Skip to main content

A Bayesian Algorithm for Simultaneous Localisation and Map Building

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 6))

  • 1176 Accesses

Abstract

This paper describes a full probabilistic solution to the Simultaneous Localisation and Mapping (SLAM) problem. Previously, the SLAM problem could only be solved in real time through the use of the Kalman Filter. This generally restricts the application of SLAM methods to domains with straight-forward (analytic) environment and sensor models. In this paper the Sum-of-Gaussian (SOG) method is used to approximate more general (arbitrary) probability distributions. This representation permits the generalizations made possible by particle filter or Monte-Carlo methods, while inheriting the real-time computational advantages of the Kalman filter. The method is demonstrated by its application to sub-sea field data consisting of both sonar and visual observation of near-field landmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alspace D, Sorenson H (1972) Gaussian filters for nonlinear filtering problems. IEEE Trans. Automatic Control, 17(2):439–448.

    Article  Google Scholar 

  • Dissanayake G, Newman P, Durrant-Whyte H, Clark S, Csobra M (2000) An experimental and theoretical investigation into simultaneous localisation and map building (SLAM). In Corke P, Trevelyan J (eds) Experimental Robotics VI (ISER’99), pp 265–274. Springer-Verlag.

    Google Scholar 

  • Guivant J, Nebot E, Baiker S (2000) Localization and map building using laser range sensors in outdoor applications. Journal of Robotic Systems, 17(10):565–583.

    Article  MATH  Google Scholar 

  • Hollerbach J, Koditscheck D (eds) (2000) Robotics research, the ninth international symposium (ISRR’99). Springer-Verlag.

    Google Scholar 

  • Isard M, Blake A (1998) Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1):5–28.

    Article  Google Scholar 

  • Ito K, Xiong K (2000) Gaussian filters for non-linear filtering problems. IEEE Trans. Automatic Control, 45(5):910–927.

    Article  MATH  MathSciNet  Google Scholar 

  • Julier S, Uhlmann J, Durrant-Whyte H(2000) A new method for the non-linear transformations of means and covariances in filters and estimators. IEEE Trans. Automatic Control, 45(3):477–482.

    Article  MATH  MathSciNet  Google Scholar 

  • Kitagawa G (1996) A Monte-Carlo filter and smoother for non-Gaussian non-linear state space models. Journal of Computational and Graphical Statistics, 5(1):1–25.

    Article  MathSciNet  Google Scholar 

  • Leonard J, Feder H (2000) A computational efficient method for large-scale concurrent mapping and localisation. In Hollerbach J, Koditscheck D (eds) Robotics Research, The Ninth International Symposium (ISRR’99), pp 169–176. Springer-Verlag.

    Google Scholar 

  • Mazya V, Schmidt G (1996) On approximate approximations using Gaussian kernels. IMA J. Numerical Analysis, 16(1):13–29.

    Article  MathSciNet  Google Scholar 

  • Salmond D, Gordon N, Smith A (1993) A novel approach to non-linear non-Gaussian Bayesian state estimation. IEE Proceedings-F, 140(1):107–113.

    Google Scholar 

  • Stone L, Barlow C, Corwin T (1999) Bayesian multiple target tracking. Artech House.

    Google Scholar 

  • Thrun S (2000a) Probabilistic algorithms and the interactive museum tour-guide robot minerva. International Journal of Robotics Research, 19(11):972–999.

    Article  Google Scholar 

  • Thrun S (2000b) Probabilistic algorithms in robotics. AI Magazine, 21(4).

    Google Scholar 

  • Thrun S, Fox D, Burgard W (1998) A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning, 31(1):29–53.

    Article  MATH  Google Scholar 

  • Williams S, Newman P, G. Dissanayake, Durrant-Whyte H (2000) Autonomous underwater simultaneous localisation and map building. In Proc. IEEE International Conference on Robotics and Automation (ICRA), pp 1793–1798, San Francisco, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durrant-Whyte, H., Majumder, S., Thrun, S., de Battista, M., Scheding, S. (2003). A Bayesian Algorithm for Simultaneous Localisation and Map Building. In: Jarvis, R.A., Zelinsky, A. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36460-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-36460-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00550-6

  • Online ISBN: 978-3-540-36460-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics