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Abstract. In this paper we propose an emergence-driven software process for 
agent-based simulation that clarifies the traceability of micro and macro 
observations to micro and macro specifications in agent-based models. We use 
the concept of hyperstructures [1] to illustrate how micro and macro 
specifications interact in agent-based models, and we show that the 
reductionism/non-reductionism debate is important to understand the reliability 
of agent-based simulations. In particular, we show that the effort expended in 
the verification of agent-based simulations increases exponentially with the 
number of micro and macro specifications, and that the reliability assessment of 
non-anticipated results in simulation is in practice not possible. According to 
these results we claim to be impossible in practice to verify that an agent-based 
conceptual model has been implemented properly as a computational model, 
since one does not usually know what is the desired output  a priori. We thus 
advocate that the classic process of verification, validation and exploration of 
non-anticipated results is not reliable in an agent-based simulation, and call into 
question the applicability of traditional software engineering methods to agent-
based simulation. 

1 Introduction 

The software  process is the set of activities and results that produce a software  
product. In Software Engineering the attributes of a software product refer to the non-
functional characteristics displayed by the product once it is installed and put to use. 
These attributes characterize the product’s dynamic behaviour and the use made of 
the product, while reliability and usability are among the most fundamental traits (see 
[19]).  

Meanwhile, the Agent-Based Simulation product differs in various senses from the 
classical one. Simila rly, the process of product development in Agent-Based 



Simulation (ABS) proceeds from different motivations from the ones originating in 
classical process. By ABS product we mean the set of programs and documents 
required to satisfy the designer and users’ goals of running successful and informative 
simulations. We identify four fundamental aspects that characterize the ABS product: 

i) the product is instantiated as such after the first development cycles, and 
throughout the implementation phase with the first simulation experiment;  

ii) the product does not stipulate an exhaustive and pre-specified enumeration of 
requirements that it must satisfy once it is put to use; instead, a model is developed 
along succeeding cycles that simultaneously include specification, implementation, 
verification, validation and use; the motto is thus exploration of requirements; 

iii) the product is frequently used to explore outputs that are difficult to calculate 
analytically from complex models; 

iv) the product is normally used to explore qualitative concepts according to 
outputs that are neither anticipated nor intentionally specified during the model 
specification phase, which makes the classical notion of dynamic verification1 very 
difficult to apply. 

Characteristics (i) and (ii) have been well identified and systematized problems in 
classical Software Engineering (SE) and Artificial Intelligence (AI), particularly in 
the field of exploratory programming for knowledge-based systems. Typical 
processes to develop these products are strongly based on formal or informal 
verification of programs according to requirements that mu st be specified at some 
point in the development process. Contemporary models of Agent Oriented Software 
Engineering (AOSE) (see [4]) do not add novelty in this respect, for its 
methodologies concern the interaction of distributed intelligence, so as to define 
behaviours and solve problems that must be specified at some point of the 
development process.  

Characteristic (iii) has been reasonably systematized in classic Computer 
Simulation (CS) for dynamic system analysis, queuing models or general-purpose 
engineering (see [13]). In this case, the exploration of requirements and results is 
more quantitative than qualitative in nature. Most model specifications come in the 
form of equations, and the verification process usually arises in the form of 
mathematical analysis.  

Characteristic (iv) is potentially more defining of ABS products. It results not only 
from the product role of exploring requirements and program outputs, but also from 
exploring qualitative concepts according to such outputs. In effect, a relevant use of 
ABS is to detect which effects may be drawn from patterns of agent interaction, that 
is , the emergence of macro-level regularities that are not intentionally specified at 
micro levels of detail. These observations must be verified a posteriori, after program 
execution trials, and some of them may be hard to verify and validate. Hence, in most 
cases, the development of ABS products covers additional levels of difficulty if 
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conceptual model. Dynamic verification checks program correctness by evaluating given 
inputs with program execution outputs (see §2, [17,18,19] and [21] in this volume). 



compared with classical products, since the borders between dynamic verification  and 
dynamic validation2 are harder to distinguish. 

Methodological issues in ABS have been a topic of primary importance in the 
discipline (see e.g.[5,9,20]). Meanwhile, the research has rarely approached the 
technical details of software processes and its relationship with the problematic of 
emergence. While the software process may have been somewhat considered by some 
authors, the underlying methodological analysis has been invariably understood 
according to assumptions and principles of classic SE, classic CS, AI and AOSE, 
whose feasibility of purpose in ABS is far from being clear. At this stage, it is 
important to include the software process in the ABS research agenda for the 
following reasons: 

i) the ABS product is not only used for technological automation of problem 
solving and expertise support, but also for purposes of scientific investigation of 
social theories and models of the real world. While in the former case the results of 
ABS may be reasonably verified with specifications and are most times validated 
by its users’ desires, in the latter its validation requires independence from the 
users’ and developers’ bias; 

ii) the crucial role of non-anticipated observation of program execution outputs in 
ABS hinders the applicability of classic software development principles to ABS. 
One must remember that validating a conceptual model does not guarantee the 
correctness and acceptability of non-anticipated outputs in the corresponding 
computational model. Since in ABS the verification and validation of non-
anticipated outputs are superimposed, the existence of development premises for 
ABS that have not been considered in classic SE, AI and AOSE can be 
hypothesised. This  change of premises may have a profound impact on the product 
non-functional requirements, especially, with respect to reliability requirements; 

iii) most classic CS and AOSE products are not concerned with emergent, non-
anticipated, structures. Classic CS is not agent-based. Organisations and 
institutions specified in AOSE are both considered as computationally individual 
entities in the system; here, the interaction between different levels of agent 
granularity is usually pre-defined; the concept of emergent “wholes”, multi-level 
modelling, and emergent interaction between agents at different levels of 
abstraction is usually undesirable. The specification of models in ABS must thus 
be significantly different from classical CS and AOSE. Currently, there are no 
meta-models to describe the ABS process. For this reason, the methodological and 
epistemological tension between individualistic and holistic approaches has been 
discussed from an abstract point of view, with no real connection to practical ways 
of specifying agent-based simulations. The inexistence of meta-models to specify 
software is an excellent way to attain incorrect implementations and bad 
verification and validation. Indeed, specifications need to be traceable to 
implementations and program execution outputs. 
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intended application or observed target. In practice the computational model must be 
validated as well. Dynamic validation checks if the computational model outputs agree with 
the intended application or observed target (see §2, [17,18,19] and [21] in this volume). 



In this paper we investigate an abstract model that characterizes the ABS software 
process with regard to the specification stage. We concentrate on the logical analysis 
of the method per se, rather than validate the discipline through simulation results and 
case studies. Method examination facilitates detection of inconsistencies and errors 
related to problem conceptualisation and program construction. It is important to 
establish systematic development and interpretation principles, particularly with 
respect to the analysis of emergent phenomena. 

This paper is structured as follows. In section 2 we will analyse the role of 
conceptual and computational models in agent-based simulation. Later we will show 
how to incorporate micro- and macro-observations in agent-based conceptual models, 
and also show that the reductionism/non-reductionism debate is important to 
understand the reliability of simulation programs. In particular, we will demonstrate 
that the effort expended in static verification increases with the number of micro and 
macro observations specified in agent-based models, and that an extensive 
verification of anticipated results in agent-based simulation is in practice not possible. 
In section 3 we will use this result to assert that the process of dynamic verification, 
validation and exploration of non-anticipated results is not reliable in agent-based 
simulation. We will point out research directions to solve this problem and give our 
conclusions in section 4. 

2 From Conceptual to Computational Models 

It is relatively unanimous that the ABS process begins with the identification of some 
research object, a “puzzle”, for which there are questions whose answer is not known 
(cf. [11]). The research object leads us to the definition of an abstract or real world 
target for modelling. The target is the real or proposed idea, situation or phenomena 
to be modelled, from which one constructs a conceptual model  (a 
mathematical/logical/verbal representation) based on observations, assumptions and 
formulation of hypothesis. The conceptual model must be transformed into a 
corresponding computational model. 

Figure 1 – The modelling process with relation to verification and validation. 

Consider the simplified version of the agent-based modelling process in figure 1. 
The figure relates verification and validation with the modelling process (see [18,21]). 
Static validation  is defined as determining that the theories and assumptions 
underlying the conceptual model are reasonable representations of the research object. 

research object static validation  dynamic validation  

static verification 

dynamic verification 

computational model conceptual model 



Static verification is defined as ensuring that the program source code representing 
the conceptual model is correct. Therefore, static verification is not directly concerned 
with the evaluation of non-anticipated outputs during the simulation. Dynamic 
verification  is defined as determining that the conceptual model entails the 
computational model outputs. Dynamic validation is defined as determining that the 
computational model outputs are correct according to the research object3. In the 
present section we investigate the stages involving the specification of conceptual 
models and static verification. 

2.1  Multiple Targets in Agent-Based Simulation 

The particularity of agent-based modelling is the definition of elements in a model 
that represent entities in the target, such as human beings, organizations or inanimate 
objects. Eventually, every passive and active entity in the target may be “agentified”. 
Some approaches differ in respect to the model’s level of abstraction in relation to the 
real world, as well as to the representation granularity of agents in the model: 

i) simulation with artificial societies - at one extreme of the abstraction axis we find 
models of artificial societies that do not reference a concrete target or specific 
theory about the real world (e.g.[10]). This approach is most akin to requirements 
exploration in classical SE and AI: the conceptual model is validated according to 
the designer’s observation perspectives and desires in respect to the computational 
model outputs. The conceptual and computational models evolve in consecutive 
refinement cycles according to those judgments. Hence, a major part of the software 
process is devoted to the verification of models: to what extent are the macroscopic 
regularities of interest given by the computational model outputs caused by the local 
or micro mechanisms specified in the conceptual model? This tendency often 
suggests an implicit assumption that does not have to be adopted, when the term 
micro is associated with specifications of conceptual and computational models, and 
the term macro with observations of computational models outputs. 

ii) animation of socio-cognitive theories - halfway to the other extreme of the axis, we 
find the simulation of models of socio-cognitive or sociological theories. This 
approach is usually founded on computational animation of logic formalisms, which 
represent agents and social structures according to a specific theory, for instance, 
the Theory of Dependence and Social Power [3]. The animation serves a purpose of 
theory consistency checking and refinement of social theories (see [6]), as well as to 
verify the pragmatic feasibility of such theories in MAS engineering [22,8]. In this 
trend, the structures emerging from the interaction of elements in the model are 
crucial for theory refinement. By emergent structures we mean new observable 
categories that do not find a semantic expression in the original vocabulary of the 
model (e.g. the subjective observation of agent coalitions according to patterns of 
dependence relations). Recent methodological discussions propose the explicit 
specification of given emergent (macro) entities in models, regardless of being 
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“program testing”. 



reducible or not reducible to levels of description at lower granularity 
(see, e.g., Sawyer’s claim in [5] or [27]). As we will soon show, such practice has 
always been common in ABS, but it has not been methodologically and 
appropriately assumed. 

iii) simulations with representations of the real world - at the end of the axis, we find 
simulations with models that should desirably represent observations of real social 
and institutional concrete processes (see, e.g., Moss’ claim in [5]). The goal is “the 
use of MAS to describe observed social systems or aspects thereof and to capture 
the sometimes conflicting perceptions of the social system by stakeholders and other 
domain experts”. This approach is the most conflicting with the classic process, 
owing to the practical inevitability of defects in computer programs. Insofar as 
specification and program coding errors are unavoidable in practice, the validation 
of computational model outputs is susceptible to misjudgements because the 
verification  and validation  processes overlap with respect to the evaluation of such 
outputs. 

We can see that when travelling from approach (i) to (iii) there is an increasing 
overlap of dynamic verification and validation judgements. Such increasing overlap 
also parallelizes a change in the scientific role of simulation from explanation and 
prediction to explanation and representation  of targets. But as we will see, the 
complexity of the verification process in the former case, and the superposition of 
verification and validation judgements in the latter, obstructs the feasibility of SE 
techniques in ABS.  

2.2   Micro or Macro? 

One may say that in most ABS approaches there is an association flavour of the term 
micro with the specification of conceptual and computational models, and the term 
macro with the computational model outcomes. But this is not entirely factual. There 
are at least two cases for which the term macro is underlying the specification 
process: 

i) implicit in the target – there are elements in the universe of the model that are 
indivisible, but represent entities of the target with a higher (macro) [or lower 
(micro)] granularity than the other indivisible elements with whom the element 
interacts in the model. 

ii) explicit in the model – there are elements in the universe of the model that 
represent aggregates of other indivisible or non-indivisible elements, that is, a 
set of elements defined in the model as a “whole”, having specific, and possibly 
exclusive, properties. 

In the first case the macro concept is subjectively relevant with respect to the 
target, but irrelevant to the model objective dynamics. In the second case, there are 
aggregates treated explicitly as “wholes” in the model. Some researchers would agree 
that the most frequent approach is the first one. However, there are numerous 
examples of the second, e.g., in Swarm [12] agents may be contained in swarms that 
are in turn contained in other swarms. The source of this question and its effects on 



the product reliability requirements can be found if we further abstractly detail the 
specification of agent-based models. 

2.3   Agentified Conceptual Specifications 

We start the specification of a model with its set of indivisible agents. This set will be 
known as the Agentified Conceptual Specification  (ACS). An ACS is a set of 
Agentified Entities (AEs) associated with a finite index set I, ACS={Ai}, i∈I. 

An AE is an element in the model specified according to some arbitrary 
observation process. The role of the observation is to analyse a particular feature of 
abstract or physical nature in the target. Different AEs can represent entities of 
different granularity in the target, such as physical objects, humans, organisations, 
realistic representations of organisational concepts (e.g. a norm). Before we proceed, 
it should be clear for the sake of generality that it is indeed possible to represent any 
feature of a target by agentifying it, despite the disadvantage of overstressing the 
agent metaphor (see [20]). 

At this point we have not represented explicit macro concepts in the model. The 
specification of agentified aggregates can be accomplished with observation processes 
that explicitly describe macro -observations of the target. 

2.3.1   Levels of Observation and Emergence: An Hyperstructural Vision 
The ABS product development is an exploratory and iterative process, for which the 
conceptual model is to a great extent determined by observing properties of entities in 
the target, and how the entities relate and interact with each other according to those 
properties. Particularly relevant to ABS is the observation of entities according to 
different levels of abstraction and perspective. We view an ABS model as a 
hyperstructural construction [1,26]. The hyperstructural framework is useful to model 
AEs that can interact with other AEs at different levels of abstraction. Given one or 
more arbitrary observation processes we define two qualitative distinct levels of 
observation, called micro-observation and macro-observation: 

Micro-observation – the observation of properties of each individual AE in the target: 
Obs(Ai ), i∈I 

Macro-observation – the observation of properties of “wholes”, according to (i) any 
subset K∈P(I) of AEs in the ACS; (ii) micro-observation of those AEs; (iii)  an 
interaction process between those AEs using properties observed in (ii): 

Obs(AK), with AK=R(Aj ,Obs(Aj),Int)), j∈K, K∈P(I) 
where every whole AK is indexed by some element K∈P(I).  

The conceptualisation of a new structure, a “whole”, involves observing an 
aggregate of AEs in the target, where Int is an interaction process between those AEs 
and R is the result of the construction process. For instance, consider an aggregate of 
AEs characterized by a macro property, say the gross income. The micro-properties 
are the AEs’ individual incomes, and the construction process is an aggregation of 
AEs according to an interaction process that calculates the gross income based on the 
individual incomes. In other cases, the observed macro-properties may be disjoint 



from the observed micro-properties, for instance, the cohesion of an aggregate 
calculated according to patterns of relations of trust and dependence between its 
members. 

If we want to represent explicit macro-observations in the model, we have to 
specify a new type of AEs in the ACS. The specification of such wholes is achieved 
by representing new AEs at higher levels of granularity than their constituent AEs. A 
structure AK denotes a first order macro-AE, conceptualised in a distinct level of 
abstraction from the other micro-AEs. Thus, in the previous example, the concept 
cohesion of an aggregate would be specified as a new macro-AE in the conceptual 
model. Nevertheless, note that the construction process defining the macro-AE does 
not have to be expressed in the specification. Moreover, it can be argued that the 
observation of macro-properties does not even need to be computationally 
expressible, i.e., by way of an algorithm. Indeed, like any other micro-AE, the 
designer can ascribe (by definition) additional macro-properties to a macro-AE. For 
instance, if one specifies in the model an organisation that contains several agents, 
one is not necessarily assuming that those agents are sufficient to specify the 
properties of that organisation. If that is the case, the micro-observations and the 
interaction process (the construction process R) are thus subjectively represented in 
the observer’s mind. It is common practice in ABS to define properties of macro-AEs 
without stating its hypothetic reducibility to properties of its constituent AEs 
according to a particular theory. Such omission is perfectly acceptable, but it should 
inhibit the designer from ascribing methodological individualistic principles to his 
simulation.  

Sawyer [5] is right when he claims that the inspiration principles of ABS are 
methodological individualistic, but his claim that most agent-based models are 
methodological individualistic seems to be false; in practice most models represent 
macro-concepts, regardless of being reducible or non-reducible to other micro-
concepts. Nevertheless, as we will soon show, Moss [5] does not seem to be right in 
suggesting that the reductionism/non-reductionism debate does not influence the 
verification and validation problem in ABS. 

The set of observed micro-AES and first-order macro-AEs constitute a first-order 
ACS, denoted by ACS1. The maximum number of elements in a first-order ACS is 
given by #ACS1=#P(ACS)-1. It is evidently possible to consider second order macro 
observations over first order ACSs, and so on. The process that combines AEs of 
different order is called a hyperstructure, and is illustrated in figure 2.  

 

Figure 2 – Specified AEs and virtual emergent AEs. The convergence of lines from lower 
order to higher order AEs means that lower order AEs interact with one another. This may be 
ascribed by the specification itself or be only represented in the observer’s mind. For instance, 

second  order macro level 

micro level 

first order macro level 

virtual AE (observer dependent) 

specified AE 



the notion of observed ‘system” in a simulation, e.g., the construction process given by the 
interaction between a grid and a set of individual agents, can be understood as a virtual AE; in 
such example the concept of ‘grid’ is thus agentified.  
 

We proceed from the principle that the interesting emergent events that involve 
agent-based simulations reside not only in the simulations themselves but in the ways 
that they change the way we think and interact with the world. “Rather than emergent 
devices in their own right, computer simulations are catalysts for emergent processes 
in our mind” [2]; they help us to create new ways of seeing the research object. In the 
figure, the black vertexes denote AEs that are explicitly specified in a model. The 
white vertexes denote possible observable virtual AEs, which are not part of the 
specification. Some of them will constitute the observer’s expectations of how the 
model will behave; consequently, they must be verified during the software process. 
We immediately see that the observer’s interest can be the conceptualisation of ACSs 
of higher order than the one specified, for example, the conceptualisation of the 
system as whole. 

2.3.2    Specifying State Transitions 
The ACS modifies its state along the time by modifying the state of its constituent 
AEs. We denote an arbitrary order ACS in state e by A|e, where A|e={Ai|e}, i∈I|e and I|e 
is the index set in state e. The notation Ai|e denotes an AE with index i∈I|e in state e.  

Consider a set of properties given by some arbitrary observation process Obs over 
the AEs in the ACS A|e. A state transition e1→ e2 in the simulation is calculated by 
submitting the AEs in state e1 to an algorithmic process of interaction AlgInt that uses 
the properties registered under the observation process Obs. A transition sequence 
e1→ e2→ ...→  en is obtained by successive compositions of the algorithm 
A|en=AlgIntObs|e1→ en(A|e1).  

The specification of the interaction algorithm will have a decisive impact in the 
AEs’ evolution. For instance, new AEs may be created while others will cease to 
exist. It is also possible to specify mechanics to observe aggregates composed of AEs 
at different time states. These observations would allow the agents themselves to 
establish the persistence in time of some regularity. Such observations would have to 
be previously and algorithmically specified, which is different from the usual 
designer-observer’s position that mentally conceptualizes the emergence of new 
categories during or after the simulation. 

2.4   Static Verification 

The need to transform conceptual models into equivalent computational models has 
always been a major motivation for the substratum of software engineering 
techniques. Verification techniques involve showing that the detailed design and 
implementation of the conceptual and computational models are correct. It involves 
static and dynamic techniques (see [17,18,19]). Static techniques are concerned with 
the analysis and checking of system representations such as specification documents 
and the program source code. Static techniques are not directly concerned with 



evaluation of non-anticipated emergent outcomes during the simulation. For this 
reason, some static techniques used in classical SE and AOSE can also be used in 
ABS, although it will probably involve in most cases a higher degree of complexity 
analysis.  

Within an agent-based realm of complexity, static verification involves to a great 
extent checking the model specification with its detailed design. There is an 
increasing amount of literature for verifying agent-based systems in AOSE. One 
recent approach is static compositional verification [7]. For macro-properties 
assumedly reducible to lower order properties, this involves verifying that the 
properties of macro-AEs derive from its constituent micro-AEs properties, according 
to some interaction algorithm.  

Consider a m-order ACS A|e1 with an index set I|e1. The state e1 is the initial state. 
Within a hyperstructural framework, verifying the model expected behaviour can be 
described by the following steps: 

(i) verify specified AEs by composition: given the properties of micro -AEs, verify 
that the properties of each macro-AE resemble the specification of the macro-
observation, i.e., for each j-order macro-AE Ai|e1∈A|e1 and j≤m, show that there 
is a subset Ii∈I|e1 of AEs with order less or equal to j-1, such that 
Ai|e1=R(Al|e1,Obs(Al|e1),Int)), l∈Ii. So if Ai is an AE representing the concept 
cohesion of an aggregate, this amounts to show that the algorithm that computes 
the cohesion according to the set of lower order AEs conforms to its 
specification R; 

(ii) verify the interaction algorithm AlgInt: given the properties of micro and 
macro AEs in state e1, verify that for any state en subsequent to e1, the 
properties in e1 are preserved in en; 

(iii) verify expected emergent AEs by composition: given the properties verified 
in (i), verify that the system will behave according to the designer’s 
expectations. These are emergent properties associated with virtual AEs, 
possibly, with order greater than m. So if we specify that the system should 
reach some form of equilibrium after some state en, this amounts to show that it 
will do so according to the properties verified in (i). 

The specification of macro -AEs is obviously a complexifying factor in the 
verification process. But the increase in complexity does not only lie in the 
compositional verification of step (i). Step (iii) implies the compositional verification 
of virtual aggregates, i.e., verifying expected emergent properties in the system. The 
number of observable virtual AEs will possibly increase with the number of micro- 
and macro-AEs specified in the model. For an ACS or order m, the highest number of 
observable virtual macro-AEs at order m+1 is: 

1n...nn2(m)N m1
n...nn

virtual
m1 −−−−−= +++  

where n is the number of micro-AEs and nk denotes the number of k-order AEs.  
Thus, for a program without macro-AEs that manipulates 15 micro-AEs, the 

highest number of observable virtual AEs is 32753. If we include in the ACS one 
additional micro-AE and two second-order AEs the number increases to 262125. Of 



course, the number of virtual AEs that must be statically verified is much lower. This 
is the case if the goal of ABS is the exploration  of emergent events rather than the 
specification of emergent events. What this formula tells us is that even if we limit the 
number of observation processes to observe a simulation (limit the set of observable 
properties), the increase in the number of micro and macro-AEs in the model implies 
an exponential increase of observable virtual macro-AEs in the simulation. But if they 
are indeed observable, can we verify them? And if not, can they be validated without 
being verified? 

3 Exploration of Results 

We have now reached the conditions to confirm our claims in respect to assumptions 
in the classical process that cannot be used in the ABS process. For this purpose we 
make a short circuit in the development process, jumping directly to stages of 
dynamic verification, dynamic validation and exploration of results. It should be clear 
that we left behind many development steps that we have not approached here, such 
as static validation, detailed design and implementation. 

For the time being, the unstated tendency in ABS to associate the term micro with 
the conceptual and computational model specifications, and the term macro with the 
computational model outcomes should now have been understood. For this reason, it 
should not be strange to see that the traditional attempt in AOSE to arrive at feasible 
verification processes is  also implicitly adopted in ABS. The rule of thumb in AOSE, 
“specify few agents so as to get controlled and verifiable systems” is a particular case 
of “specify few micro and macro concepts so as to get controlled and verifiable 
systems”. Surely, the ABS research community will hardly adopt such rule of thumb, 
and we would like to stay that way. 

3.1   Dynamic Verification and Validation 

It is often alleged that one fundamental difference that distinguishes the classical from 
the ABS process is the need in ABS to validate models  with data and/or observations 
from real world targets. On one hand, the correctness of simulation results that are 
previously anticipated along the model specification phase is assessed with 
verification techniques that are similar, to a great extent, to classical SE and AOSE. 
On the other hand, the emergent tendencies that are not anticipated or intentionally 
specified are validated with data and observations of the target. The logic underlying 
this strategy is that if a program is correctly verified then its outputs are entailed by 
the conceptual model specification. This assertion would in fact be correct if we could 
rigorously verify the correctness of reasonable complex code.  

What is the role of static and dynamic verification? Static verification techniques 
can partially demonstrate that the conceptual model corresponds to the computational 
model, but they cannot demonstrate that the computational model is indeed 
operationally useful and without software faults and failures. A software failure 
occurs when the software is executing, and the software does not behave as expected 
by the user. A software failure is not the same as a software fault  (see [19]). Software 
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faults are programming errors whereby the program does not conform to the 
specification. Software faults are static and their existence may be inferred through 
program inspections (i.e. static verification) and from software failures. Software 
faults cause software failures when the faulty code is executed with a set of inputs that 
expose the software fault. For these reasons, dynamic testing is the predominant 
validation and verification technique in SE. Dynamic testing exercises the program 
using data like the real data processed by the program, and the values obtained are 
used to test if the computer program behaves as expected. It is used in both classical 
SE (see [19]) and CS (see [18]). The bad news for ABS is that real data is not easy to 
obtain. But even if that was not the case, suppose that the ABS program can be 
verified and validated for a set of known input/output relations. How can the 
reliability of such a simulation be affected after that stage? 

3.2   Classic Software Engineering Methods are not Reliable in ABS 

One result after the forty years of research history in software engineering is that any 
product that does not have its reliability requirements assessed cannot be validated 
with any model, whichever it may be. In most cases, classical products are ultimately 
verified and validated by the users’ desires and satisfaction with the product 
behaviour. This means that if some dysfunctional result is not predicted before 
product delivery, then it must be uncovered with acceptance tests. 

Figure 3 – Software faults cause software failures when the faulty code is executed with a set 
of inputs which expose the software fault. The software reliability is related to the probability 
that, in a particular execution of the program, the system input will be a member of the set of 
inputs which cause an erroneous output. In the classical product, there are usually a number of 
members of Ie which are more likely to be selected than others (adapted from [19], pp.351). 

In fact, empirical data show that more than 50% of all effort expended on a 
program will be expended after it is delivered to the customer [17,pp.22;14;19]. Such 
procedures detect software failures, promoting the subsequent distinction between 
software faults (verification) and invalid specifications (validation). These findings 
result from empirical analyses that establish the following results (see [19]): (i) not all 
software faults are equally likely to cause software failures; (ii) transient failures or 
whose consequences are not serious to the users’ needs are of little practical 



importance in the operational use of the software. In some programs, empirical 
analysis find that removing 60% of product defects would only lead to a 3% 
reliability improvement [16]. Curiously, these are good results for classical SE. On 
the one hand, not all software faults imply less system reliability (if the probability of 
choosing an input which causes an erratic output is low – see figure 3). On the other 
hand, dysfunctional and annoying software failures can ultimately be detected with 
dynamic tests, including acceptance testing. 

The difference between the classic and the ABS product can be founded precisely 
here. The first thing that we should be aware is that all simulation results are 
outcomes of a computational model, which is not necessarily equivalent to the 
conceptual model. Nevertheless, in the classical product the equivalence of the 
conceptual with the computational model does not need to be exhaustive. For the 
classical product, it is software failures not software faults that affect the reliability of 
a system [19,pp.357]. Hence, the existence of defects in the system is mostly assessed 
with dynamic and acceptance testing, according to the detection of unexpected 
outputs. During that stage, the emergence of very undesirable properties is suppressed 
through program correction or requirements re-specification. The emergence of 
undesirable properties that are rare or not very annoying to users are typically not 
considered and not corrected. As we have mentioned, removing product defects does 
not necessarily lead to reliability improvements. The emergence of properties that are 
irrelevant to users may not even be evaluated (actually, they will be rarely observed). 
To the users’ concerns it does not matter if the system non-dysfunctional 
characteristics are, or are not, a result of a software fault. Moreover, to the users’ 
concerns it does not matter if some functional characteristic is, or is not, a result of a 
software fault. 

Now, dynamic and acceptance tests of this kind are definitely defective, and not 
appropriate, for ABS. This is due to the alteration of the product aims, where the 
users’ satisfaction to accept the classical product is replaced in ABS with symbolic 
data and stakeholder (subjective) evaluation of social and institutional target realities. 
For the classic user, it does not matter if the conceptual model is not absolutely 
equivalent to the computational model, as long as the latter is functional to his desires 
and needs. Conversely, for the ABS designer and its users the goal is precisely the 
conceptual model, or/and a set of explanations according to the conceptual model. 
This may lead us to conclude that the ABS product requires high levels of reliability 
in much the same way as critical systems in classical SE, for the conceptual 
specification must be exhaustively equivalent to the comp utational model4. Of course, 
prescribing high quantitative reliability requirements to ABS programs is at present 
too much to ask. Furthermore, the nature of critical systems is what we do not need in 
ABS, since the goal of critical systems is precisely the complete suppression of non-
anticipated results.  

In reality, the problematic issue in ABS is more far reaching than reliability and 
correction per se. The problem is situated on the difficult definition of means to 
distinguish unexpected results from software faults and, therefore, to detect 
incorrectness. In effect, static verification in ABS is hard, as we have seen before; 

                                                                 
4 Critical systems are software systems that require high levels of reliability, like the software 

installed on a aircraft. 



dynamic verification can contribute to enhance the product reliability according to a 
very limited range of input/outputs; there is no such thing as acceptance testing in 
ABS. The distinction between non-anticipated outcomes, entailed by the conceptual 
model, and software faults in the computational model may, therefore, be virtually 
impossible to realize. This indefinition is aggravated when sensitivity analysis and 
stochastic effects are at stake; for, to what extent is the conceptual model sensitive or 
not to software faults? Or to what extent is some stability and low sensitivity of 
results not a consequence of a software fault? These indefinitions call into question 
the applicability of classical SE techniques in the ABS development process. But do 
we have other techniques? Are we running too fast with the desirable increase in 
domain diversity, complexity and number of agents in simulations? 

4 Discussion 
4.1   Some Prospects on How to Address the Problem 

In our vision, reliability is presently the fundamental problem in ABS. The problem of 
validation has been an important research issue, but are we adopting the right 
principles? Should we insist on the use of classic approaches and assumptions in 
regard to verification? We have demonstrated that we should not. Nevertheless, is 
there an alternative software process for ABS?  

At the present maturing stage of ABS there is not yet an answer to these questions. 
But what this work has demonstrated is that the premises underlying program 
development and reliability of results have to be substantially revised. At this time 
such a need has not been incorporated into the discipline research trends. A careful 
reading of the literature of SE teaches us how the quantitative analysis of program 
construction has helped the discipline to find an equilibrium between theoreticak and 
empirical knowledge, allowing a large scale production of programs with reasonable 
reliability patterns in a diversity of domains. Such effort may also be needed in ABS. 
For instance, are there typical patterns of code complexity in ABS programs? (see e.g. 
[15]). Is there a relation between the number of corrected software faults and an 
increase in reliability? As far as we know this type of quantitative analysis does not 
presently exist in ABS.  

Other approaches might involve the so-called alignment of models [23], by 
comparing different models that announce the same type of results and try to see if 
they actually produce similar results (see e.g. [25] in this volume). There are some 
scalability limits to these approaches, however; particularly with respect to the level 
of code complexity (e.g. number of lines). The first is that it is highly biased to 
validate conceptual models, rather than to verify computational models. The second is 
that, as we have seen, a same conceptual model can lead to different computational 
models, which may produce similar or different outputs. The third is that it relies on a 
social process, the systematic process of re-implementation of programs, transfer of 
knowledge and assessment of results, which in the specific case of computational 
models, the implementations themselves, limits in practice the underlying inductive 
process of verification. In effect, it seems implausible to see programmers willing to 
collaborate on the massive inspection or re-implementation of programming code, not 



only because it is a tedious and complex activity; as DeMillo et al. [24] would put it, 
static “(…) verification (of programs) cannot be internalized, transformed, 
generalized, used, connected to other disciplines, and eventually incorporated into a 
community consciousness. They cannot acquire gradual credibility, as a mathematical 
theorem does (…)”.  

The complementary approach that we have taken in this paper adopted a qualitative 
methodological course. Such effort allowed us to examine how the micro and macro 
modelling perspectives interact, affecting static verification and associated reliability 
requirements. This was possible because we have defined the concept of micro and 
macro specification in an unambiguous way. These results are also informative to the 
ongoing methodological and epistemological discussion, with respect to the tension 
between individualistic and holistic modelling trends in ABS. 

4.2 Conclusions 

In this paper we have analysed an abstract specification framework as part of an 
abstract development process for agent-based simulation. We have proposed an 
emergence-driven software process based on hyperstructures, which clarifies the 
traceability of micro and macro observations to micro and macro specifications in 
agent-based models. We have examined how micro and macro specifications interact 
in a model, and shown that the effort expended in the verification of observable 
emergent entities in simulation increases exponentially with the number of micro and 
macro specifications. 

According to these results we have shown that it is impossible in practice to verify 
that an agent-based conceptual model has been implemented properly as a 
computational model, given that we do not usually know what we want the output to 
be a priori. Since in agent-based simulation the conceptual and the computational 
models must be exhaustively equivalent, these results demonstrate that the reliability 
assessment of non-anticipated results in simulation is in practice not possible. 
Furthermore, the results indicate that the reductionism/non-reductionism debate is 
important to unders tand the reliability of simulation programs. According to these 
results we have called into question the applicability of traditional software 
engineering methods to agent-based simulation. Hence, we claim that the premises 
underlying the applicability of classical program development to agent-based 
simulation have to be substantially revised. 

References 

1. Baas N.A. and Emmenche C. (1997). On Emergence and Explanation. In: Intellectica, 25, 
pp.67-83. 

2. Cariani P. (1991). Emergence and Artificial Life. In: Artificial Life II, Addison Wesley, 
pp.775-797. 

3. Castelfranchi C., Miceli M. and Cesta A. (1992). Dependence relations among 
autonomous agents, Proceedings of MAAMAW92, Elsevier Science, pp. 215-227. 



4. Ciancarini P. and Wooldridge M. (eds), 2001. Agent-Oriented Software Engineering,  
Springer-Verlag, LNAI1957. 

5. Conte R, Edmonds B., Moss S. and Sawyer R.K. (2001). Sociology and Social Theory in 
Agent Based Social Simulation:A Symposium. In Computational and Mathematical 
Organization Theory, 7(3), pp.183-205. 

6. Conte R. and Sichman J.S. (1995). DEPNET: How to benefit from social dependence, In: 
Journal of Mathematical Sociology, 20(2-3), 161-177. 

7. Cornelissen F., Jonker C.M. and Treur J. (2001). Compositional Verification of 
Knowledge-Based Systems: a Case Study for Diagnostic Reasoning. In Series in 
Defeasible Reasoning and Uncertainty Management Systems, vol.6, Kluwer Academic 
Publishers, pp. 65-82. 

8. David N., Sichman J.S. and Coelho H. (2001). Agent-Based Social Simulation with 
Coalitions in Social Reasoning, In Moss S. and Davidsson P., editors, Multi-Agent-Based 
Simulation, Springer Verlag, LNAI, v.1979, pp.244-265. 

9. Davidsson P. (2002). Agent Based Social Simulation: A Computer Science View, In 
JASSS, vol.5, no.1, http://jasss.soc.surrey.ac.uk/5/1/7.html. 

10. Epstein J. and Axtell R. (1996). Growing Artificial Societies: Social Science from the 
Bottom Up, MIT press. 

11. Gilbert N. and Troitzsch K. (1999). Simulation for the Social Scientist, Open University 
Press. 

12. Langton C., Minar N., and Burkhart R., The Swarm Simulation System: A Tool for 
studying complex systems, http://www.swarm.org. 

13. Law A. and Kelton W.D. (1991). Simulating Modelling and Analysis, McGraw-Hill. 
14. Lienz B. and Swanson E. (1980). Software Maintenance Management, Addison-Wesley. 
15. McCabe T. and Butler W. (1989). Design Complexity Measurement and Testing, In: 

CACM, vol.32, no.12. 
16. Mills D., Dyer M. and Linger R. (1987). Cleanroom software engineering, In: IEEE 

Software, vol.4, no.2. 
17. Pressman R. (1994). Software Engineering: A Practitioner’s Approach, McGraw-Hill. 
18. Sargent R.G. (1999). Validation and Verification of Simulation Models. In: Winter 

Simulation Conference, IEEE, Piscataway, NJ, 39-48. 
19. Sommerville I. (1998). Software Engineering, Addison Wesley. 
20. Troitzsch K.G., Brassel K, Mohring M. and Shumacher E. (1997). Can Agents Cover All 

the World?, In: Simulating Social Phenomena, Springer-Verlag, LNEMS 456, pp.55-72. 
21. Marietto M.B., David N., Sichman J.S. and Coelho H. (2002). Requirements Analysis of 

Agent-Based Simulation Platforms: State of the Art and New Prospects. In this volume. 
22. Sichman J.S. (1998). DEPINT: Dependence-based coalition formation in an open multi-

agent scenario, In Journal of Artificial Societies and Social Simulation, 1 (2), 
http://www.soc.survey.ac.uk/JASSS/1/2/3.html. 

23. Axtell R., Axelrod R., J.M. Epstein and M.D.Cohen (1996). Aligning Simulation Models: 
A Case Study and Results, Computational and Mathematical Organization Theory 1(2), 
pp. 123-141. 

24. DeMillo R., Lipton R. and Perlis A. (1979). Social Processes and proofs of theorems and 
programs, Communications of the ACM 22, 5 (May), 271-280. 

25. Antunes L., Nobrega L. and Coelho H. (2002). BVG choice in Axerold’s tribute model. In 
this volume. 

26. Baas N.A. (1994). Emergence, Hierarchies and Hyperstructures. In Langton C. (eds), 
Artificial Life III, Santa Fe Studies in the Sciences of Complexity, Proceedings, Volume 
XVII, Addison-Wesley. 

27. Sawyer R.K. (2001). Simulating Emergence and Downward Causation in Small Groups. 
In Moss S. and Davidsson P., editors, Multi-Agent-Based Simulation, Springer Verlag, 
LNAI, v.1979, pp.49-67. 


