
Towards an Emergence-Driven Software Process
for Agent-Based Simulation

 Nuno David1,2,‡, Jaime Simão Sichman2,¥ and Helder Coelho3

1 Department of Information Science and Technology, ISCTE/DCTI, Lisbon, Portugal
Nuno.David@iscte.pt http://www.iscte.pt/~nmcd
2 Intelligent Techniques Laboratory, University of São Paulo, Brazil

Jaime.Sichman@poli.usp.br http://www.pcs.usp.br/~jaime
3 Department of Informatics, University of Lisbon, Portugal

hcoelho@di.fc.ul.pt http://www.di.fc.ul.pt/~hcoelho

‡ Partially supported by FCT/PRAXIS XXI, Portugal, grant number BD/21595/99.
¥ Partially supported by CNPq, Brazil, grant number 301041/95-4, and by project MAPPEL

(PROTEM -CC, CNPq/NSF), grant number 680033/99-8.

Abstract. In this paper we propose an emergence-driven software process for
agent-based simulation that clarifies the traceability of micro and macro
observations to micro and macro specifications in agent-based models. We use
the concept of hyperstructures [1] to illustrate how micro and macro
specifications interact in agent-based models, and we show that the
reductionism/non-reductionism debate is important to understand the reliability
of agent-based simulations. In particular, we show that the effort expended in
the verification of agent-based simulations increases exponentially with the
number of micro and macro specifications, and that the reliability assessment of
non-anticipated results in simulation is in practice not possible. According to
these results we claim to be impossible in practice to verify that an agent-based
conceptual model has been implemented properly as a computational model,
since one does not usually know what is the desired output a priori. We thus
advocate that the classic process of verification, validation and exploration of
non-anticipated results is not reliable in an agent-based simulation, and call into
question the applicability of traditional software engineering methods to agent-
based simulation.

1 Introduction

The software process is the set of activities and results that produce a software
product. In Software Engineering the attributes of a software product refer to the non-
functional characteristics displayed by the product once it is installed and put to use.
These attributes characterize the product’s dynamic behaviour and the use made of
the product, while reliability and usability are among the most fundamental traits (see
[19]).

Meanwhile, the Agent-Based Simulation product differs in various senses from the
classical one. Simila rly, the process of product development in Agent-Based

Simulation (ABS) proceeds from different motivations from the ones originating in
classical process. By ABS product we mean the set of programs and documents
required to satisfy the designer and users’ goals of running successful and informative
simulations. We identify four fundamental aspects that characterize the ABS product:

i) the product is instantiated as such after the first development cycles, and
throughout the implementation phase with the first simulation experiment;

ii) the product does not stipulate an exhaustive and pre-specified enumeration of
requirements that it must satisfy once it is put to use; instead, a model is developed
along succeeding cycles that simultaneously include specification, implementation,
verification, validation and use; the motto is thus exploration of requirements;

iii) the product is frequently used to explore outputs that are difficult to calculate
analytically from complex models;

iv) the product is normally used to explore qualitative concepts according to
outputs that are neither anticipated nor intentionally specified during the model
specification phase, which makes the classical notion of dynamic verification1 very
difficult to apply.

Characteristics (i) and (ii) have been well identified and systematized problems in
classical Software Engineering (SE) and Artificial Intelligence (AI), particularly in
the field of exploratory programming for knowledge-based systems. Typical
processes to develop these products are strongly based on formal or informal
verification of programs according to requirements that mu st be specified at some
point in the development process. Contemporary models of Agent Oriented Software
Engineering (AOSE) (see [4]) do not add novelty in this respect, for its
methodologies concern the interaction of distributed intelligence, so as to define
behaviours and solve problems that must be specified at some point of the
development process.

Characteristic (iii) has been reasonably systematized in classic Computer
Simulation (CS) for dynamic system analysis, queuing models or general-purpose
engineering (see [13]). In this case, the exploration of requirements and results is
more quantitative than qualitative in nature. Most model specifications come in the
form of equations, and the verification process usually arises in the form of
mathematical analysis.

Characteristic (iv) is potentially more defining of ABS products. It results not only
from the product role of exploring requirements and program outputs, but also from
exploring qualitative concepts according to such outputs. In effect, a relevant use of
ABS is to detect which effects may be drawn from patterns of agent interaction, that
is , the emergence of macro-level regularities that are not intentionally specified at
micro levels of detail. These observations must be verified a posteriori, after program
execution trials, and some of them may be hard to verify and validate. Hence, in most
cases, the development of ABS products covers additional levels of difficulty if

1 The role of verification is to show that the computational model is equivalent to the

conceptual model. Dynamic verification checks program correctness by evaluating given
inputs with program execution outputs (see §2, [17,18,19] and [21] in this volume).

compared with classical products, since the borders between dynamic verification and
dynamic validation2 are harder to distinguish.

Methodological issues in ABS have been a topic of primary importance in the
discipline (see e.g.[5,9,20]). Meanwhile, the research has rarely approached the
technical details of software processes and its relationship with the problematic of
emergence. While the software process may have been somewhat considered by some
authors, the underlying methodological analysis has been invariably understood
according to assumptions and principles of classic SE, classic CS, AI and AOSE,
whose feasibility of purpose in ABS is far from being clear. At this stage, it is
important to include the software process in the ABS research agenda for the
following reasons:

i) the ABS product is not only used for technological automation of problem
solving and expertise support, but also for purposes of scientific investigation of
social theories and models of the real world. While in the former case the results of
ABS may be reasonably verified with specifications and are most times validated
by its users’ desires, in the latter its validation requires independence from the
users’ and developers’ bias;

ii) the crucial role of non-anticipated observation of program execution outputs in
ABS hinders the applicability of classic software development principles to ABS.
One must remember that validating a conceptual model does not guarantee the
correctness and acceptability of non-anticipated outputs in the corresponding
computational model. Since in ABS the verification and validation of non-
anticipated outputs are superimposed, the existence of development premises for
ABS that have not been considered in classic SE, AI and AOSE can be
hypothesised. This change of premises may have a profound impact on the product
non-functional requirements, especially, with respect to reliability requirements;

iii) most classic CS and AOSE products are not concerned with emergent, non-
anticipated, structures. Classic CS is not agent-based. Organisations and
institutions specified in AOSE are both considered as computationally individual
entities in the system; here, the interaction between different levels of agent
granularity is usually pre-defined; the concept of emergent “wholes”, multi-level
modelling, and emergent interaction between agents at different levels of
abstraction is usually undesirable. The specification of models in ABS must thus
be significantly different from classical CS and AOSE. Currently, there are no
meta-models to describe the ABS process. For this reason, the methodological and
epistemological tension between individualistic and holistic approaches has been
discussed from an abstract point of view, with no real connection to practical ways
of specifying agent-based simulations. The inexistence of meta-models to specify
software is an excellent way to attain incorrect implementations and bad
verification and validation. Indeed, specifications need to be traceable to
implementations and program execution outputs.

2 The role of validation is to show that the conceptual model specification is equivalent to an

intended application or observed target. In practice the computational model must be
validated as well. Dynamic validation checks if the computational model outputs agree with
the intended application or observed target (see §2, [17,18,19] and [21] in this volume).

In this paper we investigate an abstract model that characterizes the ABS software
process with regard to the specification stage. We concentrate on the logical analysis
of the method per se, rather than validate the discipline through simulation results and
case studies. Method examination facilitates detection of inconsistencies and errors
related to problem conceptualisation and program construction. It is important to
establish systematic development and interpretation principles, particularly with
respect to the analysis of emergent phenomena.

This paper is structured as follows. In section 2 we will analyse the role of
conceptual and computational models in agent-based simulation. Later we will show
how to incorporate micro- and macro-observations in agent-based conceptual models,
and also show that the reductionism/non-reductionism debate is important to
understand the reliability of simulation programs. In particular, we will demonstrate
that the effort expended in static verification increases with the number of micro and
macro observations specified in agent-based models, and that an extensive
verification of anticipated results in agent-based simulation is in practice not possible.
In section 3 we will use this result to assert that the process of dynamic verification,
validation and exploration of non-anticipated results is not reliable in agent-based
simulation. We will point out research directions to solve this problem and give our
conclusions in section 4.

2 From Conceptual to Computational Models

It is relatively unanimous that the ABS process begins with the identification of some
research object, a “puzzle”, for which there are questions whose answer is not known
(cf. [11]). The research object leads us to the definition of an abstract or real world
target for modelling. The target is the real or proposed idea, situation or phenomena
to be modelled, from which one constructs a conceptual model (a
mathematical/logical/verbal representation) based on observations, assumptions and
formulation of hypothesis. The conceptual model must be transformed into a
corresponding computational model.

Figure 1 – The modelling process with relation to verification and validation.

Consider the simplified version of the agent-based modelling process in figure 1.
The figure relates verification and validation with the modelling process (see [18,21]).
Static validation is defined as determining that the theories and assumptions
underlying the conceptual model are reasonable representations of the research object.

research object static validation dynamic validation

static verification

dynamic verification

computational model conceptual model

Static verification is defined as ensuring that the program source code representing
the conceptual model is correct. Therefore, static verification is not directly concerned
with the evaluation of non-anticipated outputs during the simulation. Dynamic
verification is defined as determining that the conceptual model entails the
computational model outputs. Dynamic validation is defined as determining that the
computational model outputs are correct according to the research object3. In the
present section we investigate the stages involving the specification of conceptual
models and static verification.

2.1 Multiple Targets in Agent-Based Simulation

The particularity of agent-based modelling is the definition of elements in a model
that represent entities in the target, such as human beings, organizations or inanimate
objects. Eventually, every passive and active entity in the target may be “agentified”.
Some approaches differ in respect to the model’s level of abstraction in relation to the
real world, as well as to the representation granularity of agents in the model:

i) simulation with artificial societies - at one extreme of the abstraction axis we find
models of artificial societies that do not reference a concrete target or specific
theory about the real world (e.g.[10]). This approach is most akin to requirements
exploration in classical SE and AI: the conceptual model is validated according to
the designer’s observation perspectives and desires in respect to the computational
model outputs. The conceptual and computational models evolve in consecutive
refinement cycles according to those judgments. Hence, a major part of the software
process is devoted to the verification of models: to what extent are the macroscopic
regularities of interest given by the computational model outputs caused by the local
or micro mechanisms specified in the conceptual model? This tendency often
suggests an implicit assumption that does not have to be adopted, when the term
micro is associated with specifications of conceptual and computational models, and
the term macro with observations of computational models outputs.

ii) animation of socio-cognitive theories - halfway to the other extreme of the axis, we
find the simulation of models of socio-cognitive or sociological theories. This
approach is usually founded on computational animation of logic formalisms, which
represent agents and social structures according to a specific theory, for instance,
the Theory of Dependence and Social Power [3]. The animation serves a purpose of
theory consistency checking and refinement of social theories (see [6]), as well as to
verify the pragmatic feasibility of such theories in MAS engineering [22,8]. In this
trend, the structures emerging from the interaction of elements in the model are
crucial for theory refinement. By emergent structures we mean new observable
categories that do not find a semantic expression in the original vocabulary of the
model (e.g. the subjective observation of agent coalitions according to patterns of
dependence relations). Recent methodological discussions propose the explicit
specification of given emergent (macro) entities in models, regardless of being

3 In the software engineering literature, dynamic verification and validation is also known as

“program testing”.

reducible or not reducible to levels of description at lower granularity
(see, e.g., Sawyer’s claim in [5] or [27]). As we will soon show, such practice has
always been common in ABS, but it has not been methodologically and
appropriately assumed.

iii) simulations with representations of the real world - at the end of the axis, we find
simulations with models that should desirably represent observations of real social
and institutional concrete processes (see, e.g., Moss’ claim in [5]). The goal is “the
use of MAS to describe observed social systems or aspects thereof and to capture
the sometimes conflicting perceptions of the social system by stakeholders and other
domain experts”. This approach is the most conflicting with the classic process,
owing to the practical inevitability of defects in computer programs. Insofar as
specification and program coding errors are unavoidable in practice, the validation
of computational model outputs is susceptible to misjudgements because the
verification and validation processes overlap with respect to the evaluation of such
outputs.

We can see that when travelling from approach (i) to (iii) there is an increasing
overlap of dynamic verification and validation judgements. Such increasing overlap
also parallelizes a change in the scientific role of simulation from explanation and
prediction to explanation and representation of targets. But as we will see, the
complexity of the verification process in the former case, and the superposition of
verification and validation judgements in the latter, obstructs the feasibility of SE
techniques in ABS.

2.2 Micro or Macro?

One may say that in most ABS approaches there is an association flavour of the term
micro with the specification of conceptual and computational models, and the term
macro with the computational model outcomes. But this is not entirely factual. There
are at least two cases for which the term macro is underlying the specification
process:

i) implicit in the target – there are elements in the universe of the model that are
indivisible, but represent entities of the target with a higher (macro) [or lower
(micro)] granularity than the other indivisible elements with whom the element
interacts in the model.

ii) explicit in the model – there are elements in the universe of the model that
represent aggregates of other indivisible or non-indivisible elements, that is, a
set of elements defined in the model as a “whole”, having specific, and possibly
exclusive, properties.

In the first case the macro concept is subjectively relevant with respect to the
target, but irrelevant to the model objective dynamics. In the second case, there are
aggregates treated explicitly as “wholes” in the model. Some researchers would agree
that the most frequent approach is the first one. However, there are numerous
examples of the second, e.g., in Swarm [12] agents may be contained in swarms that
are in turn contained in other swarms. The source of this question and its effects on

the product reliability requirements can be found if we further abstractly detail the
specification of agent-based models.

2.3 Agentified Conceptual Specifications

We start the specification of a model with its set of indivisible agents. This set will be
known as the Agentified Conceptual Specification (ACS). An ACS is a set of
Agentified Entities (AEs) associated with a finite index set I, ACS={Ai}, i∈I.

An AE is an element in the model specified according to some arbitrary
observation process. The role of the observation is to analyse a particular feature of
abstract or physical nature in the target. Different AEs can represent entities of
different granularity in the target, such as physical objects, humans, organisations,
realistic representations of organisational concepts (e.g. a norm). Before we proceed,
it should be clear for the sake of generality that it is indeed possible to represent any
feature of a target by agentifying it, despite the disadvantage of overstressing the
agent metaphor (see [20]).

At this point we have not represented explicit macro concepts in the model. The
specification of agentified aggregates can be accomplished with observation processes
that explicitly describe macro -observations of the target.

2.3.1 Levels of Observation and Emergence: An Hyperstructural Vision
The ABS product development is an exploratory and iterative process, for which the
conceptual model is to a great extent determined by observing properties of entities in
the target, and how the entities relate and interact with each other according to those
properties. Particularly relevant to ABS is the observation of entities according to
different levels of abstraction and perspective. We view an ABS model as a
hyperstructural construction [1,26]. The hyperstructural framework is useful to model
AEs that can interact with other AEs at different levels of abstraction. Given one or
more arbitrary observation processes we define two qualitative distinct levels of
observation, called micro-observation and macro-observation:

Micro-observation – the observation of properties of each individual AE in the target:
Obs(Ai), i∈I

Macro-observation – the observation of properties of “wholes”, according to (i) any
subset K∈P(I) of AEs in the ACS; (ii) micro-observation of those AEs; (iii) an
interaction process between those AEs using properties observed in (ii):

Obs(AK), with AK=R(Aj ,Obs(Aj),Int)), j∈K, K∈P(I)
where every whole AK is indexed by some element K∈P(I).

The conceptualisation of a new structure, a “whole”, involves observing an
aggregate of AEs in the target, where Int is an interaction process between those AEs
and R is the result of the construction process. For instance, consider an aggregate of
AEs characterized by a macro property, say the gross income. The micro-properties
are the AEs’ individual incomes, and the construction process is an aggregation of
AEs according to an interaction process that calculates the gross income based on the
individual incomes. In other cases, the observed macro-properties may be disjoint

from the observed micro-properties, for instance, the cohesion of an aggregate
calculated according to patterns of relations of trust and dependence between its
members.

If we want to represent explicit macro-observations in the model, we have to
specify a new type of AEs in the ACS. The specification of such wholes is achieved
by representing new AEs at higher levels of granularity than their constituent AEs. A
structure AK denotes a first order macro-AE, conceptualised in a distinct level of
abstraction from the other micro-AEs. Thus, in the previous example, the concept
cohesion of an aggregate would be specified as a new macro-AE in the conceptual
model. Nevertheless, note that the construction process defining the macro-AE does
not have to be expressed in the specification. Moreover, it can be argued that the
observation of macro-properties does not even need to be computationally
expressible, i.e., by way of an algorithm. Indeed, like any other micro-AE, the
designer can ascribe (by definition) additional macro-properties to a macro-AE. For
instance, if one specifies in the model an organisation that contains several agents,
one is not necessarily assuming that those agents are sufficient to specify the
properties of that organisation. If that is the case, the micro-observations and the
interaction process (the construction process R) are thus subjectively represented in
the observer’s mind. It is common practice in ABS to define properties of macro-AEs
without stating its hypothetic reducibility to properties of its constituent AEs
according to a particular theory. Such omission is perfectly acceptable, but it should
inhibit the designer from ascribing methodological individualistic principles to his
simulation.

Sawyer [5] is right when he claims that the inspiration principles of ABS are
methodological individualistic, but his claim that most agent-based models are
methodological individualistic seems to be false; in practice most models represent
macro-concepts, regardless of being reducible or non-reducible to other micro-
concepts. Nevertheless, as we will soon show, Moss [5] does not seem to be right in
suggesting that the reductionism/non-reductionism debate does not influence the
verification and validation problem in ABS.

The set of observed micro-AES and first-order macro-AEs constitute a first-order
ACS, denoted by ACS1. The maximum number of elements in a first-order ACS is
given by #ACS1=#P(ACS)-1. It is evidently possible to consider second order macro
observations over first order ACSs, and so on. The process that combines AEs of
different order is called a hyperstructure, and is illustrated in figure 2.

Figure 2 – Specified AEs and virtual emergent AEs. The convergence of lines from lower
order to higher order AEs means that lower order AEs interact with one another. This may be
ascribed by the specification itself or be only represented in the observer’s mind. For instance,

second order macro level

micro level

first order macro level

virtual AE (observer dependent)

specified AE

the notion of observed ‘system” in a simulation, e.g., the construction process given by the
interaction between a grid and a set of individual agents, can be understood as a virtual AE; in
such example the concept of ‘grid’ is thus agentified.

We proceed from the principle that the interesting emergent events that involve
agent-based simulations reside not only in the simulations themselves but in the ways
that they change the way we think and interact with the world. “Rather than emergent
devices in their own right, computer simulations are catalysts for emergent processes
in our mind” [2]; they help us to create new ways of seeing the research object. In the
figure, the black vertexes denote AEs that are explicitly specified in a model. The
white vertexes denote possible observable virtual AEs, which are not part of the
specification. Some of them will constitute the observer’s expectations of how the
model will behave; consequently, they must be verified during the software process.
We immediately see that the observer’s interest can be the conceptualisation of ACSs
of higher order than the one specified, for example, the conceptualisation of the
system as whole.

2.3.2 Specifying State Transitions
The ACS modifies its state along the time by modifying the state of its constituent
AEs. We denote an arbitrary order ACS in state e by A|e, where A|e={Ai|e}, i∈I|e and I|e
is the index set in state e. The notation Ai|e denotes an AE with index i∈I|e in state e.

Consider a set of properties given by some arbitrary observation process Obs over
the AEs in the ACS A|e. A state transition e1→ e2 in the simulation is calculated by
submitting the AEs in state e1 to an algorithmic process of interaction AlgInt that uses
the properties registered under the observation process Obs. A transition sequence
e1→ e2→ ...→ en is obtained by successive compositions of the algorithm
A|en=AlgIntObs|e1→ en(A|e1).

The specification of the interaction algorithm will have a decisive impact in the
AEs’ evolution. For instance, new AEs may be created while others will cease to
exist. It is also possible to specify mechanics to observe aggregates composed of AEs
at different time states. These observations would allow the agents themselves to
establish the persistence in time of some regularity. Such observations would have to
be previously and algorithmically specified, which is different from the usual
designer-observer’s position that mentally conceptualizes the emergence of new
categories during or after the simulation.

2.4 Static Verification

The need to transform conceptual models into equivalent computational models has
always been a major motivation for the substratum of software engineering
techniques. Verification techniques involve showing that the detailed design and
implementation of the conceptual and computational models are correct. It involves
static and dynamic techniques (see [17,18,19]). Static techniques are concerned with
the analysis and checking of system representations such as specification documents
and the program source code. Static techniques are not directly concerned with

evaluation of non-anticipated emergent outcomes during the simulation. For this
reason, some static techniques used in classical SE and AOSE can also be used in
ABS, although it will probably involve in most cases a higher degree of complexity
analysis.

Within an agent-based realm of complexity, static verification involves to a great
extent checking the model specification with its detailed design. There is an
increasing amount of literature for verifying agent-based systems in AOSE. One
recent approach is static compositional verification [7]. For macro-properties
assumedly reducible to lower order properties, this involves verifying that the
properties of macro-AEs derive from its constituent micro-AEs properties, according
to some interaction algorithm.

Consider a m-order ACS A|e1 with an index set I|e1. The state e1 is the initial state.
Within a hyperstructural framework, verifying the model expected behaviour can be
described by the following steps:

(i) verify specified AEs by composition: given the properties of micro -AEs, verify
that the properties of each macro-AE resemble the specification of the macro-
observation, i.e., for each j-order macro-AE Ai|e1∈A|e1 and j≤m, show that there
is a subset Ii∈I|e1 of AEs with order less or equal to j-1, such that
Ai|e1=R(Al|e1,Obs(Al|e1),Int)), l∈Ii. So if Ai is an AE representing the concept
cohesion of an aggregate, this amounts to show that the algorithm that computes
the cohesion according to the set of lower order AEs conforms to its
specification R;

(ii) verify the interaction algorithm AlgInt: given the properties of micro and
macro AEs in state e1, verify that for any state en subsequent to e1, the
properties in e1 are preserved in en;

(iii) verify expected emergent AEs by composition: given the properties verified
in (i), verify that the system will behave according to the designer’s
expectations. These are emergent properties associated with virtual AEs,
possibly, with order greater than m. So if we specify that the system should
reach some form of equilibrium after some state en, this amounts to show that it
will do so according to the properties verified in (i).

The specification of macro -AEs is obviously a complexifying factor in the
verification process. But the increase in complexity does not only lie in the
compositional verification of step (i). Step (iii) implies the compositional verification
of virtual aggregates, i.e., verifying expected emergent properties in the system. The
number of observable virtual AEs will possibly increase with the number of micro-
and macro-AEs specified in the model. For an ACS or order m, the highest number of
observable virtual macro-AEs at order m+1 is:

1n...nn2(m)N m1
n...nn

virtual
m1 −−−−−= +++

where n is the number of micro-AEs and nk denotes the number of k-order AEs.
Thus, for a program without macro-AEs that manipulates 15 micro-AEs, the

highest number of observable virtual AEs is 32753. If we include in the ACS one
additional micro-AE and two second-order AEs the number increases to 262125. Of

course, the number of virtual AEs that must be statically verified is much lower. This
is the case if the goal of ABS is the exploration of emergent events rather than the
specification of emergent events. What this formula tells us is that even if we limit the
number of observation processes to observe a simulation (limit the set of observable
properties), the increase in the number of micro and macro-AEs in the model implies
an exponential increase of observable virtual macro-AEs in the simulation. But if they
are indeed observable, can we verify them? And if not, can they be validated without
being verified?

3 Exploration of Results

We have now reached the conditions to confirm our claims in respect to assumptions
in the classical process that cannot be used in the ABS process. For this purpose we
make a short circuit in the development process, jumping directly to stages of
dynamic verification, dynamic validation and exploration of results. It should be clear
that we left behind many development steps that we have not approached here, such
as static validation, detailed design and implementation.

For the time being, the unstated tendency in ABS to associate the term micro with
the conceptual and computational model specifications, and the term macro with the
computational model outcomes should now have been understood. For this reason, it
should not be strange to see that the traditional attempt in AOSE to arrive at feasible
verification processes is also implicitly adopted in ABS. The rule of thumb in AOSE,
“specify few agents so as to get controlled and verifiable systems” is a particular case
of “specify few micro and macro concepts so as to get controlled and verifiable
systems”. Surely, the ABS research community will hardly adopt such rule of thumb,
and we would like to stay that way.

3.1 Dynamic Verification and Validation

It is often alleged that one fundamental difference that distinguishes the classical from
the ABS process is the need in ABS to validate models with data and/or observations
from real world targets. On one hand, the correctness of simulation results that are
previously anticipated along the model specification phase is assessed with
verification techniques that are similar, to a great extent, to classical SE and AOSE.
On the other hand, the emergent tendencies that are not anticipated or intentionally
specified are validated with data and observations of the target. The logic underlying
this strategy is that if a program is correctly verified then its outputs are entailed by
the conceptual model specification. This assertion would in fact be correct if we could
rigorously verify the correctness of reasonable complex code.

What is the role of static and dynamic verification? Static verification techniques
can partially demonstrate that the conceptual model corresponds to the computational
model, but they cannot demonstrate that the computational model is indeed
operationally useful and without software faults and failures. A software failure
occurs when the software is executing, and the software does not behave as expected
by the user. A software failure is not the same as a software fault (see [19]). Software

Program

Input set Ie

Input causing
erroneous outputs

Output set

Erroneous outputs

Oe

faults are programming errors whereby the program does not conform to the
specification. Software faults are static and their existence may be inferred through
program inspections (i.e. static verification) and from software failures. Software
faults cause software failures when the faulty code is executed with a set of inputs that
expose the software fault. For these reasons, dynamic testing is the predominant
validation and verification technique in SE. Dynamic testing exercises the program
using data like the real data processed by the program, and the values obtained are
used to test if the computer program behaves as expected. It is used in both classical
SE (see [19]) and CS (see [18]). The bad news for ABS is that real data is not easy to
obtain. But even if that was not the case, suppose that the ABS program can be
verified and validated for a set of known input/output relations. How can the
reliability of such a simulation be affected after that stage?

3.2 Classic Software Engineering Methods are not Reliable in ABS

One result after the forty years of research history in software engineering is that any
product that does not have its reliability requirements assessed cannot be validated
with any model, whichever it may be. In most cases, classical products are ultimately
verified and validated by the users’ desires and satisfaction with the product
behaviour. This means that if some dysfunctional result is not predicted before
product delivery, then it must be uncovered with acceptance tests.

Figure 3 – Software faults cause software failures when the faulty code is executed with a set
of inputs which expose the software fault. The software reliability is related to the probability
that, in a particular execution of the program, the system input will be a member of the set of
inputs which cause an erroneous output. In the classical product, there are usually a number of
members of Ie which are more likely to be selected than others (adapted from [19], pp.351).

In fact, empirical data show that more than 50% of all effort expended on a
program will be expended after it is delivered to the customer [17,pp.22;14;19]. Such
procedures detect software failures, promoting the subsequent distinction between
software faults (verification) and invalid specifications (validation). These findings
result from empirical analyses that establish the following results (see [19]): (i) not all
software faults are equally likely to cause software failures; (ii) transient failures or
whose consequences are not serious to the users’ needs are of little practical

importance in the operational use of the software. In some programs, empirical
analysis find that removing 60% of product defects would only lead to a 3%
reliability improvement [16]. Curiously, these are good results for classical SE. On
the one hand, not all software faults imply less system reliability (if the probability of
choosing an input which causes an erratic output is low – see figure 3). On the other
hand, dysfunctional and annoying software failures can ultimately be detected with
dynamic tests, including acceptance testing.

The difference between the classic and the ABS product can be founded precisely
here. The first thing that we should be aware is that all simulation results are
outcomes of a computational model, which is not necessarily equivalent to the
conceptual model. Nevertheless, in the classical product the equivalence of the
conceptual with the computational model does not need to be exhaustive. For the
classical product, it is software failures not software faults that affect the reliability of
a system [19,pp.357]. Hence, the existence of defects in the system is mostly assessed
with dynamic and acceptance testing, according to the detection of unexpected
outputs. During that stage, the emergence of very undesirable properties is suppressed
through program correction or requirements re-specification. The emergence of
undesirable properties that are rare or not very annoying to users are typically not
considered and not corrected. As we have mentioned, removing product defects does
not necessarily lead to reliability improvements. The emergence of properties that are
irrelevant to users may not even be evaluated (actually, they will be rarely observed).
To the users’ concerns it does not matter if the system non-dysfunctional
characteristics are, or are not, a result of a software fault. Moreover, to the users’
concerns it does not matter if some functional characteristic is, or is not, a result of a
software fault.

Now, dynamic and acceptance tests of this kind are definitely defective, and not
appropriate, for ABS. This is due to the alteration of the product aims, where the
users’ satisfaction to accept the classical product is replaced in ABS with symbolic
data and stakeholder (subjective) evaluation of social and institutional target realities.
For the classic user, it does not matter if the conceptual model is not absolutely
equivalent to the computational model, as long as the latter is functional to his desires
and needs. Conversely, for the ABS designer and its users the goal is precisely the
conceptual model, or/and a set of explanations according to the conceptual model.
This may lead us to conclude that the ABS product requires high levels of reliability
in much the same way as critical systems in classical SE, for the conceptual
specification must be exhaustively equivalent to the comp utational model4. Of course,
prescribing high quantitative reliability requirements to ABS programs is at present
too much to ask. Furthermore, the nature of critical systems is what we do not need in
ABS, since the goal of critical systems is precisely the complete suppression of non-
anticipated results.

In reality, the problematic issue in ABS is more far reaching than reliability and
correction per se. The problem is situated on the difficult definition of means to
distinguish unexpected results from software faults and, therefore, to detect
incorrectness. In effect, static verification in ABS is hard, as we have seen before;

4 Critical systems are software systems that require high levels of reliability, like the software

installed on a aircraft.

dynamic verification can contribute to enhance the product reliability according to a
very limited range of input/outputs; there is no such thing as acceptance testing in
ABS. The distinction between non-anticipated outcomes, entailed by the conceptual
model, and software faults in the computational model may, therefore, be virtually
impossible to realize. This indefinition is aggravated when sensitivity analysis and
stochastic effects are at stake; for, to what extent is the conceptual model sensitive or
not to software faults? Or to what extent is some stability and low sensitivity of
results not a consequence of a software fault? These indefinitions call into question
the applicability of classical SE techniques in the ABS development process. But do
we have other techniques? Are we running too fast with the desirable increase in
domain diversity, complexity and number of agents in simulations?

4 Discussion
4.1 Some Prospects on How to Address the Problem

In our vision, reliability is presently the fundamental problem in ABS. The problem of
validation has been an important research issue, but are we adopting the right
principles? Should we insist on the use of classic approaches and assumptions in
regard to verification? We have demonstrated that we should not. Nevertheless, is
there an alternative software process for ABS?

At the present maturing stage of ABS there is not yet an answer to these questions.
But what this work has demonstrated is that the premises underlying program
development and reliability of results have to be substantially revised. At this time
such a need has not been incorporated into the discipline research trends. A careful
reading of the literature of SE teaches us how the quantitative analysis of program
construction has helped the discipline to find an equilibrium between theoreticak and
empirical knowledge, allowing a large scale production of programs with reasonable
reliability patterns in a diversity of domains. Such effort may also be needed in ABS.
For instance, are there typical patterns of code complexity in ABS programs? (see e.g.
[15]). Is there a relation between the number of corrected software faults and an
increase in reliability? As far as we know this type of quantitative analysis does not
presently exist in ABS.

Other approaches might involve the so-called alignment of models [23], by
comparing different models that announce the same type of results and try to see if
they actually produce similar results (see e.g. [25] in this volume). There are some
scalability limits to these approaches, however; particularly with respect to the level
of code complexity (e.g. number of lines). The first is that it is highly biased to
validate conceptual models, rather than to verify computational models. The second is
that, as we have seen, a same conceptual model can lead to different computational
models, which may produce similar or different outputs. The third is that it relies on a
social process, the systematic process of re-implementation of programs, transfer of
knowledge and assessment of results, which in the specific case of computational
models, the implementations themselves, limits in practice the underlying inductive
process of verification. In effect, it seems implausible to see programmers willing to
collaborate on the massive inspection or re-implementation of programming code, not

only because it is a tedious and complex activity; as DeMillo et al. [24] would put it,
static “(…) verification (of programs) cannot be internalized, transformed,
generalized, used, connected to other disciplines, and eventually incorporated into a
community consciousness. They cannot acquire gradual credibility, as a mathematical
theorem does (…)”.

The complementary approach that we have taken in this paper adopted a qualitative
methodological course. Such effort allowed us to examine how the micro and macro
modelling perspectives interact, affecting static verification and associated reliability
requirements. This was possible because we have defined the concept of micro and
macro specification in an unambiguous way. These results are also informative to the
ongoing methodological and epistemological discussion, with respect to the tension
between individualistic and holistic modelling trends in ABS.

4.2 Conclusions

In this paper we have analysed an abstract specification framework as part of an
abstract development process for agent-based simulation. We have proposed an
emergence-driven software process based on hyperstructures, which clarifies the
traceability of micro and macro observations to micro and macro specifications in
agent-based models. We have examined how micro and macro specifications interact
in a model, and shown that the effort expended in the verification of observable
emergent entities in simulation increases exponentially with the number of micro and
macro specifications.

According to these results we have shown that it is impossible in practice to verify
that an agent-based conceptual model has been implemented properly as a
computational model, given that we do not usually know what we want the output to
be a priori. Since in agent-based simulation the conceptual and the computational
models must be exhaustively equivalent, these results demonstrate that the reliability
assessment of non-anticipated results in simulation is in practice not possible.
Furthermore, the results indicate that the reductionism/non-reductionism debate is
important to unders tand the reliability of simulation programs. According to these
results we have called into question the applicability of traditional software
engineering methods to agent-based simulation. Hence, we claim that the premises
underlying the applicability of classical program development to agent-based
simulation have to be substantially revised.

References

1. Baas N.A. and Emmenche C. (1997). On Emergence and Explanation. In: Intellectica, 25,
pp.67-83.

2. Cariani P. (1991). Emergence and Artificial Life. In: Artificial Life II, Addison Wesley,
pp.775-797.

3. Castelfranchi C., Miceli M. and Cesta A. (1992). Dependence relations among
autonomous agents, Proceedings of MAAMAW92, Elsevier Science, pp. 215-227.

4. Ciancarini P. and Wooldridge M. (eds), 2001. Agent-Oriented Software Engineering,
Springer-Verlag, LNAI1957.

5. Conte R, Edmonds B., Moss S. and Sawyer R.K. (2001). Sociology and Social Theory in
Agent Based Social Simulation:A Symposium. In Computational and Mathematical
Organization Theory, 7(3), pp.183-205.

6. Conte R. and Sichman J.S. (1995). DEPNET: How to benefit from social dependence, In:
Journal of Mathematical Sociology, 20(2-3), 161-177.

7. Cornelissen F., Jonker C.M. and Treur J. (2001). Compositional Verification of
Knowledge-Based Systems: a Case Study for Diagnostic Reasoning. In Series in
Defeasible Reasoning and Uncertainty Management Systems, vol.6, Kluwer Academic
Publishers, pp. 65-82.

8. David N., Sichman J.S. and Coelho H. (2001). Agent-Based Social Simulation with
Coalitions in Social Reasoning, In Moss S. and Davidsson P., editors, Multi-Agent-Based
Simulation, Springer Verlag, LNAI, v.1979, pp.244-265.

9. Davidsson P. (2002). Agent Based Social Simulation: A Computer Science View, In
JASSS, vol.5, no.1, http://jasss.soc.surrey.ac.uk/5/1/7.html.

10. Epstein J. and Axtell R. (1996). Growing Artificial Societies: Social Science from the
Bottom Up, MIT press.

11. Gilbert N. and Troitzsch K. (1999). Simulation for the Social Scientist, Open University
Press.

12. Langton C., Minar N., and Burkhart R., The Swarm Simulation System: A Tool for
studying complex systems, http://www.swarm.org.

13. Law A. and Kelton W.D. (1991). Simulating Modelling and Analysis, McGraw-Hill.
14. Lienz B. and Swanson E. (1980). Software Maintenance Management, Addison-Wesley.
15. McCabe T. and Butler W. (1989). Design Complexity Measurement and Testing, In:

CACM, vol.32, no.12.
16. Mills D., Dyer M. and Linger R. (1987). Cleanroom software engineering, In: IEEE

Software, vol.4, no.2.
17. Pressman R. (1994). Software Engineering: A Practitioner’s Approach, McGraw-Hill.
18. Sargent R.G. (1999). Validation and Verification of Simulation Models. In: Winter

Simulation Conference, IEEE, Piscataway, NJ, 39-48.
19. Sommerville I. (1998). Software Engineering, Addison Wesley.
20. Troitzsch K.G., Brassel K, Mohring M. and Shumacher E. (1997). Can Agents Cover All

the World?, In: Simulating Social Phenomena, Springer-Verlag, LNEMS 456, pp.55-72.
21. Marietto M.B., David N., Sichman J.S. and Coelho H. (2002). Requirements Analysis of

Agent-Based Simulation Platforms: State of the Art and New Prospects. In this volume.
22. Sichman J.S. (1998). DEPINT: Dependence-based coalition formation in an open multi-

agent scenario, In Journal of Artificial Societies and Social Simulation, 1 (2),
http://www.soc.survey.ac.uk/JASSS/1/2/3.html.

23. Axtell R., Axelrod R., J.M. Epstein and M.D.Cohen (1996). Aligning Simulation Models:
A Case Study and Results, Computational and Mathematical Organization Theory 1(2),
pp. 123-141.

24. DeMillo R., Lipton R. and Perlis A. (1979). Social Processes and proofs of theorems and
programs, Communications of the ACM 22, 5 (May), 271-280.

25. Antunes L., Nobrega L. and Coelho H. (2002). BVG choice in Axerold’s tribute model. In
this volume.

26. Baas N.A. (1994). Emergence, Hierarchies and Hyperstructures. In Langton C. (eds),
Artificial Life III, Santa Fe Studies in the Sciences of Complexity, Proceedings, Volume
XVII, Addison-Wesley.

27. Sawyer R.K. (2001). Simulating Emergence and Downward Causation in Small Groups.
In Moss S. and Davidsson P., editors, Multi-Agent-Based Simulation, Springer Verlag,
LNAI, v.1979, pp.49-67.

