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Abstract

We discuss the role of mixed-integer value functions in the theoretical analysis of stochastic inte-

ger programs. It is shown how the interaction of value function properties with basic results from

probability theory leads to structural statements in stochastic integer programming.
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1 Stochastic Integer Programs

Stochastic programming models arise as deterministic equivalents to random optimization problems. In

the present paper we con�ne ourselves to linear two-stage models involving integer requirements. The

random optimization problem behind these models reads as follows

min
x;y;y0

fcTx+ q
T
y + q

0T
y
0 : Tx+Wy +W

0
y
0 = h(!); x 2 X; y 2 ZZ

�m
+ ; y

0 2 IR
m
0

+ g: (1)

We assume that all ingredients above have conformal dimensions, that W;W
0 are rational matrices, and

that X � IR
m is a nonempty closed polyhedron, possibly involving integrality constraints on components

of the vector x.

Together with (1) we have a scheme of alternating decision and observation: The decision on x has to

be made prior to observing the outcome of the random vector h(!), and the vector (y; y0) is selected

only after having decided on x and observed h(!). This setting corresponds to a variety of practical

optimization problems under uncertainty. It readily extends to the multi-stage situation where �nitely

(or even in�nitely) many of the above alternations occur, see [6, 12, 17] for further details on stochastic

programming modelling.

As a mathematical object, problem (1) is ill-posed, since at the moment of decision on x it is not clear

which vectors x are feasible, let alone optimal. As a remedy, let us proceed as follows. Rewrite (1) by

separating the optimizations in x and (y; y0):

min
x

n
c
T
x+min

y;y0
fqT y + q

0T
y
0 : Wy +W

0
y
0 = h(!)� Tx; y 2 ZZ

�m
+ ; y

0 2 IR
m
0

+ g : x 2 X

o
: (2)

This is where the mixed-integer value function enters the scene. Indeed, in (2) we have an inner optimiza-

tion problem with right-hand side parameter h(!)� Tx. Introducing the mixed-integer value function

�(t) := minfqT y + q
0T
y
0 : Wy +W

0
y
0 = t; y 2 ZZ

�m
+ ; y

0 2 R
m
0

+ g; (3)

(2) turns into

min
x

fcTx+�(h(!)� Tx) : x 2 Xg: (4)

In this way, we obtain the family f(x; !) := c
T
x+�(h(!)�Tx); x 2 X of real-valued random variables.

The problem is still ill-posed, since in (4) the meaning of \minx" remains unclear, i.e., it is still open how

to select a \best" x. In stochastic programming, scalar parameters of the random variables f(x; !); x 2 X

provide criteria for making the \best" selection.
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The most widely used scalar parameter in this respect is the expectation. Assuming that h(!) 2 IR
s is a

random vector on some probability space (
;A; IP ) we obtain the well-posed optimization problem

min
nZ




(cTx+�(h(!)� Tx)) IP (d!) : x 2 X

o
: (5)

In terms of the random optimization problem (1), the model (5) suggests to select, before observing

h(!), i.e., in a \here-and-now" manner, a decision x such that the expected value of the random costs

c
T
x+�(h(!)� Tx) becomes minimal.

When addressing risk aversion, other scalar parameters are useful. In the context of stochastic program-

ming some �rst proposals have been made in [15, 16, 22]. Following the probability-based approach in

[22] we introduce some threshold level 'o 2 IR and consider minimization of the probability that the

random costs cTx+�(h(!)� Tx) exceed 'o. This leads to the optimization model

min
n
IP
�
f! 2 
 : cTx+�(h(!)� Tx) > 'og

�
: x 2 X

o
: (6)

As mathematical objects, (5) and (6) are optimization problems in x whose objectives we denote byQIE(x)

and QIP (x), respectively. It is evident, that the mixed-integer value function � essentially determines the

structure of the functions QIE and QIP . As we will see, there is a fruitful interaction of properties of �

with basic statements from probability theory.

The article is organized as follows. In Section 2 we report on what is known about the mixed-integer

value function �. Section 3 aims at putting together value function properties with basic probability

theory. Proceeding step by step, we draw conclusions from various convergence results of probability

theory. The �nal section is an outlook towards related issues beyond the scope of the present paper.

2 Mixed-Integer Value Functions

Studying the value function � is part of what is usually referred to as stability analysis of optimization

problems or parametric optimization. In this area of research the accent is on properties of optimal values

and optimal solution sets seen as (multi-)functions of parameters arising in the underlying optimization

problems. A variety of results starting from linear programs and leading into nonlinear programming

and optimal control is available, see the recent monograph [8] and references therein.

In the above stochastic programming context, the value function appears as an integrand of a suitable

integral. Therefore, it is crucial to have global knowledge about the functional dependence of the optimal

value on the respective parameter. The typical situation in nonlinear parametric optimization, however,

is that properties of optimal values and optimal solutions are available only locally around given param-

eters. The most comprehensible class for which global results exist are mixed-integer linear programs.

This explains that, so far, the models discussed in Section 1 do not go beyond the mixed-integer linear

case. The stability of mixed-integer linear programs has been studied in a series of papers by Blair and

Jeroslow out of which we refer to [7], and in the monographs [2, 3].

Before discussing the mixed-integer value function � from (3), let us have a quick look at its integer-free

counterpart:

�lin(t) := minfq0T y0 : W 0
y
0 = t; y

0 2 R
m
0

+ g: (7)

If we assume that W 0(Rm
0

+ ) is full-dimensional and that fu 2 IR
s : W 0T

u � q
0g 6= ;, then the latter set

has vertices dk; k = 1; : : : ;K, and it holds by linear programming duality that

�lin(t) = maxftTu : W 0T
u � q

0g = max
k=1;:::;K

d
T

k
t for all t 2W

0(Rm
0

+ ):

Hence, �lin is convex and piecewise linear on its (conical) domain of de�niton. Without going into de-

tails, we mention that this convexity has far reaching consequences when setting up the expectation based

stochastic programming model (5) in case integer requirements are missing in the random optimization

problem (1), see [6, 12, 17] for structural and algorithmic results.

Let us now turn our attention to the mixed-integer case. In (3) we impose the basic assumptions that

W (ZZ �m
+ ) +W

0(Rm
0

+ ) = IR
s and fu 2 IR

s : WT
u � q; W

0T
u � q

0g 6= ;. Then �(t) is a well-de�ned real
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number for all t 2 IR
s, ([14]). Moreover it holds

�(t) = minfqT y + q
0T
y
0 : Wy +W

0
y
0 = t; y 2 ZZ

�m
+ ; y

0 2 R
m
0

+ g

= min
y

fqT y +min
y0
fq0T y0 : W 0

y
0 = t�Wy; y

0 2 R
m
0

+ g : y 2 ZZ
�m
+ g

= min
y

f�y(t) : y 2 ZZ
�m
+ g; (8)

where

�y(t) = q
T
y + max

k=1;:::;K
d
T

k
(t�Wy) for all t 2Wy +W

0(Rm
0

+ ):

Here, dk; k = 1; : : : ;K denote the vertices of the polyhedron fu 2 IR
s : W

0T
u � q

0g, and we have

applied the argument about �lin from the purely linear case. For t =2 Wy +W
0(Rm

0

+ ) the optimization

problem miny0fq
0T
y
0 : W 0

y
0 = t�Wy; y

0 2 R
m
0

+ g is infeasible, and we put �y(t) = +1. It is convenient

to denote Y (t) := fy 2 ZZ
�m
+ : �y(t) < +1g.

According to (8) the value function � is made up by the pointwise minimum of a family of convex,

piecewise linear functions whose domains of de�nition are polyhedral cones arising as shifts of the cone

W
0(Rm

0

+ ). By our basic assumption W (ZZ �m
+ ) +W

0(Rm
0

+ ) = IR
s, the cone W 0(Rm

0

+ ) is full-dimensional.

Some �rst conclusions about the continuity of � may be drawn from the above observations:

1. Suppose that t 2 IR
s does not belong to any boundary of any of the sets Wy+W

0(IRm
0

+ ); y 2 ZZ
�m.

Then the same is true for all points � in some open ball B around t. Hence, Y (�) = Y (t) for all � 2
B. With an enumeration (yn)n2IN of Y (t) we consider the functions ��(�) := minf�yn

(�) : n � �g
for all � 2 B. Then lim�!1 ��(�) = �(�) for all � 2 B. Since, for any function �y, its \slopes"

are determined by the same, �nitely many vectors dk; k = 1; : : : ;K, the functions ��
; � 2 IN are

all Lipschitz continuous on B with a uniform Lipschitz constant. Thus, the family of functions

��
; � 2 IN is equicontinuous on B and has a pointwise limit there. Consequently, this pointwise

limit � is continuous on B, in fact Lipschitz continuous with the mentioned uniform constant.

2. Any discontinuity point of � must be located at the boundary of some setWy+W 0(IRm
0

+ ); y 2 ZZ
�m.

Hence, the set of discontinuity points of � is contained in a countable union of hyperplanes. Since

W
0(IRm

0

+ ) has only �nitely many facets, this union of hyperplanes subdivides into �nitely many

classes, such that, in each class, the hyperplanes are parallel. By the rationality of the matrices W

and W 0, within each class, the pairwise distance of the hyperplanes is uniformly bounded below by

some positive number.

3. Let tn ! t and y 2 ZZ
�m such that tn 2 Wy + W

0(IRm
0

+ ) for all suÆciently large n. Since the

set Wy +W
0(IRm

0

+ ) is closed, this yields t 2 Wy +W
0(IRm

0

+ ). Therefore, for suÆciently large n,

Y (tn) � Y (t). This paves the way for showing that lim inftn!t �(tn) � �(t), which is the lower

semicontinuity of � at t.

The above analysis has been re�ned in [2, 3, 7]. In particular, it is shown in Theorem 3.3 of [7] that,

for each t 2 IR
s, the minimization in (8) can be restricted to a �nite set (depending on t, in general).

Lemma 5.6.1. and Lemma 5.6.2. of [2] provide the representation of the continuity sets of � to be

displayed in the subsequent proposition. The global proximity result in part (iv) of the subsequent

proposition is derived in Theorem 1 at page 115 of [3] and in Theorem 2.1 of [7]. Altogether, we have the

following statement about the mixed-integer value function �.

Proposition 2.1 Let W;W
0
be rational matrices and assume that W (ZZ �m

+ ) +W
0(Rm

0

+ ) = IR
s
as well as

fu 2 IR
s : WT

u � q; W
0T
u � q

0g 6= ;. Then it holds

(i) � is real-valued and lower semicontinuous on IR
s
,

(ii) there exists a countable partition IR
s = [1

i=1Ti such that the restrictions of � to Ti are piecewise

linear and Lipschitz continuous with a uniform constant L > 0 not depending on i,

(iii) each of the sets Ti has a representation Ti = fti+Kg n [
N

j=1ftij+Kg where K denotes the polyhedral

cone W
0(Rm

0

+ ) and ti; tij are suitable points from IR
s
, moreover, N does not depend on i,

(iv) there exist positive constants �; 
 such that j�(t1)� �(t2)j � �kt1 � t2k+ 
 whenever t1; t2 2 IR
s
.
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3 Implications of Probability Theory

Essential properties of the objective functions QIE and QIP in the optimization problems (5) and (6),

respectively, have their roots in properties of �. We will study these interrelations by employing some

basic tools from probability theory as can be found, for instance, in the textbooks [5, 10].

Throughout this section we will impose the basic assumptions that W;W
0 are rational matrices, that

W (ZZ �m
+ ) +W

0(Rm
0

+ ) = IR
s, and that fu 2 IR

s : WT
u � q; W

0T
u � q

0g 6= ;.
For convenience we denote by � the image measure IP Æ h�1 on IR

s. With this notation, the functions

QIE and QIP read

QIE(x) =

Z
IRs

(cTx+ �(h� Tx))�(dh) and QIP (x) = �
�
fh 2 IR

s : cTx+�(h� Tx) > 'og
�
:

3.1 Measurability

Since QIE(x) is esssentially determined by an integral over � and QIP (x) involves a level set of �, it has to

be asssured that the integral and the probability are taken over a measurable function and a measurable

set, respectively.

Proposition 3.1 For any x 2 IR
m
, f(x; h) := c

T
x+�(h� Tx) is a measurable function of h, implying

in particular that QIP (x) is well-de�ned for all x 2 IR
m
.

Proof: � being lower semicontinuous on IRs, f is measurable as a superposition of measurable functions.

Then, fh 2 IR
s : f(x; h) > 'og is a measurable subset of IRs, and QIP (x) is well-de�ned for all x 2 IR

m.

2

3.2 Integrability

A measurable function into the reals is called integrable, in case its positive and negative parts both

are. Integrability is often established via an integrable majorant of the absolute value of the function in

question. In the present context, integrability is important for assuring that QIE(x) is well-de�ned for all

x 2 IR
m.

Proposition 3.2 If � has a �nite �rst moment, i.e., if
R
IRs

khk�(dh) <1, then QIE(x) is well-de�ned

for all x 2 IR
m
.

Proof: Our basic assumptions imply that �(0) = 0. Together with Proposition 2.1(iv) this provides the

following estimate Z
IRs

j�(h� Tx)j�(dh) =

Z
IRs

j�(h� Tx)� �(0)j�(dh)

�

Z
IRs

(�kh� Txk+ 
)�(dh)

� �

Z
IRs

khk�(dh) + �kTxk+ 
:

This implies that QIE(x) 2 IR for all x 2 IR
m, and the proof is complete. 2

3.3 Continuity of the Probability Measure

Given a sequence (Mn)n2IN of measurable sets in IR
s, the limes inferior lim infn!1Mn and the limes

superior lim sup
n!1Mn are de�ned as the sets of all points belonging to all but a �nite number of the

Mn, and to in�nitely many Mn, respectively. If � is some probability measure on IR
s, then it holds

�
�
lim inf
n!1

Mn

�
� lim inf

n!1
�(Mn) � lim sup

n!1

�(Mn) � �
�
lim sup
n!1

Mn

�
: (9)

This will be our main tool to deduce (semi-)continuity of the function QIP from the properties of �. With

x 2 IR
m we introduce the notation

M(x) := fh 2 IR
s : cTx+�(h� Tx) > 'og;

Me(x) := fh 2 IR
s : cTx+�(h� Tx) = 'og;

Md(x) := fh 2 IR
s : � is discontinuous at h� Txg:
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Proposition 3.3 The function QIP is lower semicontinuous on IR
m
. If, for some x 2 IR

m
, it holds

�
�
Me(x) [Md(x)

�
= 0, then QIP is continuous at x. The latter assumption is ful�lled for all x 2 IR

m
if

� has a density.

Proof: Let us �rst verify that for all x 2 IR
m

M(x) � lim inf
xn!x

M(xn) � lim sup
xn!x

M(xn) � M(x) [ Me(x) [ Md(x): (10)

Let h 2M(x). The lower semicontinuity of � (Proposition 2.1(i)) yields

lim inf
xn!x

(cTxn +�(h� Txn)) � c
T
x+�(h� Tx) > 'o:

Therefore, there exists an no 2 IN such that cTxn+�(h�Txn) > 'o for all n � no, implying h 2M(xn)

for all n � no. Hence, M(x) � lim infxn!xM(xn).

Let h 2 lim sup
xn!x

M(xn) nM(x). Then there exists an in�nite subset ~IN of IN such that

c
T
xn +�(h� Txn) > 'o 8n 2 ~IN and c

T
x+�(h� Tx) � 'o:

Now two cases are posssible. First, � is continuous at h� Tx. Passing to the limit in the �rst inequality

then yields that cTx+�(h�Tx) � 'o, and h 2Me(x). Secondly, � is discontinuous at h�Tx. In other

words, h 2Md(x), and (10) is established.

By (9) we have for all x 2 IR
m

QIP (x) = �
�
M(x)

�
� �

�
lim inf
xn!x

M(xn)
�
� lim inf

xn!x

�
�
M(xn)

�
= lim inf

xn!x

QIP (xn);

verifying the asserted lower semicontinuity. In case �
�
Me(x) [Md(x)

�
= 0 this argument extends:

QIP (x) = �
�
M(x)

�
= �

�
M(x) [Me(x) [Md(x)

�
� �

�
lim sup
xn!x

M(xn)
�

� lim sup
xn!x

�
�
M(xn)

�
= lim sup

xn!x

QIP (xn);

and QIP is continuous at x.

According to our discussion preceding Proposition 2.1 the set Md(x) is contained in a countable union

of hyperplanes. In view of (8) the same is true for Me(x). Thus Me(x) [Md(x) is contained in a set of

Lebesgue measure zero, and �
�
Me(x) [Md(x)

�
= 0 by the absolute continuity of �. 2

3.4 Fatou's Lemma

For a sequence (gn)n2IN of measurable functions from IR
s to IR with an integrable function g � gn 8n 2

IN , Fatou's Lemma asserts

Z
IRs

lim inf
n!1

gn(h)�(dh) � lim inf
n!1

Z
IRs

gn(h)�(dh):

Together with the lower semicontinuity of � this will provide the lower semicontinuity of QIE .

Proposition 3.4 The function QIE is lower semicontinuous on IR
m

provided that
R
IRs

khk�(dh) <1.

Proof: Let x 2 IR
m and xn ! x. We will apply Fatou's Lemma essentially to the functions gn(h) :=

�(h� Txn). Denote r := maxn2IN kxnk. Proposition 2.1(iv) and �(0) = 0 then imply

�(h� Txn) � �(0)� j�(h� Txn)� �(0)j

� ��kh� Txnk � 


� ��khk � �rkTk � 
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yielding an integrable minorant g for the family of functions gn. By Fatou's Lemma and the lower

semicontinuity of � we have

QIE(x) =

Z
IRs

(cTx+�(h� Tx))�(dh)

�

Z
IRs

lim inf
n!1

(cTxn +�(h� Txn))�(dh)

� lim inf
n!1

Z
IRs

(cTxn +�(h� Txn))�(dh)

= lim inf
n!1

QIE(xn):

2

3.5 Lebesgue's Dominated Convergence Theorem

Let gn; g (n 2 IN) be measurable functions from IR
s to IR sucht that limn!1 gn = g, �-almost surely.

If there exists an integrable function �g � jgnj 8n 2 IN , �-almost surely, then Lebesgue's Dominated

Convergence Theorem asserts that gn; g (n 2 IN) are integrable and that

lim
n!1

Z
IRs

gn(h)�(dh) =

Z
IRs

g(h)�(dh):

This theorem will lead us to the continuity of QIE .

Proposition 3.5 If
R
IRs

khk�(dh) < 1 and �
�
Md(x)

�
= 0 then QIE is continuous at x. The latter

assumption is ful�lled for all x 2 IR
m

if � has a density.

Proof: Let x 2 IR
m, xn ! x, and r := maxn2IN kxnk. Again we employ Proposition 2.1(iv) and

�(0) = 0, and we obtain

j�(h� Txn)j = j�(h� Txn)� �(0)j � �khk+ �rkTk+ 


providing us with an integrable majorant. By �
�
Md(x)

�
= 0, we have

lim
n!1

(cTxn +�(h� Txn)) = c
T
x+�(h� Tx) for �-almost all h 2 IR

s.

Now Lebesgue's Dominated Convergence Theorem completes the proof:

lim
n!1

QIE(xn) = lim
n!1

Z
IRs

(cTxn +�(h� Txn))�(dh)

=

Z
IRs

(cTx+�(h� Tx))�(dh) = QIE(x):

2

3.6 Convergence of Probability Measures - Rubin's Theorem

The dependence of the optimization problems (5) and (6) on the underlying probability measure, although

seemingly a theoretical issue, has practical relevance in various respects. When building models like (5)

and (6) the probability measure often enters in a subjective way or results from an approximation based

on statistical data. Moreover, the integrals in (5) and (6) are typically multivariate, and their integrands

are given only implicitly. This poses insurmountable numerical diÆculties if the probability distribution

is continuous. A possible remedy then consists of approximation via discrete distributions. All this

motivates considerations on whether \small" perturbations of the underlying probability measure result

in \small" perturbations of optimal values and optimal solutions to (5) and (6). The mathematical

machinery for addressing these issues is provided by the stability analysis of stocha! stic programs (for

surveys see [11, 21]).

A �rst and crucial step towards stability analysis is to study QIE and QIP as functions jointly in x and

�. Again the value function � will provide some valuable insights. Let us consider QIE and QIP as
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functions on IRm�P(IRs) where P(IRs) denotes the set of all (Borel) probability measures on IRs. As an

essential prerequisite some convergence notion is needed on P(IRs). Here, weak convergence of probability

measures has proven both suÆciently general to cover relevant applications and suÆciently speci�c to

enable substantial statements. A sequence f�ng in P(IRs) is said to converge weakly to � 2 P(IRs),

written �n
w

�! �, if for any bounded continuous function g : IRs ! IR we haveZ
IRs

g(�)�n(d�)!

Z
IRs

g(�)�(d�) as n!1: (11)

A basic reference for weak convergence of probability measures is Billingsley's book [4].

We are heading for suÆcient conditions for the the continuity of QIE and QIP jointly in x and �. Beside

properties of the value function, a theorem on weak convergence of image measures attributed in [4] to

Rubin will turn out most useful. The theorem states the following: Given a sequence of probability

measures �n
w

�! � and measurable functions gn; g (n 2 IN) from IR
s to IR such that �(E) = 0 where

E := fh 2 IR
s : 9hn ! h such that gn(hn) 6! g(h)g, it holds �n Æ g

�1
n

w

�! � Æ g�1.

Proposition 3.6

(i) Let � 2 P(IRs) be such that �
�
Me(x)[Md(x)

�
= 0. Then QIP : IRm�P(IRs) �! IR is continuous

at (x; �).

(ii) Fix arbitrary p > 1 and K > 0, and denote �p;K(IR
s) := f� 2 P(IRs) :

R
IRs

khkp �(dh) � Kg. Let

� 2 �p;K(IR
s) be such that �

�
Md(x)

�
= 0. Then QIE : IRm ��p;K(IR

s) �! IR is continuous at

(x; �).

Proof: To prove (i), let xn �! x (in IR
m) and �n

w

�! � (in P(IRs)) be arbitrary sequences. By

�n; � : IRs �! f0; 1g we denote the indicator functions of the sets M(xn);M(x); n 2 IN . With these

functions we consider the exceptional set E from above:

E := fh 2 IR
s : 9hn ! h such that �n(hn) 6! �(h)g:

To see that E � Me(x) [Md(x), assume that h 2
�
Me(x) [Md(x)

�c
=
�
Me(x)

�c
\
�
Md(x)

�c
where

the superscript c denotes the set-theoretic complement. Then � is continuous at h � Tx, and either

c
T
x + �(h � Tx) > 'o or cTx + �(h � Tx) < 'o. Thus, for any sequence hn ! h there exists an

no 2 IN such that for all n � no either c
T
xn +�(hn � Txn) > 'o or c

T
xn +�(hn � Txn) < 'o. Hence,

�n(hn)! �(h) as hn ! h, implying h 2 E
c.

In view of E � Me(x)[Md(x) and �
�
Me(x)[Md(x)

�
= 0 we obtain that �(E) = 0. Rubin's Theorem

now yields �n Æ �
�1
n

w

�! � Æ ��1.
Since �n Æ �

�1
n
; � Æ ��1; n 2 IN are probability measures on f0; 1g, their weak convergence particularly

implies that

�n Æ �
�1
n

�
f1g

�
�! � Æ ��1

�
f1g

�
:

This is nothing but �n
�
M(xn)

�
�! �

�
M(x)

�
or QIP (xn; �n) �! QIP (x; �), and (i) is shown.

For proving (ii) let again xn �! x in IR
m, but �n

w

�! � in �p;K(IR
s). Introduce measurable functions

gn; g by gn(h) := �(h � Txn); g(h) := �(h � Tx); n 2 IN . For the corresponding exceptional set E a

simple continuity argument provides Md(x)
c � E

c or, equivalently, E � Md(x). Hence, �(E) = 0, and

Rubin's Theorem provides

�n Æ g
�1
n

w

�! � Æ g�1: (12)

To prove the assertion it is suÆcient to show that

lim
n!1

Z
IRs

gn(h)�n(dh) =

Z
IRs

g(h)�(dh):

Changing variables yields the equivalent statement

lim
n!1

Z
IR

t �n Æ g
�1
n

(dt) =

Z
IR

t � Æ g�1(dt):

For �xed a 2 IR+, consider the truncation �a : IR! IR with

�a(t) :=

�
t ; jtj < a

0 ; jtj � a:
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Now

���
Z
IR

t �n Æ g
�1
n

(dt)�

Z
IR

t � Æ g�1(dt)
��� �

���
Z
IR

(t� �a(t)) �n Æ g
�1
n

(dt)
���

+
���
Z
IR

�a(t) �n Æ g
�1
n

(dt) �

Z
IR

�a(t) � Æ g�1(dt)
���

+
���
Z
IR

(�a(t)� t) � Æ g�1(dt)
���: (13)

The proof is completed by showing that, for a given " > 0, each of the three expressions on the right

becomes less than "=3 provided that n and a are suÆciently large.

For the �rst expression we obtain

���
Z
IR

(t� �a(t)) �n Æ g
�1
n

(dt)
��� �

Z
ft:jtj�ag

jtj �n Æ g
�1
n

(dt)

=

Z
fh:jgn(h)j�ag

jgn(h)j �n(dh): (14)

Since p > 1,

Z
IRs

jgn(h)j
p
�n(dh) �

Z
fh:jgn(h)j�ag

jgn(h)j � jgn(h)j
p�1

�n(dh)

� a
p�1

Z
fh:jgn(h)j�ag

jgn(h)j �n(dh): (15)

Therefore, the estimate in (14) can be continued by

� a
1�p

Z
IRs

jgn(h)j
p
�n(dh): (16)

Proposition 2.1(iv) and gn(0) = 0 imply

jgn(h)j
p � (�khk+ �kxnk � kTk+ 
)p:

Since (xn)n2IN is bounded and all �n belong to �p;K(IR
s), there exists a positive constant c such that

Z
IRs

jgn(h)j
p
�n(dh) � c for all n 2 IN .

Hence, (16) can be estimated above by c=ap�1 which becomes less than "=3 if a is suÆciently large.

We now turn to the second expression in (13). Since every probability measure on the real line has

at most countably many atoms, we have � Æ g�1(ft : jtj = ag) = 0 for (Lebesgue-)almost all a 2 IR.

Therefore, �a is a measurable function whose set of discontinuity points D�a
has �Æg�1-measure zero for

almost all a 2 IR. We apply Rubin's Theorem to the weakly convergent sequence �n Æ g
�1
n

w

�! � Æ g�1,
cf. (12), and the identical sequence of functions �a. The role of the exceptional set then is taken by D�a

,

and Rubin's Theorem is working due to � Æ g�1(D�a
) = 0. This yields the conclusion

�n Æ g
�1
n

Æ ��1
a

w

�! � Æ g�1 Æ ��1
a

for almost all a 2 IR. (17)

Consider the bounded continuous function � : IR! IR given by

�(t0) :=

8<
:

�a ; t
0 � �a

t
0

; �a � t
0 � a

a ; t
0 � a:

By the weak convergence in (17), we obtain

Z
IR

�(t0) �n Æ g
�1
n

Æ ��1
a
(dt0) !

Z
IR

�(t0) � Æ g�1 Æ ��1
a
(dt0) as n!1. (18)
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Changing variables providesZ
IR

�(t0) �n Æ g
�1
n

Æ ��1
a
(dt0) =

Z
�
�1

a
(IR)

�(�a(t)) �n Æ g
�1
n

(dt) =

Z
IR

�a(t) �n Æ g
�1
n

(dt):

Analogously, Z
IR

�(t0) � Æ g�1 Æ ��1
a
(dt0) =

Z
IR

�a(t) � Æ g�1(dt):

The above identities together with (18) con�rm that the second expression on the right-hand side of (13)

becomes arbitrarily small for suÆciently large n and almost all suÆciently large a.

Let us �nally turn to the third expression in (13). Analogously to (14), (15), and (16) we obtain���
Z
IR

(�a(t)� t) � Æ g�1(dt)
��� � a

1�p

Z
IRs

jg(h)jp �(dh):

The integral
R
IRs

jg(h)jp �(dh) is �nite due to Proposition 2.1(iv) and
R
IRs

khkp �(dh) � K. Hence, the

third expression in (13) becomes less than "=3 if a is large enough. 2

4 Outlook

The previous sections have shown how the mixed-integer value function serves as a point of departure

for understanding the basic structure of stochastic integer programs. Let us �nally have a look at some

further developments whose detailed coverage is beyond the scope of the present paper.

Quantitative Statements. The continuity results of Section 3 are all qualitative by nature. Lipschitz

continuity of QIE and QIP as functions in x has been studied in [18, 19, 23]. To quantify the continuity

of QIE and QIP as functions of the underlying probability measure a proper metric in the space of proba-

bility measures has to be identi�ed. Here \proper" means that the metric should allow an estimation of

function value distances at all and that it should metrize important modes of convergence such as weak

convergence of probability measures. For the function QIE a �rst proposal along these lines was made in

[20]. The mentioned quantitative studies require as input re�ned statements about � such as parts (ii)

and (iii) of Proposition 2.1.

Stability. As already mentioned in Subsection 3.6, perturbation and approximation of the underlying

probability measure arise quite naturally in stochastic programming. The stability analysis of stochastic

programs then provides justi�cation for replacing unknown probability measures by statistical estimates

or for turning numerically intractable multivariate integrals into manageable �nite sums by approximating

continuous distributions via discrete ones. Typical stability results assert that optimal values and optimal

solutions are (semi-)continuous (multi-)functions of the underlying probability measure, [1, 19, 20]. These

results are obtained by putting general techniques from parametric optimization into perspective with

stochastic programming, [21]. This leads to studying the joint dependence of relevant integral functionals

on both the decision variable and the probability measure. For the latter, Proposition 3.6 provides a

paradigmatic example.

Algorithms. Methods for solving the optimization problems (5) and (6), almost exclusively, rest on the

assumption that the probability measures underlying the models are discrete. This does not provide a

serious restriction, since, on the one hand, in many practical situations the uncertain data is available via

discrete observations, only. On the other hand, the above mentioned stability results justify approxima-

tion via discrete measures should the precise model involve a continuous probability distribution. With

discrete probability measures, the problems (5) and (6) can be rewritten as large-scale, block-structured,

mixed-integer linear programs. Decomposition then becomes the algorithmic method of choice, but the

presence of integer variables poses a number of open problems. Some �rst attempts were made in [9, 23],

see also the survey [13].
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