Skip to main content

Route Planning and Map Inference with Global Positioning Traces

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2598))

Abstract

Navigation systems assist almost any kind of motion in the physical world including sailing, flying, hiking, driving and cycling. On the other hand, traces supplied by global positioning systems (GPS) can track actual time and absolute coordinates of the moving objects.

Consequently, this paper addresses efficient algorithms and data structures for the route planning problem based on GPS data; given a set of traces and a current location, infer a short(est) path to the destination.

The algorithm of Bentley and Ottmann is shown to transform geometric GPS information directly into a combinatorial weighted and directed graph structure, which in turn can be queried by applying classical and refined graph traversal algorithms like Dijkstras’ single-source shortest path algorithm or A*.

For high-precision map inference especially in car navigation, algorithms for road segmentation, map matching and lane clustering are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Ahuja, K. Mehlhorn, J. B. Orbin, and R. E. Tarjan. Faster algorithms for the shortest path problem. Journal of the ACM, pages 213–223, 1990.

    Google Scholar 

  2. I. J. Balaban. An optimal algorithm for finding segment intersection. In ACM Symposium on Computational Geometry, pages 339–364, 1995.

    Google Scholar 

  3. J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. Transactions on Computing, 28:643–647, 1979.

    Article  MATH  Google Scholar 

  4. U. Brandes, F. Schulz, D. Wagner, and T. Willhalm. Travel planning with self-made maps. In Workshop on Algorithm Engineering and Experiments (ALENEX), 2001.

    Google Scholar 

  5. B. Chazelle. Reporting and counting segment intersections. Computing System Science, 32:200–212, 1986.

    MathSciNet  Google Scholar 

  6. B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting lines in the plane. Journal of the ACM, 39:1–54, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  7. T.H. Cormen, C.E. Leiserson,and R.L. Rivest.Introduction to Algorithms. The MIT Press, 1990.

    Google Scholar 

  8. R. B. Dial. Shortest-path forest with topological ordering. Communication of the ACM, 12(11):632–633, 1969.

    Article  Google Scholar 

  9. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik, 1:269–271, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Doucette, P. Agouris, A. Stefanidis, and M. Musavi. Self-organized clustering for road extraction in classified imagery. Journal of Photogrammetry and Remote Sensing, 55(5–6):347–358, March 2001.

    Article  Google Scholar 

  11. S. Edelkamp and S. Schroedl. Localizing A*. In National Conference on Artificial Intelligence (AAAI), pages 885–890, 2000.

    Google Scholar 

  12. M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithm. Journal of the ACM, 34(3):596–615, 1987.

    Article  MathSciNet  Google Scholar 

  13. S. Handley, P. Langley, and F. Rauscher. Learning ot predict the duration of an automobile trip. In Knowledge Discovery and Data Mining (KDD), pages 219–223, 1998.

    Google Scholar 

  14. A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, 1990.

    Google Scholar 

  15. C. A. Hipke. Verteilte Visualisierung von Geometrischen Algorithmen. PhD thesis, University of Freiburg, 2000.

    Google Scholar 

  16. D. S. Hirschberg. A linear space algorithm for computing common subsequences. Communications of the ACM, 18(6):341–343, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-path algorithms for planar graphs. Special Issue of Journal of Computer and System Sciences on selected papers of STOC 1994, 55(1):3–23, 1997.

    MATH  Google Scholar 

  18. R. E. Korf and W. Zhang. Divide-and-conquer frontier search applied to optimal sequence allignment. In National Conference on Artificial Intelligence (AAAI), pages 910–916, 2000.

    Google Scholar 

  19. J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Symposium on Math, Statistics, and Probability, volume 1, pages 281–297, 1967.

    Google Scholar 

  20. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. In European Symposium on Algorithms (ESA), 2002.

    Google Scholar 

  21. G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(1):159–179, 1985.

    Article  Google Scholar 

  22. C. Navigation Technologies, Sunnyvale. Software developer’s toolkit, 5.7.4 solaris edition, 1996.

    Google Scholar 

  23. B. W. Parkinson, J. J. Spilker, P. Axelrad, and P. Enge. Global Positioning System: Theory and Applications. American Institute of Aeronautics and Astronautics, 1996.

    Google Scholar 

  24. L. Piegl and W. Tiller. The nurbs book. Springer, 1997.

    Google Scholar 

  25. C. A. Pribe and S. O. Rogers. Learning to associate driver behavior with traffic controls. In Proceedings of the 78th Annual Meeting of the Transportation Review Board, Washington, DC, January 1999.

    Google Scholar 

  26. S. Rogers, P. Langley, and C. Wilson. Mining GPS data to augment road models. In Knowledge Discovery and Data Mining (KDD), pages 104–113, 1999.

    Google Scholar 

  27. S. Schroedl, S. Rogers, and C. Wilson. Map refinement from GPS traces. Technical Report RTC 6/2000, DaimlerChrysler Research and Technology North America, Palo Alto, CA, 2000.

    Google Scholar 

  28. F. Schulz, D. Wagner, and K.6Weihe. Dijkstra’s algorithm on-line: An empirical case study from public railroad transport. Journal of Experimental Algorithmics, 5(12), 2000.

    Google Scholar 

  29. F. Schulz, D. Wagner, and C. Zaroliagis. Using multi-level graphs for timetable information. In Workshop on Algorithm Engineering and Experiments (ALENEX), 2002.

    Google Scholar 

  30. L. Thoma and N. Zeh. I/O-efficient algorithms for sparse graphs. In Memory Hierarchies, Lecture Notes in Computer Science. Springer, 2002. To appear.

    Google Scholar 

  31. M. Thorup. Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM, 46:362–394, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Wang, S. Rogers, C. Wilson, and S. Schroedl. Evaluation of a blended DGPS/DR system for precision map refinement. In Proceeedings of the ION Technical Meeting 2001, Institute of Navigation, Long Beach, CA, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edelkamp, S., Schrödl, S. (2003). Route Planning and Map Inference with Global Positioning Traces. In: Klein, R., Six, HW., Wegner, L. (eds) Computer Science in Perspective. Lecture Notes in Computer Science, vol 2598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36477-3_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-36477-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00579-7

  • Online ISBN: 978-3-540-36477-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics