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Abstract. In this paper we develop two new chosen plaintext attacks
on reduced rounds of the IDEA block cipher. The attacks exploit the
word structure of the algorithm and are based on the observation that
suitable chosen plaintexts give rise to some special kind of distributions
which provide a way to distinguish reduced round IDEA output from a
random permutation with very few plaintexts. As a result, we develop
an attack for 3.5 rounds of IDEA which requires only 103 chosen plain-
texts. We have reduced the number of required plaintexts significantly
up to 4 rounds. We also present some interesting properties of the re-
duced round variants of the cipher which have not been published before.
The properties and the attacks bring a different approach to analyse the
cipher.

1 Introduction

The IDEA block cipher is a modified version of the algorithm PES [9], [10]. The
main design concept is “mixing operations from different algebraic groups”. The
authors have developed the idea of Markov ciphers to evaluate the cipher against
differential cryptanalysis. IDEA is an original example of a non Feistel cipher
with beautiful mathematical ideas and it has been widely used in commercial
environment.

Since its description the process of cryptanalysing IDEA has developed slowly.
In [13] and [4], differential cryptanalysis was applied to IDEA reduced to 2 and
2.5 rounds. In [3], 3 and 3.5 round IDEA were cryptanalysed using differential-
linear and truncated-differential techniques respectively. Finally in [1], Biham,
Biryukov and Shamir used impossible differential technique to sieve the key space
for 3.5, 4 and 4.5 rounds. These are currently the best known attacks on IDEA,
and the 4.5 round attack requires the encryption of the whole plaintext space.

Recently we are aware of a paper [14] which uses the square attack technique
to analyse 2.5 rounds of PES and IDEA. The authors have also developed a
related key square attack on 2.5 rounds of IDEA using 2 chosen plaintexts and
217 related keys which recovers 32 key bits.

In this paper we describe some distribution properties of the cipher. Some of
these properties are “saturation properties ”[12], [7]. Also there are properties
which are similar to the ones used in square attacks [5]. We preferred the name
“square-like attack” rather than square or integral attack since we exploit the
word structure of the algorithm in a different sense. Mainly we are interested
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in the distribution of some variables more than taking sum (or integral) of the
variables [5], [8]. Using these distributions we are able to attack the cipher up to
4 rounds. Our main contribution is that we are able to cryptanalyse the cipher
with very few chosen plaintexts. This is a result of the powerful eliminating
properties of the distributions. As time complexity, our attacks are not better
than the known attacks, but we consider that the distribution properties and
the reduction of the number of required plaintexts are surprising. We compare
our results with the existing ones in Table 1.

Author Rounds No of C. Plaintexts Total Complexity

[13] 2 210 242

[13] 2.5 210 2106

[4] 2.5 210 232

[14] 2.5 3.216 3.263 + 248

[14], Related Key 2.5 2 237 + 223

[3] 3 229 244

[3] 3.5 256 267

[1] 3.5 238.5 253

[1] 4 237 270

[1] 4.5 264 2112

This paper Attack 1 2 23 264

This paper Attack 1 2.5 55 281

This paper Attack 1 3 71 271

This paper Attack 1 3.5 103 2103

This paper Attack 2 3 233 282

This paper Attack 2 3.5 234 282

This paper Attack 2 4 234 2114

Table 1. Plaintext and time complexity of the attacks on reduced rounds of
IDEA

1.1 Notation

Throughout this paper we will use the following notation. The plaintext is de-
noted by (P1, P2, P3, P4) and ciphertext is denoted by (C1, C2, C3, C4) where
the seperated parts show the 16 bit subblocks. The round numbers are denoted
by subindices. Therefore C21 denotes the first subblock of the ciphertext after 2
rounds. For convenience we denote the subkeys of the MA-box by K5 and K6,
the inputs of the MA-box by p and q and outputs by t and u. We call p as the
first input, q the second input, t the first output and u the second output of the
MA-box.

Following [12] and [7] we will call a variable “saturated” if it takes every
possible value once. For instance if in the plaintext set {(P1, P2, P3, P4)} the
element P4 takes every 16-bit value once, we say P4 is saturated. A variable



Square-like Attacks on Reduced Rounds of IDEA 149

is said to be “k-saturated” if every possible element of the variable is observed
exactly k times.

For the least significant bit of a variable we use the abbreviation lsb. Finally
K21[97...112] means that the subkey subblock K21 uses the key bits from 97 to
112 of the master key, including the boundaries.

2 Some Distributions in the IDEA Block Cipher

2.1 IDEA Block Cipher

IDEA is a 8.5 round block cipher which uses 3 different group operations on 16 bit
subblocks: XOR, modular addition and IDEA multiplication. This multiplication
can be described as z = x�y, where if any of x or y is 0, we convert that element
to 216 and calculate z = (x × y) modulo 216 + 1. If z is calculated as 216, we
convert z to 0. Since 216 + 1 is prime, this multiplication is invertible. In [11]
Lai suggests that the cipher satisfies “confusion” by using the fact that these
operations are incompatible: there are no general commutativity, associativity or
distributivity properties when different operations are used respectively. IDEA
multiplication provides a strong non-linear component against linear attacks.

The round function of IDEA consists of two parts: first there is a trans-
formation part of each plaintext subblock with the subkey subblocks, i.e. T :
(P1, P2, P3, P4) → (P1�K1, P2� K2, P3� K3, P4�K4). In the second part
we have the MA-box. MA-box has two inputs p = (P1 � K1) ⊕ (P3 � K3)
and q = (P2 � K2) ⊕ (P4 � K4). Using p, q and the subkey subblocks K5, K6
we produce two output subblocks t and u. The outputs are calculated as t =
((p�K5)�q)�K6 and u = (p�K5)�t. The outputs of the MA-box are XORed
with the outputs of the transformation part, and the two middle subblocks are
exchanged. After 1 round the ciphertext is of the form (C1, C2, C3, C4) where
C1 = (P1 � K1) ⊕ t, C2 = (P3 � K3) ⊕ t, C3 = (P2 � K2) ⊕ u, C4 =
(P4 � K4) ⊕ u. The cipher is composed of 8 full rounds and 1 extra transfor-
mation round. The 128 bit master key is cyclicly shifted left 25 bits a few times
to fill an array. Then we get the bits for subkey subblocks from this array re-
spectively. Since 22 + 1, 24 + 1 and 28 + 1 are also prime, it is possible to build
smaller variants of IDEA with similiar properties. IDEA with block size 8, 16
and 32 bits can be built with subblock size 2, 4 and 8 respectively.

Remark From [9] we observe that if x, y /∈ {0, 1}, (x�y)+(x�(216+1−y)) =
216 + 1. Therefore for x, y /∈ {0, 1}, lsb(x � y) = lsb(x � (216 + 1 − y))⊕ 1. Also
for any z we have (0�z)� (1�z) = 1. As a result for any value of i, there exists
a j value, which satisfies lsb(i � k) = lsb(j � k) ⊕ 1 for all k. This observation
will be important during our key elimination process.

2.2 Some Distributions

With the diffusion properties of the MA-box, a single bit change in the plaintext
is able to change every bit of the ciphertext after 1 round. Therefore classical
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Fig. 1. One Round of IDEA

differential and linear attacks become greatly expensive after a few rounds. But
we have observed that the word (16 bit) structure of the cipher result some
distribution properties. To observe these, we begin with analysing the MA-box.

In [11], Lai claims that MA-box has complete diffusion: each output subblock
depends on every input subblock. But this dependency is exact in the following
sense:

Lemma 1. Let p and q be the inputs of the MA-box respectively. If p is fixed and
q is saturated, then both of the outputs t and u of the MA-box are also saturated.

Proof. If p is fixed and q changes over every value, then p � K5 is fixed and
t = ((p � K5) � q) � K6 changes over every element in 16 bits. Therefore
u = t � (p � K5) changes over every element.

Now using this lemma, we have the following result on 1 round distribution
of the cipher.

Corollary 1. Consider the set of plaintexts (P1, P2, P3, P4) where we fix P1,
P2, P3 and P4 is saturated. Encrypt this set with 1 or 1.5 round IDEA. Then in
the ciphertexts (C1, C2, C3, C4), each of the subblocks C1, C2 and C3 are also
saturated.
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Proof. After the first transformation part, P1�K1, P2�K2, P3�K3 are fixed
and since � is invertible, P4 � K4 varies on every element. Therefore the first
input to the MA-box is fixed, whereas the other varies on every element. By
Lemma 1, the outputs of the MA-box take every value once. XOR of a fixed
value with all the possible values gives the result.

This distribution can be selected as a distinguisher of 1 or 1.5 round cipher
output from a random permutation. The probability of such an event in a random
permutation is: (

216!/(216)(2
16)

)3

.

This number is approximately 2−281720. This is a strong indicator for one round.
We note that such kind of distributions were used in structural cryptanalysis
[2], the square attack [5], [6] applied on the ciphers Square and Rijndael by the
designers, and the saturation attacks[12], [7].

The following property of the MA-box is crucial for us in the development of
our attacks.

Lemma 2. lsb(t ⊕ u) = lsb(p � K5).

Proof. Since u = t � (p� K5) and for the least significant bit XOR is the same
as addition, we have lsb(t ⊕ u) = lsb(p � K5).

This property is useful for us because 1 bit of information related with MA-
box outputs can be got using only one input and one subkey subblock. Therefore
in our attacks we consider only the key bits of K5 and the ones acting on
p = C1 ⊕ C2.

As a result of Lemma 2, we observe the following fact:

Corollary 2. Consider the set of plaintexts obtained by fixing the first 3 sub-
blocks, and letting the last subblock take distinct values. Apply 1 round of IDEA
to this set. Then in the ciphertexts (C11, C12, C13, C14) the variables C11⊕C12
and lsb(C12 ⊕ C13) are constant. Therefore as the last subblock takes every 216

value, the first input to the MA-box and the last bit of the XOR of middle sub-
blocks are constant.

Proof. We have that p = C11⊕C12 = (P1�K11)⊕(P3�K13), therefore the first
input of the MA-box is fixed. By Lemma 2, this gives that the last bit of XORs
of the MA-box outputs is fixed. But C12⊕C13 = (P3�K13)⊕t⊕(P2�K12)⊕u.
Since for the last bit addition is the same as XOR and the last bit of K12⊕K13
is constant, we have that lsb(C12 ⊕ C13) is the same for all ciphertexts.

We now extend this result to the second round with the use of Lemma 2.
This observation is the basis of our first attack on IDEA block cipher.

Lemma 3. Consider the set of plaintexts obtained by fixing the first 3 subblocks,
and letting the last subblock take distinct values. Apply 2 rounds of IDEA to this
set. Then, in the ciphertexts (C21, C22, C23, C24) the variable lsb(C22 ⊕ C23 ⊕
K5 � (C21 ⊕ C22)) takes the same value for all ciphertexts.
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Proof. In the second round we have that C22 = (C13 � K13) ⊕ t2 and C23 =
(C12�K12)⊕u2. Then lsb(C22⊕t2⊕C23⊕u2) = lsb((C13�K13)⊕(C12�K12)).
By Lemma 2, lsb(t2⊕u2) = lsb(K25�(C21⊕C22)) and we have lsb(C22⊕C23⊕
(K25� (C21⊕C22))) = lsb(C12⊕C13⊕K12⊕K13). Since the first 3 subblocks
are fixed, by Corollary 2 lsb(C12 ⊕ C13) is constant, and we have the result.

Another consequence of Lemma 2 about the behaviour of 1 round cipher is
the following corollary.

Corollary 3. Fix the plaintext subblocks P1, P3, P4 and let P2 take different
values. If we apply 1 round IDEA to these plaintexts, then the variable lsb(C12⊕
C13) takes the same value for all plaintexts such that lsb(P2) = 0, and takes the
complement of that value for the plaintexts where lsb(P2) = 1.

Proof. Again by Lemma 2, t⊕ u is constant. But C12⊕C13 = (P3 � K3)⊕ t⊕
(P2 � K2)⊕ u. Since for the last bit XOR is the same as addition, we have the
result.

2.3 An Attack on IDEA

Lemma 3 leads to an attack for 2 rounds. We know that the correct value of
K25 satisfies the condition that lsb(C22⊕C23⊕K25� (C21⊕C22)) is constant
for all ciphertexts when we fix the first 3 subblocks of the plaintexts, where as
the wrong key values will behave randomly. To eliminate the key candidates for
K25 continue the following steps.

1. Take a set of plaintexts by fixing the first three subblocks and changing the
last subblock. Encrypt these plaintexts with 2 rounds of IDEA.

2. For any value of K25, calculate the value of lsb(C22⊕C23⊕K25�(C21⊕C22))
for all ciphertexts.

3. Eliminate the keys where the variable lsb(C22 ⊕ C23 ⊕ K25 � (C21 ⊕ C22))
does not give the same value for all ciphertexts.

4. If more than 2 keys stay after elimination, take another plaintext where the
first three subblocks are the same as previous ones, and the last subblock is
different. Repeat step 3 for this ciphertext.

Repeat step 4 until only two key values stay. Recall from Remark in Section
2.1 that, for any value of K25, there exists a K ′ which satisfies lsb(K25 � x) =
lsb(K ′ � x) ⊕ 1 for all x. If K25 /∈ {0, 1}, this attack eliminates all keys except
the correct subkey value K25 and 216 + 1 − K25. If K25 ∈ {0, 1}, this attack
eliminates all keys except 0 and 1. Therefore it is enough to search half of the
key space, but at the end we will have 2 candidates for the subkey subblock K25.

The probability that a wrong key has the property that lsb(C22 ⊕ C23 ⊕
K25 � (C21 ⊕ C22)) is constant for m ciphertexts is 1/2m−1. Therefore with
probability (1− 1/2m−1)Nk/2, all but 2 of the candidates for the key from a key
space of Nk elements would be eliminated. Then 2 candidates for K25 may be
decided with only 23 chosen plaintexts with a probability about 0.99.
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We may use Corollary 2 to decide the subkey values K26, K21, K22 and the
correct choice of K25 from the two candidates. Since the first inputs of the MA-
box for all the chosen ciphertexts should be equal in the first round, we can
easily decide the values of K26, K21 and K22 with the ciphertexts that we used
to decide K25. We may decide the remaining 64 bits of the key by exhaustive
search. Therefore the total complexity of this attack is about 264.

Consider 2.5 rounds of IDEA. The least significant bit of XOR of the middle
blocks is lsb(C22 ⊕ C23 ⊕ K32 ⊕ K33), therefore for any ciphertext set, there
are two possible sequences for the variable lsb(C23 ⊕ C23) where one is the
complement of the other. Also we may calculate the values of C21 and C22 by
trying every possible value for K31 and K32. Then we may check lsb(C22⊕C23⊕
K25�(C21⊕C22)). We continue the steps above and eliminate the subkey values
where lsb(C22⊕C23⊕K25�(C21⊕C22)) is not constant for all chosen plaintexts.
To decide the correct 48 bit subkey subblock, about 55 chosen plaintexts will be
enough to eliminate all the keys with a probability near to 1. As above two keys
will survive after the elimination process.

For the 3 round version of this attack, we have to search the subkey subblocks
of the MA-box, K35 and K36 also. This requires 264 trials for the key and needs
about 71 chosen plaintexts. Total complexity of the elimination process is about
271 decryptions.

Finally, for the attack on 3.5 rounds, we have to search for K41, K42, K43 and
K44 additionally. As a result of the key schedule this attack requires 96 bit key
search and needs about 103 chosen plaintexts. The work load of the elimination
process is about 2103 decryptions.

This is a divide and conquer attack, after finding the key bits by the elimi-
nation process, we find the remaining key bits by exhaustive search. For the 2.5
round attack, after finding two candidates for the subkey subblocks K25, K31
and K32, we decide the remaining subblocks by trying every possible combina-
tion of 80 bits. Then total complexity of the attack is about 281. For the 3 and
3.5 round attacks, the work done to decide the remaining key bits is negligible
near the work done during the elimination process. The results are summarised
in Table 1.

For this type of attacks, we have considered the following subkey subblocks:

K21[97...112], K22[113...128], K25[58...73], K26[74...89],

K31[90...105], K32[106...121], K35[51...66], K36[67...82],

K41[83...98], K42[99...114], K43[115...2], K44[3...18].

2.4 More Distributions

Using the word structure of the algorithm, we want to extend our observations
to the third round. For this reason we need the following lemma and corollary.

Lemma 4. Consider the two plaintext sets P and P ′ defined as: P = {(P1, P2,
P3, P4)} and P ′ = {(P1, P2′, P3, P4)} where P1, P2, P2′, P3 are fixed, P2 �=
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P2′ and P4 is saturated. Let E and E′ denote the sets obtained by encrypting P
and P ′ with 1 round IDEA respectively. Then if (x, y, z, s) is an element in E,
there is exactly one element in E′ of the form (x, y, z′, s′) where z �= z′, s �= s′

and z ⊕ s = z′ ⊕ s′.

Proof. Recall from Corollary 1 that, if we fix the first 3 subblocks of the plaintext
and change the last subblock over every possible 16 bit value, then after 1 round,
the variables C11, C12, C13, t1, u1 are all saturated. On the other hand if we
change P2 to P2′ and repeat this procedure again, we will obtain the same
set of (t1, u1)′s. Therefore, if (x, y, z, s) is a ciphertext in E, then there will be
exactly one element in E′ with the first two subblocks x and y, respectively. To
produce the same t1, u1, we should have z ⊕ s = z′ ⊕ s′.

Observe that although there is a great similarity between the sets E and E′,
it is not possible to see this using classical differential analysis. Because where
the similiar ciphertext pairs, i.e. (x, y, z, s) and (x, y, z′, s′) occur is not certain
directly from the plaintext differences. This relation can be seen if we compare
a set of ciphertexts with respect to another one.

For different values of the second subblock we obtain distinct z′ and s′ values.
As a result we have the following:

Corollary 4. Let P = {(P1, P2, P3, P4)} where P1 and P3 are fixed and P2
and P4 take every possible combination. Encrypt P with 1 round IDEA and
denote the resulting set by E. Then the sets Mx = {(x, y, z, s)} where x and y
are fixed and z and s are saturated, form a partition for the set E.

Corollary follows from the Lemma 4, and Corollary 1.
The outputs of 2 round IDEA seem to be randomly distributed, but the

following interesting properties are again result of the word structure of the
algorithm.

Corollary 5. Let the set P be defined as in Corollary 4 and let E2 denote the
set obtained when P is encrypted with 2 round IDEA. Let ri denote the XOR of
the i-th subblocks of the ciphertexts, r5 denote the XOR of the first outputs, and
r6 denote the XOR of the second outputs of the MA-box of all the elements of
E2. Then we have r1 = r2 = r5 and r3 = r4 = r6.

Proof. When P is encrypted with 1 round IDEA, for each value of x, there is
a set Mx defined as in Corollary 4. In each of these sets, the third and fourth
subblocks visit each 16 bit value once. Therefore after 1 round each subblock
of the ciphertext will take every value 216 times. In the second round we have
C21 = (C11�K21)⊕ t2, C22 = (C13 � K23)⊕ t2, C23 = (C12 � K22)⊕ u2 and
C24 = (C14 � K24) ⊕ u2. The terms in paranthesis repeat equal times so their
XOR is 0 and we have the result.

This is very similiar to the result used in the square attack [5]. It is trivial
that an attack can also be developed using this property, but we skip this as it
neither decreases the number of plaintexts nor the total complexity. Instead, we
use this property as a part of our second attack on 3 rounds.
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Corollary 6. If we fix the first and third subblocks of the plaintexts and range
the second and fourth ones over all 232 values, then in the second round we have
that the first input of the MA-box takes is 216-saturated.

Proof. By Lemma 4, the ciphertext set after 1 round may be decomposed into
sets Mx = (x, y, z, s) where x and y are fixed, and z and s change over every
possible element. For a ciphertext (x, y, z, t) in Mx, the first input to the MA-box
in the second round is p = (x�K21)⊕ (z �K23). Since x is fixed and z changes
over every element, for one set, p visits every element exactly once. For every
different value of x, we have such a set, therefore we have the result.

This distribution may also be used as a distinguisher of the cipher from a
random permutation. The probability of such an event in a random permutation
is:

232!
(216!)216(216)232 .

This is approximately 216√2π

((2219+215 )π215) ≈ 2−611154.

Our main result which is used in the attack for 4 rounds is the following:

Theorem 1. Let P = {(P1, P2, P3, P4)} and P ′ = {(P1′, P2, P3′, P4)} denote
the sets of plaintexts where P1, P3, P1′, P3′ are fixed, and P2 and P4 take every
possible value. Encrypt these sets with 3 rounds of IDEA. Denote the resulting
sets by E3 and E′

3 respectively. Let n0 denote the number of 0’s of the variable
lsb(C32 ⊕ C33 ⊕ K35 � (C31 ⊕ C32)) for the set E3. Then the number of 0’s of
the variable lsb(C32⊕C33⊕K35� (C31⊕C32)) for E′

3 is either n0 or 232 −n0.

Proof. By Lemmma 2, lsb(C32 ⊕ C33 ⊕ K35 � (C31 ⊕ C32)) = lsb(C22 ⊕ C23 ⊕
K32⊕K33). Since lsb(K32⊕K33) is constant, it is enough to consider the variable
lsb(C22 ⊕ C23) in the second round. Now let E and E′ denote the resulting
ciphertext sets when P and P ′ are encrypted with 1 round IDEA, respectively.
By Corollary 4, E and E′ can be written as a union of sets Mx = {(x, y, z, s)}
and M ′

x = {(x, y′, z′, s′)}, where x, y, y′ are fixed and z, z′, s, s′ change over
every 16 bit value. Therefore if (x, y, z, s) is an element in E, then there exists
an element in E’ of the form (x, y′, z, s′). The variable (C22⊕C23) is of the form
(K23�z)⊕ t2⊕(K22�y)⊕u2 for (x, y, z, s) and (K23�z)⊕ t′2⊕(K22�y′)⊕u′

2

for (x, y′, z, s′) for some t2, u2, t
′
2, u

′
2. But since the first input of the MA-box in

the second round is p = (x�K21)⊕(z�K23) for both (x, y, z, s) and (x, y′, z, s′),
Lemma 2 implies lsb(t2 ⊕u2) = lsb(t′2⊕u′

2). Therefore it is enough to show that
lsb(y ⊕ y′) is constant for every value of y and y′. But y = (P3 � K13) ⊕ t1
and y′ = (P3′ � K13) ⊕ t′1 for some t1, t

′
1. The first subblocks are equal in the

first round, so we have x = (P1 � K11) ⊕ t1 = (P1′ � K11) ⊕ t′1 which implies
t1 ⊕ t′1 = (P1 �K11)⊕ (P1′ � K11). Since P3 and P3′ are constant and t1 ⊕ t′1
depends only on P1 and P1′, we have the result.

After observing the distributions as a result of the word structure, it is natural
to ask the question what happens if we fix one subblock only, and change the
remaining three subblocks over every possible element. We would like to conclude
this section with the answer of this question.
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Theorem 2. Let us fix one of the subblocks P1 or P3 in the plaintexts (P1, P2,
P3, P4) and change the other three subblocks over all possible values. Encrypt
these plaintexts with 3 round IDEA. Then in the ciphertexts (C31, C32, C33, C34),
the variable lsb(C32⊕C33⊕K35� (C31⊕C32)) takes the value 0 and 1, exactly
equal, i.e. 247 times.

This follows from the fact that in the proof of Theorem 1, lsb(t⊕t′) and lsb(P3⊕
P3′) take the value of 0 and 1 equal times when ranging over one of P1 or P3
and keeping the other constant.

This is also a strong distinguisher from random. The probability of having
equal number of 0’s and 1’s in a random binary sequence of 248 elements is:

(
248

247

)

2248 =
248!(

(247!)22248
) .

Using Stirling’s Approximation, this number is approximately 2−24.
Theorem 1 and Theorem 2 both consider the same variable. Theorem 2 is a

much stronger distinguisher than Theorem 1, but we prefer to use the first one
in an attack since it requires less number of plaintexts.

2.5 Another Attack on IDEA

Using Theorem 1, we may develop an attack on 3 rounds of the cipher. The
attack proceeds as follows.

1. Take two plaintext sets of 232 elements where the first and third subbloks
are different fixed values and the second and fourth subblocks change over
every possible element. Encrypt these sets with 3 rounds of IDEA.

2. For every possible value of the subkey K35, count the number of 0’s and 1’s
of the variable lsb(C32 ⊕ C33 ⊕ K35 � (C31 ⊕ C32)) for both sets.

3. Let us denote the number of 0’s and 1’s of the first set by n0 and n1 and the
second set r0 and r1 respectively. Eliminate the keys where the sets {n0, n1}
and {r0, r1} do not coincide.

4. If more than 2 key values stay, then change the fixed part and take another
set of 232 plaintexts by ranging the second and fourth subblocks over every
possible element. Continue the elimination by the same way.

Consider two random binary sequences of 232 elements. The probability that
the number of 0’s of the first sequence is equal to either the number of 0’s or the
number of 1’s of the second sequence is:

(
4

∑i=231−1
i=0

(
232

i

)2
+

(
232

231

)2
)

2233 .

We may approximate this probability as follows. Since we are counting the num-
ber of 0’s, this is a binomial distribution. We have the parameters N = 232 and
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p = 1/2. Therefore this distribution has mean µ = 231 and variance σ2 = 230.
Since N is large and p = 1/2, we may assume that the number of 0’s are nor-
mally distributed for both sets. Define a new variable as the difference of the
number of 0’s of two sets, i.e. X0 = n0 − r0. Then X0 is normally distributed
with mean µ = 0 and variance σ2 = 231. Now for any value of ε we may calculate
the probability that X0 lies between −ε and ε.

P (−ε ≤ X0 ≤ ε).

For instance for ε = 512 this probability is about 2−25. Since P (n0 = c or n0 =
232− c) = 2P (n0 = c), our probability is 2 times this probability. Therefore only
2 plaintext sets will be enough to decide the two candidates of K35. By Remark
in Section 2.1, there is a K ′ value which satisfies lsb(K35�x) = lsb(K ′ �x)⊕ 1
and as in the previous one, this attack eliminates all but 2 keys. This attack
requires about 233 chosen plaintexts and 216 key search, and the work load in
the elimination process is about 249. We may use Corollary 5 or Corollary 6 to
decide the subkey blocks K36, K31, K32 and the correct choice of K35. Using
these subkey values, we decrypt the ciphertexts and find the values of C21 and
C22 to check if the conditions of the corollaries are satisfied. To decide the correct
combination of K33 and K34 we may use Corollary 5 similarly with the values
of C23 and C24. After finding these subkey subblocks, the remaining bits can
be found by exhaustive search. Therefore the total work done in this attack is
about 249 decryptions for 233 plaintexts, 282.

To extend the attack on 3.5 rounds, we shall search for the keys K35, K41
and K42 since K41 and K42 are the subkey subblocks which affect the first two
subblocks in the transformation part of the fourth round. Therefore we have to
do 248 trials for key search, and on the average 48/24 = 2 comparisons will be
enough to find 2 candidates for the correct key combination. About 3 plaintexts
sets are required for the elimination process. The remaining 80 bits can be found
by trying every possible combination. The total complexity of this attack is about
282.

We continue this way. For a 4 round attack we have to search for K45 and
K46 also. This brings extra 32 bits search. Therefore totally we will search for
80 bits of the key. About 4 sets will be enough to eliminate all the keys in this
case. The remaining subkey values are found by an exhaustive search.

For a 4.5 round attack, we have to search K51, K52, K53 and K54 addition-
ally. But as a result of the key schedule, some of the bits we are searching are
common and indeed we have to search for 114 bits. Again about 4 sets will be
enough to find out the correct 114 bit combination. It is trivial that the attack
for 4.5 rounds is slower than exhaustive search, but it is interesting to see that
the number of required plaintexts do not change significantly as the number of
rounds increase. This is a result of the strong distinguishing properties of the
distributions.
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The subkey subblocks we have used for this version of the attack are the
following:

K31[90...105], K32[106...121], K33[122...9], K34[10...25], K35[51...66],

K36[67...82], K41[83...98], K42[99...114], K45[19...34], K46[35...50],

K51[76...91], K52[92...107], K53[108...123], K54[124...11].

3 Conclusion

We have observed some interesting distribution properties of the IDEA block
cipher reduced to 1, 2 and 3 rounds as a result of the word structure of the algo-
rithm. With the use of these properties, we have developed two chosen plaintext
attacks. Up to 4 rounds, we are able to decrease the number of required plain-
texts for an attack, but our total time complexities are not smaller than the
known attacks. We consider that the distribution properties bring a different
view to analyse the cipher, and they can be useful in the future attacks with
more rounds. As an open question we remark that, if any distinguishing property
related with the distribution of the last bits of the middle blocks of ciphertexts
in the third round is found, this will immediately give rise to attacks for 4.5 or
more rounds using the ideas in this paper.
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