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Abstract. Conventional software implementations of cryptographic al-
gorithms are totally insecure where a hostile user may control the ex-
ecution environment, or where co-located with malicious software. Yet
current trends point to increasing usage in environments so threatened.
We discuss encrypted-composed-function methods intended to provide
a practical degree of protection against white-box (total access) attacks
in untrusted execution environments. As an example, we show how AES
can be implemented as a series of lookups in key-dependent tables. The
intent is to hide the key by a combination of encoding its tables with ran-
dom bijections representing compositions rather than individual steps,
and extending the cryptographic boundary by pushing it out further into
the containing application. We partially justify our AES implementation,
and motivate its design, by showing how removal of parts of the recom-
mended implementation allows specified attacks, including one utilizing
a pattern in the AES SubBytes table.

1 Introduction and Overview

There has been tremendous progress in the uptake of cryptography within com-
puter and network applications over the past ten years. Unfortunately, the attack
landscape in the real world has also changed. In many environments, the stan-
dard cryptographic model — assuming that end-points are trusted, mandating a
strong encryption algorithm, and requiring protection of only the cryptographic
key — is no longer adequate. Among several reasons is the increasing penetration
of commercial applications involving cryptography into untrusted, commodity
host environments. An example is the use of cryptography in content protection
for Internet distribution of e-books, music, and video. The increasing popularity
of the Internet for commercial purposes illustrates that users wish to execute,
and vendors will support, sensitive software-based transactions on physically
insecure system components and devices. This sets the stage for our work.

The problem we seek to address is best illustrated by considering the software
implementation of a standard cryptographic algorithm, such as RSA or AES [15],
on an untrusted host. At some point in time, the secret keying material is in
memory. Malicious software can easily search memory to locate keys, looking
for randomness characteristics distinguishing keys from other values [26]. These
keys can then be e-mailed at will to other addresses, as illustrated by the Sircam
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virus-worm [7]. An even easier attack in our context is to use a simple debugger
to directly observe the cryptographic keying material at the time of use. We seek
cryptographic implementations providing protection in such extremely exposed
contexts, which we call the white-box attack context or WBAC (§2). This paper
discusses methods developed and deployed for doing so.

A natural question is: if an attacker has access to executing decryption soft-
ware, why worry about secret-key extraction — the attacker could simply use
the software at hand to decrypt ciphertext. Protection methods in §22] make
this hard, and even if such protections were compromised, our techniques are
targeted at applications such as software-based cryptographic content protec-
tion for Internet media, rather than more traditional communications security.
In such applications, the damage is often relatively small if an attacker can
make continued use of an already-compromised platform, but cannot extract
keying material allowing software protection goals to be bypassed on other ma-
chines, or publish keys or software sub-components allowing ‘global cracks’ to
defeat security measures across large user-bases of installed software. Our solu-
tions can also be combined with other software protection approaches, such as
node-locking techniques tying software use to specific hardware devices.

Relevant Applications. There are many applications for which our approach is
clearly inappropriate in its current form, including applications in which symmet-
ric keys are changed frequently (such as secure e-mail or typical file encryption
applications which randomly select per-use keys). Our approach also results in
far slower and bulkier code than conventional cryptographic implementations,
ruling out other applications. Nonetheless, we have been surprised at the range of
applications for which slow speed and large size can be accommodated, through a
combination of careful selection of applications and crypto operations, and care-
ful application engineering. For example, key management involving symmetric
key-encrypting keys consumes only a negligible percentage of overall computa-
tion time, relative to bulk encryption, so use of white-box cryptography here has
little impact on overall performance. Examples of relevant applications include
copy protection for software, conditional access markets (e.g. set-top boxes for
satellite pay-TV and video-on-demand), and applications requiring distribution
control for protected content playback.

Limitations on Ezxpected Security. In the face of such an extreme threat en-
vironment, there are naturally limits to practically achievable security. In all
environments, however, our white-box implementations provide at least as much
security as a typical black-box implementation (see §2.1)). Moreover on hostile
platforms, for conventional (black-box) implementations of even the theoreti-
cally strongest possible algorithms, typically-claimed “crypto” levels of security
(e.g. 2128 operations, 1020 years, etc.) fall essentially to zero (0) as the key is di-
rectly observable by an attacker. Therefore when considering white-box security,
a useful comparison is the commercial use of cryptographic implementations
on smartcards: an inexpensive circuit mounted on plastic, with embedded se-
cret keys, is widely distributed in essentially uncontrolled environments. This is
hardly wise from a security standpoint, and successful attacks on smart cards are
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regularly reported. However for many applications smartcards provide a reason-
able level of added security at relatively low cost (vs. crypto hardware solutions),
and a practical compromise among cost, convenience, and security. (Such trade-
offs have long been recognized: e.g., see Cohen [L1].) Our motivation is similar:
we do not seek the ultimate level of security, on which a theoretical cryptogra-
pher might insist, but rather to provide an increased degree of protection given
the constraints of a software-only solution and the hostile-host reality.

Theoretical Feasibility of Obfuscation. The theoretical literature on software ob-
fuscation appears somewhat contradictory. The Np-hardness results of Wang [27]
and PSPACE-hardness results of Chow et al. [I0] provide theoretical evidence that
code transformations can massively increase the difficulty of reverse-engineering.
In contrast, the impossibility results of Barak et al. [3], essentially show that a
software wvirtual black box generator, which can protect every program’s code
from revealing more than the program’s input-output behavior reveals, cannot
exist. Of greater interest to us is whether this result applies to programs of
practical interest, or whether cryptographic components based on widely-used
families of block ciphers are programs for which such a virtual black box can be
generated. Lacking answers to these questions, we pursue practical virtual boxes
which are, so to speak, a usefully dark shade of gray.

It seems safe to conjecture that no perfect long-term defense against white-
box attacks exists. We therefore distinguish our goals from typical cryptographic
goals: we seek neither perfect protection nor long-term guarantees, but rather
a practical level of protection in suitable applications, sufficient to make use of
cryptography viable under the constraints of the WBAC. The theoretical results
cited above leave room for software protection of significant practical value.

Overview of White-Box AES Approach. This paper describes generation and
composition of WBAC-resistant AES components, analogous in some ways to the
encrypted-composed-function approach (see Sander and Tschudin [2425], and
Algesheimer et al. [I] for an update and comments). This converts AES-128 into
a series of lookups in key-dependent tables. The key is hidden by (1) using
tables for compositions rather than individual steps; (2) encoding these tables
with random bijections; and (3) extending the cryptographic boundary beyond
the algorithm itself further out into the containing application, forcing attackers
(reverse engineers) to understand significantly larger code segments.

Organization. We discuss white-box cryptography and the white-box attack
context (WBAC) in §2. §3 outlines a strategy and provides details for generat-
ing white-box AES implementations, including key-embedding, construction and
composition of lookup tables implementing AES steps, insertion of random bijec-
tions, and size-performance issues. §4] includes security comments on white-box
AES, with partial justification showing how removing portions of our design al-
lows specified attacks. One of the attacks described in §44] employs patterns
in the AES SubBytes table which may be of independent interest. Concluding
remarks are in g5
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2 White-Box Cryptography and Attack Context

Hosts may be untrusted for various reasons, including the economics and logistics
of the Internet. Often software is distributed to servers where access control
enforcement cannot be guaranteed, or sites beyond the control of the distributor.
This happens for mobile code [24125], and where software tries to constrain
what end-users may do with content — as in digital rights management for
software-based web distribution of books, periodicals, music, movies, news or
sports events. This may allow a direct attack by an otherwise legitimate end-user
with hands-on access to the executing image of the target software. Hosts may
also be rendered effectively hostile by viruses, worm programs, Trojan horses,
and remote attacks on vulnerable protocols. This may involve an indirect attack
by a remote attacker or automated attack tools, tricking users into opening
malicious e-mail attachments, or exploiting latent software flaws such as buffer
overflow vulnerabilities. Online shopping, Internet banking and stock trading
software are all susceptible to these hazards. This leads to what we call the
white-box attack context (WBAC) and white-box cryptography (i.e., cryptography
designed for wBAC-resistance). First we briefly review related approaches.

2.1 Black-Box, Gray-Box, and White-Box Attack Contexts

In traditional black-box models (as in: black-box testing), one is restricted to
observing input-output or external behavior of software. In the cryptographic
context, progressive levels of black-box attacks are known. Passive attacks (e.g.
known-plaintext attacks, exhaustive key search) are restricted to observation
only; active attacks (e.g. chosen-plaintext attacks) may involve direct interac-
tion; adaptive attacks (e.g. chosen plaintext-ciphertext attacks) may involve in-
teraction which depends upon the outcome of previous interactions.

True black-box attacks are generic and do not rely on knowing internal de-
tails of an algorithm. More advanced attacks appear to be ‘black-box’ at the
time of execution, but in fact exploit knowledge of an algorithm’s internal de-
tails. Examples include linear and differential cryptanalysis (e.g. see [I5]). These
have remnants of a gray-box attack. Other classes of cryptographic attacks that
have a ‘gray’ aspect are so-called side-channel attacks or partial-access attacks,
including timing, power, and fault analysis attacks [2/2BIGITZT3IRITY]. These
clearly illustrate that even partial access or visibility into the inner workings,
side-effects, or execution of an algorithm can greatly weaken security.
White-Box Attack Context. The white-box attack context (WBAC), in contrast,
contemplates threats which are far more severe. It assumes that:

1. fully-privileged attack software shares a host with cryptographic software,
having complete access to the implementation of algorithms;

2. dynamic execution (with instantiated cryptographic keys) can be observed;

3. internal algorithm details are completely visible and alterable at will.

The attacker’s objective is to extract the cryptographic key, e.g. for use on a
standard implementation of the same algorithm on a different platform. wBAC
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includes the previously studied malicious host attack context [24J25] and the
hazards of unwittingly importing malicious software (e.g., see Forrest et al. [16]).
The black-box attack model and its gray-box variations are far too optimistic
for software implementations on untrusted hosts.

Security requirements for WBAC-resistance are greater than for resistance to
gray-box attacks on smartcards. The WBAC assumes the attacker has complete
access to the implementation, rendering typical smartcard defenses insufficient,
and typical smartcard attacks obsolete. For example, an attacker has no interest
in the power profile of computations if computations themselves are accessible,
nor any need to introduce hardware faults if software execution can be modified
at will. The smartcard experience highlights that when the attacker has internal
information about a cryptographic implementation, choice of implementation is
the sole remaining line of defense [BBISIT2/[T320)22] — and this is precisely what
white-box cryptography pursues.

On the other hand, implementations addressing the WBAC such as the white-
box AES implementation proposed herein, are less constrained, in the sense that
implementations may employ resources far more freely than in smartcard envi-
ronments, including flexibility in processing power and memory. Among other
available approaches, WBAC-resistant cryptographic components can also (and
are often recommended to) employ a strategy of regular software updates or
replacements (cf. Jakobsson and Reiter [I7]). When appropriate, such a design
requires that protection need only withstand attacks for a limited period of time
— thus counterbalancing the extreme threats faced, and the resulting limits on
the level of protection possible.

2.2 White-Box Attack-Resistance at the Cryptographic Interface

Any key input by a cryptographic implementation is completely exposed to privi-
leged attack software sharing its host. Two ways to avoid this follow. (1) Dynamic
key approach: input encrypted and/or otherwise encoded key(s); this is the sub-
ject of ongoing white-box research. (2) Fized key approach: embed the key(s)
in the implementation by partial evaluation with respect to the key(s), so that
key input is unnecessary. Since such key-customized software implementations
can be transmitted wherever bits can, keys may still be changed with reasonable
frequency. This approach is appropriate in selected applications (see §II), and is
the subject of the remainder of this paper. We begin with a definition.

Definition 1 (encoding) Let X be a transformation from m to n bits. Choose
an m-bit bijection F and an n-bit bijection G. Call X' = GoX oF~! an encoded
version of X. F is an input encoding and G is an output encoding.

A potential problem with the fixed-key approach is that a key-specific im-
plementation might be extracted and used instead of its key, permitting an
adversary to encrypt or decrypt any message for which the legitimate user had
such capabilities. However, cryptography is seldom stand-alone; it is typically a
component of a larger system. Our solution is to have this containing system



White-Box Cryptography and an AES Implementation 255

provide the input to the cryptographic component in a manipulated or encoded
form (see §3.4] for AES-specific details) for which the component is designed, but
which an adversary will find difficult to remove. Further protection is provided
by producing the output in another such form, replacing a key-customized en-
cryption function Ex by the composition E} = G o Ex o F~1. Here F and
G are (external) input and output encodings, both randomly selected bijections
independent of K. E% no longer corresponds to encryption with key K’; this pro-
tects against key-extraction as no combination of implementation components
computes Fg in isolation.

The recommended implementation makes G~! and F available only on a
computing platform separate from the platform running E} (the attack plat-
form). Additionally, when possible, some prior and subsequent computational
steps (e.g. xors, binary shifts, and bit-field extractions and insertions, conve-
niently representable as linear operations on vectors over GF(2)) of the host
system are composed with the initial and final operations implementing E’.
This adds further protection by arranging that no precise boundary for E- ex-
ists within the containing system (boundaries lie in the ‘middle’ of compositions
represented as table lookups).

2.3 Concatenated Encoding and Networked Encoding

In what follows, to avoid huge tables, we can construct an input or output
encoding as the concatenation of smaller bijections. Consider bijections F; of
size n;, where ny +nz + ...+ ni = n. Let || denote vector concatenation.

Definition 2 The function concatenation Fi||Fa|| ... ||F) is the bijection F such
that F(b) = F1 (bl,. “ oy bnl)“FQ(bnl+1,. “ oy bn1+n2)” PN ||Fk(bn1+...+nk,1+1,~ “ oy bn)
for any n-bit vector b = (b1, ba,...,by). Plainly, F~' = F7 Y |Fy ... | Fy '

Encodings generally make use of random bijections (cf. Definition [[). To make
results meaningful, the output encoding of one encoded transformation will gen-
erally be matched with the input encoding of the next, as follows.

Definition 3 A networked encoding for computing Y o X (i.e. transformation
X followed by transformation Y ) is an encoding of the form

Y'oX' = (HoYoG HNo(GoXoF ') = Ho(YoX)oF™!.
Note that internally, Y o X is computed. By separately representing the steps as
tables corresponding to Y/ and X', the bijections F, G, and H may be hidden.

3 Constructing White-Box AES Implementations

In the white-box attack context, each cryptographic step might leak information.
Our strategy is to break each AES round into a number of steps, and compose the
steps after inserting randomly chosen bijections serving as internal encodings
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(in addition to the external encodings enveloping an overall cipher, as in G o
Er o F~1 above). This randomness, intended to be difficult to separate from
the step itself, introduces ‘ambiguity’ (see §4.2) — many possible (key,bijection)
combinations might correspond to the same encoded step (composed function);
cf. the ‘diversity’ which it also introduces (see §4.1]).

To facilitate such encoding, we represent each AES component as a lookup
table (an array of 2™ n-bit vectors, mapping m-bit inputs to n-bit outputs). An
AES implementation generator program takes as input an AES key and a ran-
dom seed, and outputs a key-customized WBAC-resistant AES implementation.
Composition of lookup tables is straightforward, and done by the implementa-
tion generator. The resulting implementation consists entirely of encoded lookup
tables, with functionalities shown in Fig. [l (to be discussed).

Taken to an unrealistic extreme, one could use a single lookup table of about
5.4 x 1039 bytes representing the 128 x 128 bit AES bijection from plaintext to
ciphertext for a given key. This could be attacked only as a black box. We
attempt to approximate this with tables of very much smaller size, as follows.

3.1 Partial Evaluation with Respect to the AES Key

Using standard terminology [I5l23], AES consists of N, rounds; N, = 10 for
AES-128. A basic round has four parts: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. An AddRoundKey operation occurs before the first round; the
MixColumns operation is omitted from the final round. Blocks of 128 bits are
processed, and each round updates a set of 16 8-bit AES cells. To generate key-
customized instances of AES-128, we integrate the key into the SubBytes trans-
formation by creating 160 8x8 (i.e. 8-bit in, 8-bit out) lookup tables T; ; defined
as follows (one per cell per round):

r _ r—1 . s _
T () =S@®k;") i=0,...,3,7=0,....,3, r=1,...,9. (1)

Here S is the AES S-box (an invertible 8-bit mapping), and &7 ; is the AES subkey
byte in position 7, j at round 7. These ‘T-boxes’ compose the SubBytes step with
the previous round’s AddRoundKey step.
The round 10 T-boxes also absorb the post-whitening key as follows:
10/, 9 10 o -
Ti_’j(x)—S(x@km)EBk i=0,...,3, 7=0,...,3, (2)

sr(1,4)

where sr(i, j) denotes the new location of cell 4, j after the ShiftRows step.

Remark. Of itself, partial evaluation provides little security: the key is easily re-
covered from T-boxes because the S-box is publicly known. Further (networked)
encoding is used to make partial evaluation useful.

3.2 Applying Encodings to Large Linear Transformations

To efficiently implement the wide function (32-bit) MixColumns step, we use
standard matrix blocking, combined with concatenated and networked encodings
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for white-box protection. MixColumns, which operates on the AES state a column
(four 8-bit cells) at a time, can be implemented [23] by multiplying a 4x4 matrix
over GF(2®) and a 4x1 vector. We use a 32x32 matrix MC' times a 32x1 vector
over GF(2), using four copies of MC' to operate on the full 128-bit state.

We consider MC ‘strips’ (see Fig.[2): we block MC' into four 32x 8 sections,
MCy, MC1, MCy, MC'3. Multiplication of a 32-bit vector x = (z%,...,2%!) by
MC is considered as four separate multiplications of the 8-bit (x%,... 24+7)
by MC; (yielding four 32-bit vectors yo,y1,¥y2,ys), followed by three 32-bit
binary additions (xors) giving the final 32-bit result y. We further subdivide
the additions into twenty-four 4-bit xors with appropriate concatenation (e.g.
(W0 %0, ¥+ y3) + (Wi w1, v3, w1 (W6, 93 6, w6) + (i w7, v1, y1))l - . .)- By using
these strips and subdivided xors, each step is represented by a small lookup
table. In particular, for i = 0...3, the y; are computed using 8 x 32 tables Ty,
(Fig. [I(ii)), while the 4-bit xors become twenty-four 8 x4 tables (Fig.[dl(iv)).

Note that the xor tables, regardless of their order of use, take in 4 bits from
each of two previous (e.g. partial y;) computations. The output encodings of
those computations must be matched by the input encodings for the xor tables.
It turns out that as a consequence of pulling in 4-bit pieces from two separate
computations (lookups), we require the use of concatenated 4-bit encodings for
type IV tables; this imposes similar limitations on all other types, i.e. the use of
4-bit bijections. In particular, we use concatenated encodings both for the 32-bit
output encodings to Ty; and the 8-bit input encodings to the xor tables.

The T-boxes and 8x32 T'y;’s could be represented as separate lookup tables.
Instead, we compose them creating new Ty;’s computing the SubBytes and
AddRoundKey transformations as well as part of MixColumns. This saves both
space (to store the T-boxes) and time (to perform the table lookups). Following
our broad strategy, we insert input and output encodings around the xor tables
(Fig. M(iv)), and after the 32 x 8 matrix incorporating MC; (Fig. d(ii)).

ShiftRows is implemented by providing appropriately shifted input data
(plaintext) to the generated tables, i.e. by run-time code during each round.
The composition of SubBytes and MixColumns, and use of 8 x32 lookup tables,
resembles a proposed Rijndael implementation (§5 in [14]). Here we have com-
posed also the AddRoundKey part and inserted encodings for added benefits of
WBAC-protection, offset by the cost of being much larger and slower.

Remark. 1deally for security, we would explicitly avoid linear transformations.
But randomly choosing bijections, essentially all will be non-linear: of the 2™!
n-bit bijections, 2" H?;OI(Q" —2%) are affine — so for n = 4, of 16! ~ 2.09 x 103,
only 322560 (less than .000002%) are affine (i.e. linear or translations thereof).

3.3 Insertion of Mixing Bijections

So far, we have used only (internal) encodings which are non-linear (or very likely
s0). Considering encodings as encipherments of AES intermediate values, such
encodings are confusion steps. To further disguise the underlying operations,
we now introduce linear transformations as diffusion steps, and for this reason
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refer to a linear bijection as a mizing bijection. Since linear transformations are
representable as matrices, we think of mixing bijections as matrices over GF(2).

We use 8x8 (input) mixing bijections (Fig. [[(ii)) to diffuse the T-box inputs
(technically, the inputs to the combined T-box/MixColumns step); these are
inverted by an earlier computation. Moreover, before splitting MC into M C; as
above, we pre-multiply MC' (i.e., left-multiply, yielding MB-MC, so MC operates
on data first) by a 32x 32 mixing bijection MB chosen as a non-singular matrix
with 4x4 submatrices of full rank. (See Xiao and Zhou [28] for a way to generate
such matrices.) This design decision is related to using 4-bit encodings above.

To invert MB, an extra set of tables is used to calculate MB™!, similar in
form to those calculating MC'. In type III tables, MB™! is pre-multiplied by
the inverses of the appropriate four input mixing bijections, and split into four
32 x 8 blocks. Implementing these via 8 x 32 tablesl] diffuses the 8 x 8 mixing
bijections over several lookup tables. Corresponding xor tables are also needed;
for appropriate applications, the detrimental size and speed implications are
offset by MB’s security benefits.

Summary. A set of tables is used for each of four 32-bit strips of state in an AES
round. For each strip, a type II table combines a T-box (a partial evaluation of
the SubBytes function with respect to a key byte) with three transformations:
input mixing bijections, MC, MB; type IV xor (GF(2) addition) tables follow.
Then a type III table combines MB™! with the inverse of the input mixing
bijections for the next round’s T-boxes; again type IV xor tables follow. The
type II, III and IV tables are all encoded using concatenated 4-bit (internal)
input- and output-encodings in a networked fashion (see §2.2 §2.3).

3.4 Input and Output Data Manipulations (External Encoding)

As described in §2.2], our implementation takes input in a manipulated form, and
produces output in another manipulated form, making the WBAC-resistant AES
harder to separate from its containing application. The techniques described in
previous sections, intended to securely handle both small non-linear steps (e.g. S-
boxes) and large linear steps (e.g. MixColumns), are again used here to combine
linear and non-linear components in the external encoding.

The idea is to have the first steps of the implementation undo a previous
manipulation performed elsewhere in the program or at another site. Thus, while
it is more straightforward to describe what these first steps of AES might look
like, note that it is actually the inverse of steps done earlier; similarly the last
steps will be undone at a later stage. The net result is a functionally equivalent,
and WBAC-resistant, AES computation obtained by embedding a non-standard
AES implementation in a correspondingly non-standard usage context.

The following is one suggestion for data manipulation, essentially correspond-
ing to the input and output encodings F, G in 4221 Select two 128 x 128 mixing

! For a 32x8 (8-bit in, 32-bit out) matrix A, the corresponding 8x32 (8-bit in, 32-bit
out) lookup table is defined by Blz] = A - z.
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bijections U~! and V in which all aligned 4 x 4 submatrices are of full rank. In-
sert U~! prior to the first AES AddRoundKey operation; insert V after the last
AES AddRoundKey operation. Pre-multiply U ~! by the inverted input mixing
bijections for T'. Matrix-block the result into 128 x 8 strips; precede and follow
these by concatenated 4-bit networked input and output encodings. These out-
put encodings are inverted by the usual set of type IV xor tables. To complete
the networking, the output encodings on the last stage of xor tables supporting
U~ invert the input decodings of round 1. We also compose tables representing
T!0 with tables computing the strips of V' (cf. §33). This external encoding is
implemented in type I tables (see Fig. [l(i)). Where the context of the gener-
ated implementation permits, we can further compose operations immediately
preceding U~ or following V into the U ! and V tables as per §2.21

3.5 Overall Implementation

The AES implementation now consists entirely of table lookups. Sixteen 8 x 128
type I tables implement an input mixing bijection over the full state, along with
supporting type IV tables. Each of the first 9 rounds is then performed by a
series of type II and IIT lookup tables, plus supporting type IV tables. Sixteen
8x128 type I tables are used to combine the final round with the output mixing
bijection, again supported by corresponding type IV tables.

As shown in Fig. [I, type I tables represent two 4-bit decodings, a 128 x 8
matrix, and 32 4-bit encodings. Type II tables represent two 4-bit decodings, an
8x8 (input) mixing bijection, a T-box, a 32x8 matrix representing (MB -MC);,
and 8 4-bit encodings. Type III tables represent two 4-bit decodings, a 32 x 8
matrix, and 8 4-bit encodings. Type IV tables represent two 4-bit decodings, the
known xor operation, and a 4-bit output encoding.

3.6 Size and Performance

The total size of lookup tables in the resulting implementation is 770 048 byte7
and there are 3104 lookups during each executionfl A fair comparison is the
AES implementation of Daemen and Rijmen [I4], which requires 4 352 bytes for
lookup tables, and approximately 300 operations (lookups and xors) in total.
The expected increase in the size of an implementation is thus about 177x. (The
performance slowdown is not as easy to measure; our implementation showed a
slowdown of 55x, but this is presumably sensitive to the layout of the tables
in memory and the size of the cache.) While WBAC-protection is important in
hostile environments, it does come at quite a substantial price. Thus careful
choices must be made as to where and how to employ white-box AES (see {II).

2 Type Il and IIT: 9 x 2 x 4 x 4 = 288 8 x 32 tables = 294 912 bytes;
type IV supporting I, TII: 9 x 2 x 4 x 8 x 3 = 1728 8 X 4 tables = 221 184 bytes;
type I tables: 2 X 16 = 32 8 x 128 tables = 131 072 bytes;
type IV supporting I: 2 x 32 x 15 =960 8 x 4 tables = 122 880 bytes.
3 Type II and III: 288 lookups; type IV supporting II, III: 1728 lookups;
type I tables: 32 x 4 = 128 lookups; type IV supporting I: 960 lookups.
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4 Preliminary Security Comments on White-Box AES

Some immediate security observations are made in 11 Beyond these, an obvious
question is: can use of (external) encodings F and G as per 2.2 weaken the
ordinary black-box security of Ex? This seems unlikely — if with any significant
probability, these key-independent, random bijections render Go ExoF~! weaker
than Eg, then intuitively one expects the cipher FE itself is seriously flawed.

4.1 White-Box Diversity

We assume that encodings are random and independent, except for those which
are inverses of each other; choosing the encodings is one-time per implementation
work. Keyspace provides an upper bound on the security of a cryptographic al-
gorithm. Analogously, if encodings ‘encrypt’ implementation steps, we can count
the possible encoded steps, and call this metric white-box diversity. The white-
box diversity of table types in Fig. [[is the number of distinct constructions (or
equivalently, distinct decompositions) — for type II tables, this includes varying
the key — which exist for all possible tables of that type; this exceeds the number
of distinct tables. (E.g., if constructing a table requires n independent choices to
be made, and the ith choice has ¢; alternatives, then the white-box diversity of
the table is [}, ¢;.) White-box diversity measures variability among implemen-
tations, which is useful in foiling pre-packaged attacks against specific instances.
Implementations may differ both in time at a single site, and in space across sites
(cf. [I1UT6]). The white-box diversity for the table types of Fig.[I] (see also §3.9) is:

Type I (161)2 x 20 160%* x (16!)32 ~ 22419-7

Type ITH (16!)2 x 256 x 2622 x 2256 « (16!)8 ~ 27687
Type III: (161)2 x 2256 x (16!)8 ~ 26985

Type IV: (16!)% x 16! ~ 21328

This is vastly more than needed for a diversity defense (see Forrest et al. [16]),
but does not measure the resistance to key extraction from a specific instance.

4.2 White-Box Ambiguity

A far more important metric is the white-box ambiguity of a table type, which
estimates the number of distinct constructions which produce exactly the same
table of that type, computed by dividing its white-box diversity (see §41I) by
the (usually much smaller) number of distinct tables of that type. This gives an
average measure of how many alternative interpretations (meanings) exist for an
instance of a specific table type; certain white-box attacks must disambiguate

* There are 20 160 nonsingular 4 x 4 matrices over GF(2).

5 The number of 8x8 mixing bijections is roughly 2022, The actual number of type II
tables is slightly lower, as not every 8 x 32 matrix can be produced as a product of
MC and mixing bijections.
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among these. (E.g., since for a type II table, changing its T-box key-byte and
changing its input encoding can have the same effect, the ambiguity of a type II
table includes all possible key bytes.) Type IV tables have the lowest ambiguity.
Ambiguity is intended as a defense against disambiguation, in the sense that
greater ambiguity is likely to make disambiguation more difficult{d

Definition 4 (disambiguation) To disambiguate a table is to narrow its set
of possible constructions below the cardinality given by the white-box ambiguity
for its table type, restricting its potential decompositions. Disambiguation is total
if the set of possible constructions contains one element; otherwise, it is partial.

Finding a rigorous and tractable way to compute white-box ambiguity ap-
pears difficult. We have made estimates by extrapolating from smaller tables
preserving our basic structure, and assuming that the constructions are equiprob-
able (which is only approximately true).

For estimation purposes, assume type I tables are built from 128 x8 matrices
having all aligned 4 x 4 blocks of full rank, and 2-bit input and output encod-
ings. We modelled them by combinatorially more tractable 4 x 4 matrices with
all aligned 2 x 2 blocks of full rank, computing the number of distinct construc-
tions. We carried out these constructions and counted the number of distinct
resulting tables. We observed that for a given scaled-down such table, its two
input encodings together with one of its bxb (here, b = 2) blocks in each aligned
set of b rows uniquely determines the other b x b block in the aligned set of b
rows and the output encodings. This observation also held for b = 2 and 6 x4
matrices, and we conjecture that it holds for the real b = 4, 128 x8 matrices. By
this reasoning, the ambiguity of a type I table is (16!)2 x 2016032 ~ 25461,

Type II and III tables are more complex: the matrix blocks may not have
full rank. We discuss only construction of type III tables here. The rank of each
block is a function of the the table, as follows. Consider the components needed
to compute a single, fixed nybble of each entry in a type III table. We have two
4-bit input decodings, each feeding into a 4 x4 block of the 32 x 8 matrix, and
finally a 4-bit output encoding. If we arrange the 256 32-bit outputs in a 16x 16
array, the effect of the first input decoding is to permute the array rows, while
the second input decoding permutes its columns. The rank of the first block can
be determined by taking the base 2 logarithm of the number of distinct entries
in any array column; the rank of the second by taking the base 2 logarithm of
the number of distinct entries in any array row. (E.g., a rank 3 block preserves
3 bits of information; over all 16 inputs it yields 8 distinct outputs; log, 8 = 3.)

The simplest sub-case to analyze is one where both blocks have rank 0. Here,
the resulting table reveals no information about the input encodings (as any
row and column permutation of a single entry table will look identical) and
also reveals no information about the output encoding of any value except 0.

5 For example, the greatest possible ambiguity would be achieved by an implementa-
tion of AEs-128, with input and output data manipulation, as a single (infeasibly)
immense table. At this limiting point, the power of a white-box attacker is reduced
to that of the black-box attacker.
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Therefore, the number of components which could have produced such a table
is (16!)2 x 15! ~ 21288 Of course, it is entirely possible that the other blocks in
the 32 x 8 matrix reveal more information about the encodings.

For full-rank blocks, the blocks uniquely determine the output encodings.
Since there are at most 20160% possible such blocks, an upper bound for the
number of components which could produce a given table is (16!)? x 201602 ~
2117 In other cases, we could construct similar upper bounds (taking into account
parts of the output encoding that cannot be determined).

The type IV tables have the smallest white-box ambiguity by far. One input
decoding, together with the value to which 0 decodes for the other input decod-
ing, uniquely determines the remaining encodings, so the number of construc-
tions yielding a given type IV table is 16! x 16 =~ 24%-2, It is not clear, however,
how an attacker could determine which of these alternatives corresponds to the
generated AES implementation. Total disambiguation of the eight type IV tables
feeding into a set of type II tables (see Y33 Summary) would permit removal of
decodings for that set of type II tables, allowing the attack of §4.3|

Of course, keyspace-like security measures are appropriate only in the absence
of efficient attacks which bypass much of the search space. We now consider what
form such an attack might take.

4.3 A Generic Square-like Attack

We describe a generic attack, possible only in the white-box context where the at-
tacker has full control of the key-instantiated AES implementation, and when all
input encoding is removed (i.e., T} ; inputs are fully exposed) for the set of four
type II tables performing a round transformation for one column. (8441 shows
how to perform such removal for weakened variants of our AES implementation.)
While we can send arbitrary texts through these simplified tables, whose inputs
are unencoded inputs to the AddRoundKey and SubBytes steps, the outputs
are still obscured by the MB transformation and the output encoding.
Consider the value of an AES cell after our two-part round transformation.
It has undergone an 8-bit mixing bijection and two concatenated 4-bit random
bijections. This encoding is local to the cell, and therefore has the following
property: two texts having the same encoded value in a cell, have the same un-
encoded value in that cell. In other words, while we cannot in general determine
the unencoded xor difference of two texts, we can determine when it is zero.
Our goal is to find two 32-bit texts which have a non-zero input differ-
ence in each of the four cells, and a zero output difference in all but one cell
(called a ‘three-cell collision’). This can be recognized as the strategy in the first
round of the Square attack on AES [14]. Suppose we find such texts, denoted
w = (wog,wr,ws,ws) and x = (g, 21,22, x3). Let the key which is embedded in
the type II tables be k = (ko, k1, k2, k3). Let y = (yo,y1,¥2,y3) be the mod 2
difference between the two texts after the SubBytes transformation, i.e.

yi = S(w; © ki) © S(w; © ki) (3)
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Then we have three equations in four unknowns y;, with hexadecimal coefficients
determined by the MixColumns matrix [23]:

01-yo @ 02-y; & 03-y2 & 01l-y3 = 00, (4)
0l-yo ® 01-y; @ 02-y2 @© 03-y3 = 00, (5)
03-y0 ® 01-y; @ O1l-y2 @® 02-y3 = 00, (6)

or some variant thereof, depending on which cells ‘collide’ and which cell differs.
The above system has the solution

Yo=-ec ys, y1=9ays, Yyz2=D>b7 -ys.

Thus, the choice-count for k has been reduced to at most 256 (by equation (3)).
Exhaustive search now finds k.
Based on the probability of a three-cell collision ( (

1) cells in which to occur x
probability 223 of a non-collision x probability (%6

555 ) of three collisions ~ 2722)
and a birthday-paradox counting argument, the expected work to find an entire
round key is approximately 2'! texts x four 32-bit columns = 2'3 one-round

encryptions for this weakened variant.

4

4.4 Partial Design Justification by Examining Weakened Variants

We show here that removing certain aspects of our design destroys its security.

Need for Input and Ouptut Data Manipulation. The weakened WBAC-resistant
AES variant without input and output data manipulation (see §3.4), beyond suf-
fering the problem discussed in §22, has no input encoding for the first set of
type II tables, and is thus vulnerable to the attack in §&3. Thus such manipu-
lations are necessary for security.

Need for Internal Mizing Bijections. Diffusion (cf. §33)) is crucial to the security
of white-box implementations: without it, patterns in the underlying tables allow
disambiguation, as we illustrate in the attack methods below. Hence, mixing
bijections are essential in the intermediate steps of the cipher.

Consider an implementation in which T-boxes are not preceded by input
mixing bijections (see Fig. [[(ii)) nor followed by MB, thus having no type III
tables. Each of its type II tables implements two 4-bit decodings, followed by a T-
box, then a known 32x8 matrix, and finally eight 4-bit encodings. Within such a
32x8 matrix, two 8x8 blocks are identities (multiplications by the 01 polynomial),
so considering only parts of the output coming from such an identity, we can read
an encoded version of the underlying T-box from the type II table, computing a
function of the form T" = (G1||G2)oTo(F ' ||Fy ), where T is some T} ; function
per equation () or ([@)). We can rewrite this as T’ = (By||Bz)oSo(A;||A2) where
S is the SubBytes function, each B; is an output nybble encoding (rounds 1-9)
or such an encoding composed with a post-whitening nybble xor (round 10), and
each 4; is a nybble xor (from AddRoundKey) composed with an input decoding
(rounds 1-10).
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By ignoring nybble values per se, and considering only left and right nybble
frequencies described below, we can recover output encodings for the T” for each
type II table in rounds 1-9, where By = G; and By = G5. Since the A; and B;
are 4x4 bijections, a table for T’ can be derived from the 16x16 SubBytes table
(see [23] p. 16, Fig. 7) by row (due to A;) and column (due to A3) permutation,
together with bijective left (due to Bq) and right (due to Bs) renumbering of
entry nybbles. (Random choice of nybble swapping in table elements or the table
input affords no further protection, as shown below.) We disambiguate as follows.

Definition 5 (frequency signature) Let L be an nxn array of byte entries.
L has n? cells Llrc] where r is the row and c is the column. For a sequence of left
(respectively, right) nybbles in a row (respectively, column) of L, its frequency
signature is the sequence of n occurrence frequencies for values 0-F, sorted into
descending order, written as a string of n digits in a sufficiently large base.

E.g., FO13AB073AF32126 has the frequency signature 3222221110000000.

Definition 6 (cell signature) For an nxn array L of byte entries, the cell
signature of a cell Llrc] in row r and column c is the 4n-digit concatenation
of the frequency signatures for (a) row r left nybbles; (b) row r right nybbles;
(c) column c left nybbles; and (d) column c right nybbles.

For example, in the SubBytes table above, the SubBytes[00] cell signature is
4421111110000000431111111110000032222211100000004222211110000000.

There are 192 distinct cell signatures in SubBytes. 160 apply to unique cells.
Each of the remaining 32 applies to a 3-set of cells with indices [rc] of the form
[zd], [yd], and [zd], where among 3-sets, d ranges over all hex digits and either
(a)z=4, y=6, andz=9or (b) 2z =5, y=7, and z=F[l

This 3-set co-ordinates pattern is invariant under any combination of: (a) col-
umn permutation; (b) bijective renumbering of entry left nybbles or right nyb-
bles; and (c) swapping left and right nybbles in all entries. A row permuta-
tion bijectively renumbers the rows and the corresponding alternatives for z, vy, z
above, but otherwise preserves the 3-set pattern above. Swapping input nybbles
is easily identified: it interchanges rows and columns in the pattern. Entry nybble
swapping is identified by the numerically highest signature, which has different
values for swapped and unswapped.

Given a 16x 16 T" table for a T” function, for any table cell T'[r'¢] there is
a corresponding cell SubBytes[rc] with the same cell signature. After correcting
for entry or input nybble swapping, 160 T” cells are identified immediately with
SubBytes cells having their signatures. Every left and right nybble occurs in a
unique-signatured SubBytes (and hence T") table cell: comparing corresponding

" The SubBytes shared-cell-signature n-set pattern is atypical: of 10000 16 x 16 S-
boxes filled with pseudo-randomly selected permutations of the byte values from 0
to 255 using L’Ecuyer’s recommended generator [21] with its default seeds, just 4.6%
contained any, and just 1.7% contained only, such n-sets with n divisible by 3.
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entries, we find B; and By. Then the T table’s row and column permutations
(relative to SubBytes) define A; and Ag, and thus reveal the function 7'

In rounds 1-9, By and By are the identity-block output encodings for T".
Non-identity blocks are known (corresponding to multiplications by 02 and 03
polynomials), so correcting for these known bijective blocks, we obtain output
codings for the non-identity blocks. We can thus find a round’s type II table
output codings, from which we know all succeeding type IV tables input codings.
Since these encode xors, we can then determine their output codings. We proceed
in a similar fashion until we reach the next round’s type II table input codings,
which are the inverses of the (now known) output codings of the immediately
preceding type IV tables. We can then remove them, creating the conditions
necessary to launch the Square-like attack of &3
Round-Pair Attack. A simpler and faster attack on this weakened variant (with-
out internal mixing bijections) is as follows. We perform the above disambigua-
tion process on two successive rounds in the range 2-9. For the second round
of the round-pair, as noted above, we then know the input encodings, and the
previous disambiguation techniques give us the output encodings. We can write
any round 2-9 T’ function as

T' = (Gil|G2) 0 S o (X1 X2) o (P M|y ) (7)

where the G; are the output nybble encodings, S is the SubBytes function, the
F; are the input nybble encodings, and the X; denote xors with AddRoundKey
nybbles. Given the corresponding type II table in the second round of the round-
pair, we can now identify G1, G2, F1 and F,. Removing these encodings, we
derive the function T' = S o (X;||X2), where T'(z) = S(z @ k) for any byte = by
equation (), and k is the key-byte hidden in T by partial evaluation (see §3.1]).
This allows key extraction directly from (weakened) type II tables, without any
encryption operations (required in the Square-like attack). However, it requires
absence of mixing in two successive rounds.

Summary. The mixing bijections thwart the above attacks by diffusing infor-
mation over bytes instead of nybbles for both inputs and outputs of type II
tables: they make it impossible to write their input encodings as concatenations
of nybble-to-nybble bijection pairs, thereby causing them to have T cell signa-
tures unlike those of the SubBytes table, and they eliminate identity blocks in
the 32 x 8 matrices of the type II tables, thereby making it hard for an attacker
to separate the effects of their output encodings from those of the matrices.

5 Conclusions and Future Work

The white-box attack context (WBAC) reflects both the capabilities of an adver-
sary who can introduce malicious code, and the reality of untrusted hosts. Tra-
ditional implementations of cryptographic algorithms, including AES, are com-
pletely insecure in the face of these threats. As is well-known with smartcards,
in practice the security of a cipher is dependent on its environment and imple-
mentation, as well as its mathematical underpinnings.
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As a proposal for pragmatically acceptable white-box attack-resistance, we
present a new way of implementing AES using lookup tables representing encoded
compositions. Such implementations are far larger and slower than reference
code, but arguably allow cryptographic computation to take place with a useful
degree of security, for a period of time, even in the presence of an adversary who
can observe and modify every step. As a bonus feature, aside from white-box
strength, generated AES implementation instances provide a diversity defense
against pre-packaged attacks on particular instances of executable software.

Further security analysis is needed, and we encourage the wider cryptographic
community to participate. In this paper, we consider the concept of component
disambiguation, a Square-like attack, and attacks on weakened variants. The
issues of attacks on multiple components at once, or on multiple implementations
sharing a key, remain to be investigated. For example, white-box ambiguity for
a sub-network of tables in our implementation may differ depending on where
its boundaries lie.

Although AES implementations using optimized versions of the techniques
in this paper have been found acceptable in several commercial applications,
their large size and low speed limit general applicability. Efficiency improvements
would be most welcome. We also encourage the extension of white-box techniques
to other algorithms (cf. Chow et al. [9]).

Acknowledgements. We thank Alexander Shokurov for suggesting the ambiguity
metric of §@ in another context, and anonymous reviewers.
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