% 3.1% overhead 16.6% 17.0%

“average-case” analysis, rather than finding the fastest or the most secure so-
lution. This explains, for example, the choice of the field GF (2n) and the field
representation. It is well-known that operations in GF (2n) can be efficiently im-
plemented in both, hardware and software, and that, although the normal basis
representation offers a very fast squaring, the polynomial representation is more
widely used.

The choice of projective coordinates for ECC allows us to use homogeneous
group operations, thus achieving SPD resistance with only 3–17% overhead.
One can argue that using projective coordinates is a good idea only in prime
fields, but not in GF (2n) [30]. However, the choice of coordinates must take
into account not only performance, but also security of the implementation.
Performance-wise, it makes sense to use projective coordinates when the ratio
inversion/ multiplication is greater than 3. Since this ratio depends very much
on the chosen multiplication algorithm (see the table in the previous section),
the choice of coordinates cannot be made solely on the criteria of the field.

Projective coordinates offer actually two benefits when considering side chan-
nel attack resistance. They can be used to defy DPA attacks by randomizing
coordinates as in [7] as well as SPA and timing attacks using our homogeneous
group operations method.

The experiment made us also wiser. If we were to give an advise on an all-
round suite of counter measures against side channel attacks, including timing,
SPA, DPA, and fault attacks, we would recommend the following.
– Blinding the base point by randomizing projective coordinates.
– Randomization of the exponent can be done using both, additive or multi-

plicative masks; the latter has an additional benefit of randomization of the
execution sequence, and partially, of a base point.

– Use the securized Montgomery ladder with optimized group operations (on
x-coordinates only) as suggested in [19]. The overhead is comparable with
the one achieved in our experiment, but the algorithm is naturally more
regular and thus, more secure.
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