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Abstract. Image watermark that is resistant to geometric distortion is
remained to be an unsolved problem. Difficulty of the probelm comes
from the situation that the watermark should be extracted without any
information of the original image. In this paper, we review this prob-
lem and propose a new watermarking scheme based on invariant pattern
recognition theory. We propose an invariant watermark using the Radon
transform and higher order spectra. A bispectrum feature vector of the
image is used as the watermark. Our approach differs from the previous
methods in that we embed watermark into the phase of the higher order
spectra. Also, our Radon embedding grid outperforms the Fourier-Mellin
based methods. We devised a new embedding method which allows de-
tection of the watermark when there is no exact inverse function during
embedding. As we use the Radon transform, our method can be used for
medical images. We show the invariance of the designed watermark with
mathematical proofs. Experimental results confirm that this scheme is
resistant to geometric distortions.

1 Introduction

There has been a very intensive research in the digital watermarking area in
the last few years [1]. A useful image watermarking method must be robust to
the distortions occurred by any normal use of images. Those distortions include
a wide range of image processing such as image enhancement, JPEG compres-
sion and geometrical modifications. However, conventional image watermark-
ing algorithms are sensitive to geometric distortions [2]. Simple rotation, scale
and translation may significantly reduce the detection level since it changes the
alignment of the watermark. Random geometric distortion which is known as
StirMark attack [2] greatly reduces the watermark strength at the detector.

Some watermarking methods that are resilient to geometrical attacks were
reported in recent papers. One approach is to embed a known template into
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images along with the watermark [3][4]. The template contains the information
of the geometric transform undergone by the image. During detection, the image
is inverse transformed using the distortion information estimated from the tem-
plate, then the watermark can be extracted. This method requires embedding
a template in addition to the watermark so that this may reduce image fidelity
and watermark capacity. Watermarks itself can be used as a template [5]. They
embed a signal multiple times and use autocorrelation for the detection of the
watermark pattern. The autocorrelation peaks have the structure for inverting
geometric distortion. For this type of system to be robust, both the inverting
and watermark detection procedure should be robust.

Another approach is to insert a watermark in a domain that is invariant
to geometrical distortions based on the Fourier-Mellin transform [6]. A rotation
and scaling of an image results in the translation at the log-polar mapping of the
Fourier magnitude spectrum of the image. After taking the Fourier magnitude
spectrum of the modulus of it, we reach to the RST invariant domain. Water-
mark is inserted in the domain and inverted to have the watermarked image.
One problem with this method is that they have implementation difficulty. The
log-polar and inverse log-polar mapping process uses interpolation that causes
a degradation of the watermark and fidelity loss of the watermarked image.
The second problem is in that they need the original image for the watermark
detection. Any geometric distortion can be inverted with the original image.

Watermarks that are invariant to geometric distortions can be designed [7].
They use the Fourier-Mellin transform for the required invariance. They define
an invariant vector from the central slices of the log-polar mapped Fourier mag-
nitude spectrum. A watermark is embedded by modifying the vector. Algorithms
using the Fourier-Mellin transform suffer serious implementation difficulties. The
log-polar and inverse log-polar mapping introduces errors during insertion. As
they use the Fourier magnitude spectrum, interpolation performance is poor be-
cause interpolation only performs well with the sample values with the same
scale. There are many other implementation problems to consider [6][7].

Watermarking algorithms using a feature of an image were proposed as the
second generation watermark [8][9]. As features of the image have high invariance
to distortions, they can be used as a key to find the insertion location. We propose
a feature based image watermarking method that is resistant to geometrical
attacks. An invariant feature vector is defined with higher order spectra (HOS)
of an image. The HOS were introduced as spectral representations of cumulants
or moments of ergodic processes, and are useful in the identification of nonlinear
and non-Gaussian random processes as well as deterministic signals [10][11]. The
use of HOS for our feature-based watermark is motivated as HOS are translation
invariant and they are zero for Gaussian noise.

For the use of HOS, we adopt the bispectrum (the third-order spectra) fea-
ture which is known to have a wide range of invariance properties. Invariant
bispectrum features have been used in pattern recognition for texture analysis
and image classification [12][13]. We define a bispectrum vector from the projec-
tions of an image. The vector is modified and inverted to have the watermarked
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image. However, due to its lossy nature of the inverse process, we can not detect
the modified vector after the inversion.

As argued in [7], we believe that the strong invariance of the embedding
function is not necessary. We can formulate this as follows. With an embedding
function, Y (w, C), we generate the watermarked image Cw from the cover im-
age C and the watermark w. Instead of detecting the inserted signal w from Cw,
the detector X(Cw) extracts the signal mixed with the watermarking system
distortion ns as follows:

X(Cw) = w′ = w + ns (1)

If the function Y can generate inverted image exactly during the embedding
procedure, we have ns = 0 and we can extract the exact embedded watermark.
However, as in [6] and [7], when we use an embedding function that has lossy
inverse procedure, ns is not zero. These inversion losses occur when we apply
the continuous functions to discrete images. In these situations, we still have
to be able to detect w from the distorted w′. This problem can be solved in
several approaches. By defining a function that maps w from w′, the embedded
watermark can be extracted. Another way to avoid this problem is to design an
inversion procedure that can minimize ns.

These approaches generally introduce complexity to the system with high
cost. We propose a low cost method using the detector information during the
insertion procedure. We use a form of informed embedding of watermarking with
side information [14]. First, we design a detector that extracts the feature vector
from the projections of the test image. During the embedding procedure, the
detector is called to estimate w′. If w′ has a detection value significantly greater
than values for previously defined watermarks, it is accepted as the watermark
and it is expected to be extracted at the detector instead of w. We repeat this
procedure with different watermarks until we are successful. Watermarks are
generated through this iterative routine to guarantee their uniqueness at the
detector.

Our approach is similar to [7]. We define a vector from the projections. How-
ever, our method is different from them in that we use the bispectrum feature
vector which has a wide range of invariance properties. We devised a new inser-
tion method which does not require exact inversion process. Our method is more
resilient to tampering as we embed a signal into the Fourier phase spectrum while
the previous methods use the magnitude spectrum. This is because the phase
components of the discrete Fourier transform (DFT) have more psychovisual
impact than magnitude spectrum and as a consequence, malicious parties would
need to cause unacceptable damage to the quality of the image in order to remove
the watermark [15].

The proposed method is evaluated using the StirMark [2] benchmark soft-
ware. The experimental results show that our algorithm performs well against
the geometric distortions and other signal attacks.

The rest of this paper is organized as follows: Section 2 describes the bispec-
trum feature of images; Section 3 presents the watermarking algorithm; Section 4



148 Hyung-Shin Kim et al.

s

x

y
)g(s,θ

),( yxi

s
θ

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

0 50 100 150

150

100

−50

0

50

100

150

(a) (b)

Fig. 1. Image decomposition with the Radon transform : (a) Projection process
(b) 1-D Projection of Lena image

shows the experimental results of the proposed method; In section 5, we conclude
with the contribution of our approach and directions for future development.

2 Bispectrum Feature Vector of Images

The bispectrum, B(f1, f2), of a 1-D deterministic real-valued sequence is defined
as

B(f1, f2) = X(f1)X(f2)X∗(f1 + f2) (2)

where X(f) is the discrete-time Fourier transform of the sequence x(n) at the
normalized frequency f . By virtue of its symmetry properties, the bispectra
of a real signal is uniquely defined in the triangular region of computation,
0 ≤ f2 ≤ f1 ≤ f1 + f2 ≤ 1. A 2-D image is decomposed into N 1-D sequences
g(s, θ) using the Radon transform. The Radon transform g(s, θ) of a 2-D image
i(x, y) is defined as its line integral along a line inclined at an angle θ from the
y-axis and at a distance s from the origin. This projection process and the Radon
transform of Lena image is shown in Fig. 1.

The projection slice theorem [16] states that the Fourier transform of the
projection of an image on to a line is the 2-D Fourier transform of the image
evaluated along a radial line. From the theorem, we can use 2-D Fourier trans-
form instead of the Radon transform during implementation.
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A parameter p(θ) is defined as the phase of the integrated bispectra of a 1-D
Radon projection g(s, θ) along the line of f1 = f2 and it can be expressed with
the polar mapped 2-D DFT as follows using the projection slice theorem:

p(θ) = �
[∫ 0.5

f1=0+
B(f1, f1)df1

]

= �
[∫ 0.5

f1=0+
I2(f, θ)I∗(2f, θ)df

]
(3)

Though the parameter can be defined along a radial line of slope a, 0 < a ≤ 1
in the bifrequency space, we compute p(θ) at a = 1, where f1 = f2. In this way,
we can avoid interpolation during the computation of p(θ).

A vector p of length N is defined as p = (p(θ1), p(θ2), . . . , p(θN )). From the
properties of the Radon transform and bispectrum parameter p(θ), p is invariant
to dc-level shift, amplification, translation, scaling, and Gaussian noise [12]. As
a rotation of the 2-D image results in a cyclic shift in the set of projections,
p will be cyclically shifted as well. In [12], p was used as a feature for object
recognition. We show the invariance properties of p against rotation, scaling,
and translation in the following.

2.1 Translation

A translated version of an image i(x, y) is represented as

i′(x, y) = i(x + x0, y + y0) (4)

The Fourier transform of i′(x, y) is I ′(fx, fy) and it is given by

I ′(fx, fy) = I(fx, fy) · ejx0fx · ejy0fy (5)

If we now rewrite (4) using polar coordinates,

fx = fcosθ (6)
fy = fsinθ (7)

then (5) becomes,

I ′(f, θ) = I(f, θ) · ejx0fcosθ · ejy0fsinθ (8)

From (3), the parameter p′(θ) becomes,

p′(θ)

= �
[∫ 0.5

0+
I2(f, θ)I∗(2f, θ)ej(2x0fcosθ+2y0fsinθ−2x0fcosθ−2y0fsinθ)df

]
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= �
[∫ 0.5

0+
I2(f, θ)I∗(2f, θ)df

]
= p(θ) (9)

As (9) shows that p(θ) is invariant to translation, p is invariant to translation.

2.2 Scaling

A scaled image i′(x, y) can be expressed as

i′(x, y) = i(sx, sy) (10)

where s is a scale factor. The polar mapped Fourier transform of i′(x, y) is
achieved using (6) and (7) and it is shown as follows,

I ′(f, θ) = s · I
(

f

s
, θ

)
(11)

As p′(θ) integrates B(f, θ) between 0 and a half of the Nyquist frequency, as-
suming f

s < 0.5, (11) will show the same result with that of using I(f, θ). In
practice, we found this assumption can be accepted up to 50% scaling down.
This can be shown as follows,

p′(θ) = �
[∫ 0.5

0+
s3I2

(
f

s
, θ

)
· I∗

(
2f

s
, θ

)
df

]

= �

[∫ 0.5/s

0+
I2

(
f

s
, θ

)
· I∗

(
2f

s
, θ

)
df

]

= �
[∫ 0.5

0+
I2(f, θ) · I∗(2f, θ)df

]
= p(θ) (12)

As p(θ) is invariant to scale, p is invariant to scale.

2.3 Rotation

An image i′(x, y) rotated by α◦ and its Fourier transform can be expressed as,

i′(x, y) = i(xcosα + ysinα,−xsinα + ysinα)
I ′(fx, fy) = I(fxcosα + fysinα,−fxsinα + fycosα) (13)

The polar mapped I ′(f, θ) will have circularly shifted I(f, θ −α) as 2-D Fourier
transform rotates as well when an image rotates. This can be shown from
I ′(fx, fy) substituting (13) with (6) and (7) as follows,
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I ′(fx, fy) = I(fcosθcosα + fsinθsinα,−fcosθsinα + fsinθcosα)
= I(fcos(θ − α), fsin(θ − α)) (14)

I ′(f, θ) = I(f, θ − α) (15)

Then, p′(θ) becomes,

p′(θ) = �
[∫ 0.5

0+
I2(f, θ − α)I∗(2f, θ − α)df

]
= p(θ − α) (16)

Hence, p will be circularly shifted according to the rotation by α◦ and for the
detection, we will circularly shift p before measuring similarity.

3 Algorithm

We use an invariant feature vector of the image as a watermark. The watermark
is embedded by selecting a vector from the set of extracted feature vectors. The
chosen feature vector is used as the watermark and the inverted image is used
as the watermarked image. The watermarks are generated through an iterative
feature modification and verification procedure. This procedure avoids the inter-
polation errors that can occur during insertion and detection of the watermark.
At detector, the feature vector is estimated from the test image. We use root-
mean-square-error (RMSE) as our similarity measure instead of the traditional
normalized correlation. It is because the feature vectors are not white and the
correlation measure can not produce peak value when they are same vectors.
Hence, we measure the distance between two vectors using RMSE function. If
the RMSE value is smaller than the threshold, the watermark is detected. The
original image is not required at the detector. We define the detector first and
an iterative embedder is designed using the detector.

3.1 Watermark Detection

Detector takes a test image I(x, y) and extracts a feature vector p of length N
from the polar mapping of the Fourier spectrum of I(x, y). The similarity s,
is defined with RMSE between the extracted vector p and the watermark s as
following,

s(p, w) =

√√√√ 1
N

N∑
i=1

[p(θi) − wi]
2 (17)

where N is the length of the feature vector. If s is smaller than the detection
threshold T , the watermark is detected.
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3.2 Watermark Embedding

A watermark is embedded by modifying the feature vector p of an input image.
The 2-D Fourier transform X(f1, f2) of an M×M input image I is computed and
polar mapped to construct the M × N 2-D matrix Xp(f, θ) at N evenly spaced
angles from 0 to 180◦. We can shape the feature vector p by modifying some
of its components p(θw) at θw ∈ 0, . . . , 180. If we shift all the phase spectrum
of the image by δ along the radial angle of θw, we have a modified component
p′(θw) as follows:

p′(θw) = �
[∫ 0.5

0+
X(f)ejδX(f)ejδX∗(f + f)e−jδdf

]

= �
[∫ 0.5

0+
X(f)X(f)X∗(f + f)df

]
+ δ

= p(θw) + δ (18)

After shifting the phases of the selected columns of Xp(f, θ), we inverse transform
it to have the watermarked image I ′.

However, we cannot extract the embedded signal δ from I ′ at detector. As
reported in the previous researches [5][6], algorithms that modify the Fourier co-
efficients in polar or log-polar domain suffer three problems. First, interpolation
at embedder causes errors at detector. During the polar or log-polar mapping,
an interpolation method should be involved because we are dealing with discrete
image data. Though we choose more accurate interpolation function, there will
be some errors as long as we are working with discrete images. Second, zero-
padding at detector degrades the embedded signal further. By zero-padding,
spectrum resolution is improved but interpolation error is increased. Third, the
interrelations of the Fourier coefficients in the neighboring angles cause ‘smear-
ing’ effect of the modified feature values. If we modify a single component p(θ),
it affects other values nearby.

In [7], the authors have provided approximation methods to reduce the ef-
fects of these errors. Instead of using a similar method, we approach this problem
differently. After modifying some components of the feature vector, the water-
marked image which contains the implementation errors is produced by the
inverse 2-D DFT. We extract the feature vector from this watermarked image
and use it as the embedded watermark instead of the initially modified feature
vector. In this way, we can embed the watermark without exact inversion of the
modified signal.

However, to guarantee the uniqueness of the watermark and its perceptual
invisibility after insertion, we need a verification procedure to use it as a water-
mark. Fig. 2 shows the geometry of feature vector space.

Black dots represent feature vectors and each dot corresponds to a feature
vector of an image. The solid circles show the robustness boundaries resulted
from geometric distortion. r1 is the maximum distortion of the feature vector
resulted from a geometric distortion. The inside region of the solid circle means
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Fig. 2. Geometrical modeling of feature vector space

a set of distorted images where the centered feature vector can be successfully
extracted. The dotted circles show the minimum feature distance r2 between the
feature vectors of unmarked images. The distance r2 is determined empirically
by measuring the feature distances d1, d2, d3, . . . between unmarked images and
taking the minimum among them. The feature distances r1 and r2 are measured
with the similarity s. Vectors D, I, K, and L are the feature vectors extracted
from four different unmarked images. Vectors A, B, C, and E are the valid
watermarks modified from a feature vector D. For a modified feature vector to
be used as a valid watermark, the distance between the modified vector and
original vector should be larger than r1 and smaller than r2. During embedding,
the extracted feature vectors from the inverted image will be checked if they
meet the requirements for valid watermarks. This validity check routine will be
performed iteratively until we get the distinguishable s and meet unobtrusiveness
requirement.

4 Experimental Results

Experiments are performed with 100 images from the Corel image library [17].
For valid watermark generation, r1 and r2 are determined empirically using
unwatermarked images. The similarity s is measured between unmarked test
images and the smallest s is chosen for r2. For the determination of r1, robustness
of the defined feature vector is tested. Similarity s is measured between the
original image and attacked images. The largest s is chosen for r1. For the
robustness test, we set r1 = 4.5 and r2 = 20. Feature vectors are modified
with δ = 5◦ ∼ 7◦ at randomly selected angles. The number of insertion angles
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(a) (b)

Fig. 3. Embedding example : (a) Watermarked Lena image embedding at θw =
35◦ and 125◦ (b) Amplified difference between wateraraked and original image

is randomly determined between 1 and 3. T = 4.5 is used for the detection
threshold. Watermarks are generated using the iterative procedure described
in section 3.2. During the iteration, parameters are adjusted accordingly. Fig. 3
shows the watermarked Lena image and the amplified difference between original
and watermarked images.

The watermarked image shows PSNR of 36dB and the embedded signal is
invisible. During the watermark insertion, we maintained the PSNR higher than
36dB. Robustness of the watermark against each attack is measured with 100
unmarked images and 100 marked images. We measure the empirical probabil-
ity density function (pdf) of the computed with histogram. Assuming that the
empirical pdf of s can be approximated by a normal distribution, false positive
probability (Pfp) and false negative probability (Pfn) can be computed using the
estimates of mean and variance. Random geometric attack performance is the
worst with Pfp = 4.00× 10−3 and Pfn = 6.20× 10−2. It shows that our method
performs well over the intended attacks. The similarity histograms and receiver
operating characteristic (ROC) curves (Pfp versus Pfn for several thresholds)
are produced for analysis. In this section, five attacks are examined: rotation,
scaling, random geometric distortion, compression and Gaussian noise.

4.1 Rotation

Fig. 4 shows the histogram of s and ROC curve. Though the rotation by large
angle can be detected by cyclically shifting the extracted feature vector, the per-
formance of rotation by a large angle is poor due to the difficulty of interpolation
in the Fourier phase spectrum. For this reason, we show the results of rotation
by small angles. With T = 4.5, Pfp is 6.03× 10−2 and Pfn is 1.90× 10−3. False
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Fig. 4. Rotation ±0.25◦, ±0.5◦ : (a) Histogram of s (b) ROC Curve

negative probability shows better performance than false positive probability in
this attack. This is because the pdf of the similarity between unmarked images
and watermarks has relatively large variance that resulted into the larger false
positive probability. As Pfp and Pfn show, our method is robust against rotation
by small angle.

4.2 Scaling

The detection histogram was measured using 50% scaled down images and 200%
scaled up images. As the histogram in Fig. 5 shows, the watermarked images show
strong resistance to scaling attack. The ROC curve shows that Pfp is 5.6× 10−3

and Pfn is 1.14 × 10−4. These values are relatively lower than other attacks
and this means our method performs well with scaling attacks. Our method has
strong robustness against scaling attack even after scaling down to 50%.

4.3 Random Geometric Distortion

This attack simulates the print-and-scanning process of images. It applies a mi-
nor geometric distortion by an unnoticeable random amount in stretching, shear-
ing, and/or rotating an image [2]. In Fig. 6, the histogram shows large variance
in the similarity between watermark and unmarked image. As the result, Pfp

is 4.0 × 10−3 and Pfn is 6.2 × 10−2, which are relatively large compared with
others. Not many previous methods survive this attack and our algorithm works
well even with those numbers.

4.4 Compression

JPEG compression with Q=30 and 70 was applied after watermark embed-
ding. With Q=30, the watermarked image fidelity is unacceptable. However,
our method survives the harsh compression attack. Fig. 7 shows the histogram
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Fig. 5. Scale 50%, 200% : (a) Histogram of s (b) ROC Curve
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Fig. 6. Random geometric distortion : (a) Histogram of s (b) ROC Curve

and ROC curve. Pfp is 3.5 × 10−3 and Pfn is 2.2 × 10−20. The false negative
probability is extremely low and this is because our feature vector is not af-
fected by any high frequency noises. Our method has strong resilience to JPEG
compression.

4.5 Gaussian Noise

As our invariant feature vector is defined from HOS, it must be invariant against
additive Gaussian noise. Gaussian noise was added to the watermarked image
by convolving a 3 × 3 kernel as follows
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G =


1 2 1

2 4 2
1 2 1


 (19)

The histogram of the similarity of unmarked and marked images is shown in Fig.
12. (a). The ROC curve is shown in Fig. 8. From the curve, Pfp is 6.78 × 10−4

and Pfn is 1.9 × 10−20. These probabilities show that our method is robust
against the Gaussian noise.
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Fig. 7. JPEG Compression Q=30 and 70 : (a) Histogram of s (b) ROC Curve
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5 Conclusions

We propose a new RST invariant watermarking method based on an invariant
feature of the image. A bispectrum feature vector is used as the watermark and
this watermark has a strong resilience on RST attacks. This approach shows
a potential in using a feature vector as a watermark. An iterative informed em-
bedding procedure is designed to overcome the problem of inverting watermarked
image. This method can be generalized for other embedding functions that do
not have exact inverse function.

In all our experiments, we have shown the empirical probability density func-
tions with histograms and the ROC curves. Experimental results show that our
scheme is robust against wide range of attacks including rotation, scaling, JPEG
compression, random geometric distortion and Gaussian noise.
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