Skip to main content

A Software Tool for Generating Non-crosshybridizing Libraries of DNA Oligonucleotides

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2568))

Abstract

Under an all or nothing hybridization model, the problem of finding a library of non-crosshybridizing DNA oligonucleotides is shown to be equivalent to finding an independent set of vertices in a graph. Individual oligonucleotides or Watson-Crick pairs are represented as vertices. Indicating a hybridization, an edge is placed between vertices (oligonucleotides or pairs) if the minimum free energy of hybridization, according to the nearest-neighbor model of duplex thermal stability, is less than some threshold value. Using this equivalence, an algorithm is implemented to find maximal libraries. Sequence designs were generated for a test of a modified PCR protocol. The results indicated that the designed structures formed as planned, and that there was little to no secondary structure present in the single-strands. In addition, simulations to find libraries of 10-mers and 20-mers were done, and the base composition of the non-crosshybridizing libraries was found to be 2/3 A-T and 1/3 G-C under high salt conditions, and closer to uniform for lower salt concentrations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jonoska, N., Seeman, N.C., eds.: Preliminary Proceedings of the 7th International Meeting on DNA Based Computers, Tampa, FL, University of SouthFlorid a (2001) June 10–13, 2001.

    Google Scholar 

  2. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. [1] 107–118 June 10–13, 2001.

    Google Scholar 

  3. Feldkamp, U., Sagha., S., Rauhe, H.: DNASequenceGenerator–a program for the construction of DNA sequences. [1] 179–188 June 10–13, 2001.

    Google Scholar 

  4. Hinze, T., Hatnik, U., Sturm, M.: An object oriented simulation of real occurring molecular biological processes for DNA computing and its experimental verification. [1] 13–22 June 10–13, 2001.

    Google Scholar 

  5. Brenner, S.: Methods for sorting polynucleotides using oligonucleotide tags. U.S. patent number 5,604,097 (1997)

    Google Scholar 

  6. Li, M., Lee, H.J., Condon, A.E., Corn, R.M.: DNA word design strategy for creating sets of non-interacting oligonucleotides for DNA microarrays. Langmuir 18 (2002) 805–812

    Google Scholar 

  7. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA word design. In Winfree, E., Gifford, D.K., eds.: DNA Based Computers V, Providence, RI, DIMACS, American Mathematical Society (1999) 75–90 DIMACS Workshop, Massachusetts Institute of Technology, Cambridge, MA, June 14–16, 1999.

    Google Scholar 

  8. Deaton, R., Garzon, M., Rose, J.A., Franceschetti, D.R., Murphy, R.C., Stevens Jr., S.E.: Reliability and efficiency of a DNA based computation. Phys. Rev. Lett. 80 (1998) 417–420

    Article  Google Scholar 

  9. Garzon, M., Deaton, R., Neathery, P., Murphy, R.C., Stevens Jr., S.E., Franceschetti, D.R.: A new metric for DNA computing. In: Genetic Programming 1997: Proceedings of the Second Annual Conference, AAAI (1997) 479–490 Stanford University, July 13–16, 1997.

    Google Scholar 

  10. Hartemink, A.J., Gifford, D.K.: Thermodynamic simulation of deoxyoligonucleotide hybridization for DNA. [26] 25–39 DIMACS Workshop, Philadelphia, PA, June 23–27, 1997.

    Google Scholar 

  11. Ben-Dor, A., Karp, R., Schwikowski, B., Yakhini, Z.: Universal DNA tag systems: A combinatorial design scheme. J. Comput. Biol. 7 (2000) 503

    Article  Google Scholar 

  12. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: The fidelity of the tag-antitag system. [1] 302–310 June 10–13, 2001.

    Google Scholar 

  13. Rose, J.A., Deaton, R.J., Franceschetti, D.R., Garzon, M., Stevens, Jr., S.E.: A statistical mechanical treatment of error in the annealing biostep of DNA computation. In: Proceedings of the Genetic and Evolutionary Computation Conference, Volume 2, AAAI, Morgan Kaufmann, San Francisco (1999) 1829–1834 Orlando, FL, July 1999.

    Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979)

    Google Scholar 

  15. Erdös, P.: On the graph-theorem of Turán. Math. Lapok. 21 (1970) 249–251

    Google Scholar 

  16. Karp, R.M., Wigderson, A.: A fast parallel algorithm for the maximal independent set problem. Journal of the Association for Computing Machinery 32 (1985) 762–773

    MATH  MathSciNet  Google Scholar 

  17. Yoshida, H., Suyama, A.: Solution of 3-SAT by breadth first search. In Winfree, E., Gifford, D.K., eds.: DNA Based Computers V, Providence, RI, DIMACS, American Mathematical Society (1999) 9–22 DIMACS Workshop, Massachusetts Institute of Technology, Cambridge, MA, June 14–16, 1999.

    Google Scholar 

  18. SantaLucia, Jr., J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95 (1998) 1460–1465

    Google Scholar 

  19. Smith, T.F., Waterman, M.S.: The identification of common molecular subsequences. J. Mol. Biol. 147 (1981) 195–197

    Article  Google Scholar 

  20. Wetmur, J.G.: Physical chemistry of nucleic acid hybridization. [26] 1–25 DIMACS Workshop, Philadelphia, PA, June 23–27, 1997.

    Google Scholar 

  21. Deaton, R., Chen, J., Bi, H., Garzon, M., Rubin, H., Wood, D.: A PCR-based protocol for in vitro selection of non-crosshybridizing oligonucleotides. In this volume.

    Google Scholar 

  22. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing 15 (1986) 1036–1053

    Article  MATH  MathSciNet  Google Scholar 

  23. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29 (1990) 1105–1119

    Google Scholar 

  24. Landweber, L.F., Baum, E.B., eds.: DNA Based Computers II. Volume 44., Providence, RI, DIMACS, American Mathematical Society (1998) DIMACSWorkshop, Princeton, NJ, June 10–12, 1996.

    Google Scholar 

  25. Rubin, H., Wood, D.H., eds.: DNA Based Computers III, Providence, RI, DIMACS, American Mathematical Society (1999) DIMACS Workshop, Philadelphia, PA, June 23–27, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deaton, R., Chen, J., Bi, H., Rose, J.A. (2003). A Software Tool for Generating Non-crosshybridizing Libraries of DNA Oligonucleotides. In: Hagiya, M., Ohuchi, A. (eds) DNA Computing. DNA 2002. Lecture Notes in Computer Science, vol 2568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36440-4_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-36440-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00531-5

  • Online ISBN: 978-3-540-36440-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics