
Optimal Extension Fields for XTR

Dong-Guk Han1�, Ki Soon Yoon1, Young-Ho Park2, Chang Han Kim3, and
Jongin Lim1

1 Center for Information and Security Technologies(CIST),
Korea University, Anam Dong, Sungbuk Gu, Seoul, KOREA

{christa,ksyoon}@cist.korea.ac.kr,
jilim@tiger.korea.ac.kr

2 Dept. of Information Security & System Engineering,
Sejong Cyber Univ., Seoul, KOREA

youngho@cybersejong.ac.kr
3 Dept. of Information Security, Semyung Univ., Jechon, KOREA

chkim@venus.semyung.ac.kr

Abstract. Application of XTR in cryptographic protocols leads to sub-
stantial savings both in communication and computational overhead
without compromising security [6]. XTR is a new method to represent el-
ements of a subgroup of a multiplicative group of a finite field GF (p6) and
it can be generalized to the field GF (p6m) [6,9]. This paper proposes opti-
mal extension fields for XTR among Galois fields GF (p6m) which can be
applied to XTR. In order to select such fields, we introduce a new notion
of Generalized Optimal Extension Fields(GOEFs) and suggest a condi-
tion of prime p, a defining polynomial of GF (p2m) and a fast method
of multiplication in GF (p2m) to achieve fast finite field arithmetic in
GF (p2m). From our implementation results, GF (p36)→ GF (p12) is the
most efficient extension fields for XTR and computing Tr(gn) given
Tr(g) in GF (p12) is on average more than twice faster than that of
the XTR system[6,10] on Pentium III/700MHz which has 32-bit archi-
tecture.

Keywords XTR public key system, Pseudo-Mersenne prime, Karatsuba’s
method.

1 Introduction

Almost all public key systems have a large key size except Elliptic Curve Cryp-
tosystem(ECC). This is impractical in many applications such as smart card and
wireless telecommunication of which power and bandwidth are limited. So many
cryptographers think that ECC is one of the most efficient public key systems
applicable to many hardwares with limited environments.

� This work was supported by both Ministry of Information and Communication and
Korea Information Security Agency, Korea, under project 2002-130

K. Nyberg and H. Heys (Eds.): SAC 2002, LNCS 2595, pp. 369–384, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



370 Dong-Guk Han et al.

The XTR public key system was introduced at Crypto 2000[6]. From a se-
curity point of view XTR is a traditional subgroup discrete logarithm system.
But it uses a non-standard way to represent and compute subgroup elements
to achieve substantial computational and communication advantages over tradi-
tional representations. It is the first method we are aware of that uses GF (p2)
arithmetic to achieve GF (p6) security, without requiring explicit construction of
GF (p6). As shown in [6], XTR of security equivalent to 1024-bit RSA achieves
speed comparable to cryptosystems based on random elliptic curves over ran-
dom prime fields (ECC) and of equivalent security. Here the XTR public keys
are only twice as large as ECC keys, but parameter initialization from scratch
for XTR takes a negligible amount of computing time, unlike RSA and ECC.
So XTR is an excellent alternative to either RSA or ECC in applications such
as smart card and wireless telecommunications. Therefore finding the optimized
extension fields for XTR is very significant.

It was mentioned very briefly that XTR can be generalized in a straightfor-
ward way using the extension field of the form GF (p6m) and systematic design
of this generalization was proposed in [9]. But they did not propose optimized
extension fields for XTR.

In this paper, we suggest optimized extension fields among several extension
fields GF (p6m) at 32-bit word system. It is sufficient to look around following
five extension fields for XTR according to a size of prime p.

� Generalized extension fields for XTR : GF (p6m)→ GF (p2m)

– GF (p6) → GF (p2) , the size of prime p is about 170 bits and m = 1.

– GF (p12)→ GF (p4) , the size of prime p is about 85 bits and m = 2.

– GF (p18)→ GF (p6) , the size of prime p is about 64 bits and m = 3.

– GF (p36)→ GF (p12) , the size of prime p is about 32 bits and m = 6.

– GF (p66)→ GF (p22) , the size of prime p is about 16 bits and m = 11.

We compare complexities of elementary operations of above five extension
fields and select optimal extension fields for XTR. Moreover, we consider the
cost of computing XTR single exponentiation that is to compute Tr(gn) given
Tr(g), n ∈ Z. The most frequently performed operations in XTR[6,9] are the
following three types:

x2, xy, xz − yzpm
for x, y, z ∈ GF (p2m)

These three operations play an important role to speed up XTR single ex-
ponentiation. To optimize elementary operations in GF (p2m) we stipulate the
following properties on the choice of p and defining polynomial:

1. Choose p to be a pseudo-Mersenne prime, that is, of the form 2n±c for some
log2 c ≤ 1

2n to allow for efficient subfield modular reduction.



Optimal Extension Fields for XTR 371

2. Choose a defining polynomial that is a binomial or 2m-th all-one-polynomial
(AOP) for efficient extension field modular reduction.

3. Choose p to be less than but close to the word size of the processor so that all
subfield operations take advantage of the processor’s fast integer arithmetic.

To meet the third condition, we choose m large enough. And then we can
select p to be less than but close to the word size of the processor. On the other
hand, a number of subfield multiplications and additions in GF (p) required for
polynomial multiplicaton in GF (p2m) would increase rapidly. As customary we
do not count the cost of additions in GF (p), however, when p is small and
m is large the cost of additions in GF (p) is not negligible. In this paper, we
use Karatsuba-like method at polynomial multiplicaton in GF (p2m) to reduce
the number of subfield multiplications and modify the Karatsuba-like method to
reduce the cost of additions in GF (p). Due to the above considerations for prime
p and fast polynomial multiplication method, our proposed system is on average
more than twice faster than the XTR[6,10] to compute a single exponentiation.

As the construction in this paper, there are fewer appropriate prime p than
XTR case. This means that users may share the same extension field. But Elliptic
Curve Cryptosystems has this property.

The rest of the paper is organized as follows. In Section 2 we shall briefly
review on the XTR Public Key Cryptosystems[6,9,10]. In Section 3 and 4 deal
with Generalized Optimal Extension Field(GOEF) and an efficient arithmetic
in GOEF, respectively. In Section 5 we present our implementation results and
propose the optimized extension field for XTR. The final Section contains our
conclusions to the present work.

2 Review on the XTR Public Key Cryptosystems

In this section we review some of the results from [6,9,10].

Definition 1. The trace Tr(h) over GF (p2m) of h ∈ GF (p6m) is the sum of
the conjugates over GF (p2m) of h,i.e.,

Tr(h) = h + hp2m

+ hp4m

.

For constructing XTR, primes p, q and positive integer m must satisfy fol-
lowing conditions :

– p and 2m + 1 are prime numbers, p (mod 2m + 1) is a primitive element in
Z2m+1.

– Φ6m(p) has a prime factor q whose the size is more than 160 bits.

Note that Φn(X) is n − th cyclotomic polynomial for a positive integer n.
The first above condition guarantees GF (p2m) has an optimal normal basis of
type I[11, Theorem 5.2]. The subgroup with order q cannot be embedded in the



372 Dong-Guk Han et al.

multiplicative group of any true subfield of GF (p6m) by the second condition[7,
Lemma 2.4].

Definition 2. For c ∈ GF (p2m) let F (c, X) be the polynomial X3 − cX2 +
cpm

X − 1 ∈ GF (p2m)[X ] with (not necessarily distinct) roots h0, h1, h2 in
GF (p6m), and let cn = hn

0 + hn
1 + hn

2 for n ∈ Z.

Note. If F (c, X) is irreducible over GF (p2m) then cn is equal to Tr(hn
0 ).

Lemma 1 (9, Lemma 2.1).

i. c = c1.
ii. h0h1 + h1h2 + h0h2 = cpm

.
iii. h0h1h2 = 1.
iv. cn = cnpm = cpm

n for n ∈ Z.
v. Either all hi have order dividing p2m−pm +1 and > 3 or all hi ∈ GF (p2m).
vi. (cn)t = cnt = (ct)n.
vii. cn ∈ GF (p2m) for n ∈ Z. [6, Lemma 2.3.2]

Corollary 1 (9, Lemma 2.3). Let c, cn−1, cn and cn+1 be given.

i. c2n = c2
n − 2cpm

n .
ii. cn+2 = c ∗ cn+1 − cpm ∗ cn + cn−1.
iii. c2n−1 = cn−1 ∗ cn − cpm ∗ cpm

n + cpm

n+1.
iv. c2n+1 = cn ∗ cn+1 − c ∗ cpm

n + cpm

n−1.

In XTR, an algorithm to compute Tr(gn) given Tr(g) and n ∈ Z is needed
like that to compute gn in public key system based on discrete logarithm prob-
lem. The size of n depends on the size of the order g.

Definition 3. Let Sn(c) = (cn−1, cn, cn+1) ∈ GF (p2m)3

To compute Sn(c) from any given c ∈ GF (p2m), m ∈ Z+, the algorithm
2.3.7[6] for m = 1 and the algorithm 4.2 [9] were proposed. Another XTR sin-
gle exponentiation method [10] is on average more than 35% faster than the
algorithm 2.3.7[6]. The most frequently performed operation in the algorithm to
compute Sn(c)[6,9,10] was organized with Corollary 1 i,iii,iv. Thus the complex-
ity of the algorithm computing Sn(c) depends on the complexity of computing
x2, xy, xz − yzpm

for x, y, z ∈ GF (p2m).

Lemma 2 (10, Lemma 2.2). x, y, z ∈ GF (p2) with p ≡ 2 mod 3.

i Computing xp is free.
ii Computing x2 takes two multiplications in GF (p).
iii Computing xy costs the same as two and a half multiplications in GF (p).
iv Computing xz − yzp costs the same as three multiplications in GF (p).



Optimal Extension Fields for XTR 373

Lemma 3 (9, Lemma 4.3). Let p and 2m + 1 be prime numbers, where
p (mod 2m + 1) is a primitive element in Z2m+1. Then for x, y, z ∈ GF (p2m),

i Computing xpm

is free.
ii Computing x2 takes 80% of the complexity taken for multiplications in

GF (p2m).
iii Computing xy takes 4m2 multiplications in GF (p).
iv Computing xz − yzpm

takes 4m2 multiplications in GF (p).

Remark 1. In GF (p2), Sn(c) can be computed in 7 log2 n multiplications in
GF (p) [10].

Theorem 1. Let c ∈ GF (p2m) and a positive integer n be given. Then it takes
(2a+b) log2 n multiplications in GF (p) to compute Sn(c), where a is the number
of multiplications in GF (p) to compute x2 for x ∈ GF (p2m) and b is the number
of multiplications in GF (p) to compute xz − yzpm

for x, y, z ∈ GF (p2m).

3 Generalized Optimal Extension Field

The performance of field arithmetic in GF (pm) mainly depends on the choice
of parameters for extension field, such as a prime p and a defining polynomial.
The reduction step in multiplication has the biggest time complexity. So there
are many methods proposed as follows to reduce complexity in reduction steps.

Definition 4. Let c be a positive rational integer. A pseudo-Mersenne prime is
a prime number of the form 2n ± c, log2 c ≤ � 12n�.

Definition 5. [3] An Optimal Extension Field(OEF) is a finite field GF (pm)
such that:

1. p is a pseudo-Mersenne prime,
2. An irreducible binomial P (x) = xm − ω exists over GF (p).

Theorem 2. [11] Let m ≥ 2 be an integer and ω ∈ GF (p)∗. Then the binomial
xm −ω is irreducible in GF (p)[x] if and only if the following two conditions are
satisfied:

i. each prime factor of m divides the order e of ω over GF (p), but not (p−1)/e,
ii. p ≡ 1 mod 4 if m ≡ 0 mod 4.

There are two special cases of OEF which yield additional arithmetic advan-
tages. A Type I OEF which has p = 2n±1 allows for subfield modular reduction
with very low complicity. Type II OEF which has an irreducible binomial xm−2
allows for a reduction in the complexity of extension field modular reduction.

There is another method to reduce the complexity of extension field modular
reduction.



374 Dong-Guk Han et al.

Definition 6. We call fm the m-th all-one-polynomial(AOP) if

f(x) = Φm+1(x) =
xm+1 − 1

x− 1
= xm + xm−1 + · · ·+ x + 1.

The following theorem shows when AOP is irreducible [11].

Theorem 3. Let p be a prime. fm(x) is irreducible over GF (p) if and only if
m + 1 is a prime and p is primitive in Zm+1.

Theorem 4. If m+1 is a prime and p is primitive in Zm+1, where p is a prime
or prime power. Let α be a root of m-th AOP then {α, αp, · · · , αpm−1} is a basis
of GF (pm) over GF (p). Furthermore {α, αp, · · · , αpm−1} = {α, α2, · · · , αm}.
Proof. The first assertion is from [11]. To prove the second, it is sufficient to
show that {1, p, p2, · · · , pm−1} = {1, 2, · · · , m} in Zm+1. Suppose 0 ≤ j ≤ i ≤
m − 1 and pi ≡ pj mod (m + 1) then pj(pi−j − 1) ≡ 0 mod (m + 1). Thus
pi−j ≡ 1 mod (m + 1) and order of p divides i − j. But the order of p is m
and i − j < m. Therefore i = j. Hence {1, p, p2, · · · , pm−1} are all distinct and
{1, p, p2, · · · , pm−1} = {1, 2, · · · , m}.

Definition 7. If a set A = {α, α2, · · · , αm} in GF (pm) is a basis over GF (p)
then we call it a non-conventional basis of GF (pm) over GF (p).

In this paper, we use a non-conventional basis representation for GF (pm)
whose defining polynomial is AOP. Because the property that is αm+1 = 1 and
1 = −α−α2−· · ·−αm can be used to speed up extension field modular reduction
in a non-conventional basis. The detail explanation can be covered in the section
4.3.

We introduce a new type of Galois field.

Definition 8. Generalized Optimal Extension Field(GOEF) is a finite field
GF (pm) such that:

1. p is a pseudo-Mersenne prime,
2. Either an binomial xm − ω or m− th AOP is irreducible.

The construction of GOEF can be achieved from a pair of a pseudo-Mersenne
prime and an irreducible polynomial. Either a binomial or an AOP must be
chosen as the irreducible polynomial to construct GOEF. But in GOEF, deter-
mination of irreducible polynomial is related to the choice of a pseudo-Mersenne
prime. The choice of defining polynomial determines the complexity of the op-
erations required to perform the extension field modular reduction. And the
selection of a pseudo-Mersenne prime affects the complexity in subfield modular



Optimal Extension Fields for XTR 375

reduction. So it is very important to make a pair of a pseudo-Mersenne prime
and a defining polynomial. We consider a polynomial basis or normal basis rep-
resentation of a field element A ∈ GF (pm) depending on f .

A(α) = am−1α
m−1 + · · ·+ a1α + a0, when f(x) is binomial.

or
A(α) = am−1α

m + · · ·+ a1α
2 + a0α, when f(x) is AOP.

where ai ∈ GF (p) and α is a root of f(x). Note that since we choose p to be less
than the processor’s word size, we can represent A(x) with m registers.

4 Efficient Arithmetic in GOEF

This section describes a basic construction for arithmetic in fields GF (pm), of
which GOEF is a special case.

4.1 Addition and Subtraction

Addition and subtraction of two field elements are implemented in a straight-
forward manner by adding or subtracting the coefficients of their polynomial or
normal basis representation and if necessary, performing a modular reduction by
subtracting or adding p once from the intermediate result.

4.2 Multiplication

Field multiplication can be performed in two steps. First, we perform a multi-
plication of two field elements A(α) and B(α). If we use f(x) as a binomial and
polynomial basis, then resulting in an intermediate product C ′(α) of degree less
than or equal to 2m− 2.

C′(α) = A(α)B(α) = c′2m−2α
2m−2 + · · ·+ c′1α + c′0 where c′i ∈ GF (p).

When AOP is used, the intermediate product C′(α)’s degree is less than or equal
to 2m.

C ′(α) = A(α)B(α) = c′2m−2α
2m + · · ·+ c′1α

3 + c′0α
2 where c′i ∈ GF (p).

The schoolbook method to calculate the coefficients c′i, i = 0, 1, · · · , 2m − 2,
requires m2 multiplications and (m− 1)2 additions in the subfield GF (p).

Since field multiplication is the time critical task in many public-key algo-
rithms, in this paper, we use Karatsuba-like Method[5] to calculate the coeffi-
cients which requires O(m1.59) cost for multiplication at the cost of more sub-
field additions[1]. Using this method gives considerable advantages to the cost of
multiplication in the subfield. In general, the costs of addition and subtraction
in GF (p) do not be counted. But if m is chosen such that the size of p is as
small as the word size of common processors, the complexity of addition and



376 Dong-Guk Han et al.

subtraction must be considered. For example, it is required 62 additions, sub-
tractions and 18 multiplications in a base field to compute a multiplication in
GF (p6), but the number of additions,subtractions and multiplications in a base
field increases to 722 and 147 in GF (p22), respectively. From the results in Table
6, Tmul/Tadd+sub = 5.76 in GF (p6) and Tmul/Tadd+sub = 1.7 in GF (p22) where
Tmul is the time required for a subfield multiplication and Tadd+sub for a subfield
addition and subtraction. The detail description of Karatsuba-like method won’t
be covered here for the lack of space. Instead we give an example to compute
multiplication in GF (p12) by our modified Karatsuba-like method in Appendix.

Also, there is Schonhage-Strassen FFT based Method which requires O(m
(log2 m)(log2 log2 m)) complexity for multiplication. But this method is better
than the classical method approximately when m ≥ 300[2].

In Section 4.3 we present an efficient method to calculate the residue C(α) ≡
C ′(α) mod f(α), C(α) ∈ GF (pm).

4.3 Extension Field Modular Reduction

After performing a multiplication of field elements in a polynomial representa-
tion, we obtain the intermediate result C′(α). In general, the degree of C′(α)
will be greater than or equal to m when f(x) is a binomial, and m + 1 when
AOP is used. In this case, we need to perform a modular reduction. The canon-
ical method to carry out this calculation is long division with remainder by
the defining polynomial. However, defining polynomials of special form allow for
computational efficiencies in the modular reduction.

When the Defining Polynomial Is Binomial : xm − ω

Theorem 5. [3] Given a polynomial C′(α) over GF (p) of degree less than or
equal to 2m− 2, C′(α) can be reduced module f(x) = xm − ω requiring at most
m− 1 multiplications by ω and m− 1 additions, where both of these operations
are performed in GF (p).

A general expression for the reduced polynomial is given by :

C(α) ≡ c′m−1α
m−1 + [ωc′2m−2 + c′m−2]α

m−2 + · · ·+ [ωc′m + c′0] mod f(α).

As an optimization, when possible we choose those fields with an irreducible
binomial xm − 2, allowing us to implement the multiplications as shifts.

When the Defining Polynomial Is AOP : xm + xm−1 + · · · + x + 1

Theorem 6. Given a polynomial C′(α) over GF (p) of degree less than or equal
to 2m, C′(α) can be reduced module f(x) = xm + xm−1 + · · ·+ x + 1 requiring
at most m− 2 additions and m subtractions, where both of these operations are
performed in GF (p).



Optimal Extension Fields for XTR 377

Using the property that is αm+1 = 1 and 1 = −α − α2 − · · · − αm then a
general expression for the reduced representation is given by :

C(α) ≡ [c′m−2 − c′m−1]α
m + [c′m−3 − c′m−1 + c′2m−2]α

m−1 + · · ·
+ [c′0 − c′m−1 + c′m+1]α

2 + [c′m − c′m−1]α mod f(α).

Comparison : In general, multiplication is more expensive than subtraction.
In Theorem 5, modular reduction requires at most m− 1 multiplications by ω.
If ω is 2 then the complexity of reduction of the above two methods is almost
equal. When ω is greater than 2, however, extension field modular reduction
using AOP is more efficient.

Combining or Postponing the Reduction Steps : For a regular multipli-
cation of a, b ∈ GF (p), an integer multiplication step and an integer reduction
step are needed.

Generally, extension field multiplication using Schoolbook method takes m2

multiplications in a base field. That is m2 integer reduction step must be per-
formed. If m is large, the cost of reduction step is very high. So a method which
reduces the number of reduction step, contributes to the overall performance.
We can reduce the number of reduction step by combining individual product
terms as many as possible, and then reducing the accumulated sum mod p only
once. Therefore, only m reduction step is needed. Because the intermediate re-
sults are greater than p2 in absolute value when p is selected as a prime near
the word size, the cost of the resulting final reductions is higher than that of
the original reductions. According to the our implementation results, the case
when p is word size and m is large is not attractive. Because modern workstation
CPUs are optimized to perform integer arithmetic on operands of size up to the
width of their registers and a double or triple-word integer arithmetic generated
in combining stage is considerably less efficient than single-word integer arith-
metic. Combining or postponing the reduction steps is not at all new. See for
instance [4] for much earlier applications.

4.4 Fast Subfield Multiplication with Modular Reduction

In general, fast subfield multiplication is essential for fast multiplication in
GF (pm). Subfield arithmetic in GF (p) is implemented with standard modular
integer techniques. For efficient implementation of GOEF arithmetic, optimiza-
tion of subfield arithmetic is critical to performance. Modern workstation CPUs
are optimized to perform integer arithmetic on operands of size up to the width
of their registers. GOEF takes advantage of this fact by constructing subfields
whose elements may be represented by integers in a single register.

We perform multiplication of two single-word integers and in general obtain
a double-word integer result. In order to finish the calculation, we must perform
a modular reduction. It is well known that fast modular reduction is possible



378 Dong-Guk Han et al.

with moduli of the form 2n ± c, where c is a small integer[12]. Integers of this
form allow modular reduction without division. The operators << and >> mean
left shift and right shift, respectively.

Algorithm : Reduction modulo p = 2m − c, where log2 c ≤ 1
2n.

INPUT : a base 2 positive integer x < p2 and a modulus p.
OUTPUT : r ≡ x mod p.

1. q0 ← (x >> n), r0 ← x− (q0 << n), r ← r0, i← 0.
2. While qi > 0 do the following:

2.1 qi+1 ← qic >> n, ri+1 ← qic− (qi+1 << n).
2.2 i← i + 1, r ← r + ri.

3. While r ≥ p do: r ← r − p.
4. Return(r).

Remark 2. Algorithm 1 can be modified if p = 2n + c for some positive integer
c such that log2 c ≤ 1

2n : in step 2.2, replace r ← r + ri with r ← r + (−1)iri.

The Algorithm 1 terminates after a maximum of two iterations of the while
loop, so we require at the most two multiplications by c. In practice, this leads
to a dramatic performance enhancement over performing explicit division with
remainder. If p = 2n + c is used then the number of iterations of the second
while loop is smaller than that of p = 2n − c used in step 3. Since Algorithm 1
is organized with shift, addition, subtraction and multiplication by c, and if c is
well chosen then multiplication by c can be substituted by shift the reduction of
the number of subtraction is meaningful.

5 Implementation Results

We have implemented various field and XTR arithmetic using the techniques
presented in previous Sections on typical microprocessors: Pentium III/700MHz
(32-bit µP; Windows 2000, MSVC).

5.1 Application to XTR

In this Section 5.1,first,we propose optimized parameters for XTR such as prime
p and a defining polynomial in Table 1. For the convenience to find primes, we
give the prime p with the size of prime q is greater than 160bit. But we can also
find prime p such that the size of prime q is as large as the original XTR.

In this paper, we used Karatsuba-like Method to achieve the efficiency of
multiplication in GF (p2m). Table 2 shows the number of multiplication, addition
and subtraction in GF (p) required to compute multiplication in GF (p2m). Here,
the defining polynomial is used as AOP. Note that values in the parenthesis are
the numbers when Schoolbook method is used.



Optimal Extension Fields for XTR 379

extension field characteristic p f(x) the size q

GF (p6)→ GF (p2) 2174 + 7 AOP 323 bit

GF (p12)→ GF (p4) 288 + 7 AOP 234 bit

GF (p18)→ GF (p6) 261 + 15 AOP 354 bit

GF (p36)→ GF (p12) 230 + 3 AOP 302 bit

GF (p66)→ GF (p22) 216 − 17 AOP 320 bit

Table 1. Construction of extension fields for XTR

extension field Mul in GF (p) Add in GF (p) Sub in GF (p)

GF (p6)→ GF (p2) 3 5 2

GF (p12)→ GF (p4) 9(16) 12(11) 12(4)

GF (p18)→ GF (p6) 18(36) 39(29) 23(6)

GF (p36)→ GF (p12) 54(144) 130(131) 118(12)

GF (p66)→ GF (p22) 147(484) 345(461) 377(22)

Table 2. Multiplication in GF (p2m) by using Karatsuba-like Method

In Table 3 we give the results of computing the linear recurrence Sn(c) over
GF (p2m) from the values in Table 1,2,6.

extension field prime p Sn(c) (msec)

GF (p6)→ GF (p2) 2174 + 7 10.174

GF (p12)→ GF (p4) 288 + 7 28.393

GF (p18)→ GF (p6) 261 + 15 50.276

GF (p36)→ GF (p12) 230 + 3 4.932

GF (p66)→ GF (p22) 216 − 17 6.789

Table 3. Comparison of Sn(c) performance

It can be seen that GF ((230 +3)12) yields XTR single exponentiation speeds
which are more than twice as fast as the original XTR single exponentiation[10].

From the results of Table 4, we can see the need for a pseudo-Mersenne prime
and Karatsuba-like Method to speed up XTR single exponentiation.

Finally, we recommend parameters of GOEF for XTR in Table 5.

6 Conclusion

We presented various speed-up techniques for field arithmetic in GF (pm) and in-
troduced a class of finite fields, known as Generalized Optimal Extension Fields,
which take advantage of well-known optimizations for finite field arithmetic on



380 Dong-Guk Han et al.

extension field prime p Method of multiplication f(x) Sn(c) (msec)

GF (p6) general Karatsuba method[10] AOP 11.910
⇒ GF (p2) 2174 + 7 Karatsuba method[10] AOP 10.174

general Schoolbook method AOP 129.338
GF (p36) general Karatsuba method(Appendix) AOP 67.822
⇒ GF (p12) 230 + 3 Schoolbook method AOP 8.218

230 + 3 Karatsuba method(Appendix) AOP 4.932

Table 4. Comparison XTR in GF (p2) [6,10] with XTR in GF (p12)

extension field prime p f(x) the size q

230 + 3 x12 − 2 302 bit
230 + 7, (7 = 23 − 1) AOP 355 bit

GF (p36) 230 + 129, (129 = 27 + 1)) AOP 351 bit
⇒ GF (p12) 230 − 257, (257 = 28 + 1)) AOP 269 bit

230 − 513, (513 = 29 + 1) AOP 341 bit
230 − 513 x12 − 3 341 bit

Table 5. Recommended primes and f(x) for GF (p12)

microprocessors. The main improvements presented in this paper consist of op-
timization in field multiplication and careful choices of field parameters to speed
up field arithmetic. With above results, we proposed the optimized extension
field for XTR that is GF (p36)→ GF (p12). The defining polynomial of GF (p12)
is the 12-th AOP and a candidate of nice prime is 230 +3. From our implementa-
tion results, our proposed field is about twice faster than the XTR[6] to compute
Tr(gn). The key size of it is equal as that of the original XTR system. So our
proposed optimal extension field for XTR is the more excellent alternative to ei-
ther RSA or ECC than XTR[6] in applications such as SSL/TLS(Secure Sockets
Layer, Transport Layer Security), public key smartcards, WAP/WTLS(Wireless
Application Protocol, Wireless Transport Layer Security).

References

1. Aho,A.,Hopcroft,J.,Ullman,J., The Design and Analysis of Computer Algorithms.,
Addison-Wesley,Reading Mass,1974.

2. Bach,E, Shallit,J., Algorithmic Number Theory., Vol 1, The MIT Press, Mass, 1996.
3. Bailey. D.V. and Paar C, Optimal extension fields for fast arithmetic in public-key

algorithms., Crypto ’98, Springer-Verlag pp.472-485, 1998.
4. H.Cohen, A.K. Lenstra, Implementation of a new primality test., Math.Comp.48

(1987) 103-121.
5. D.E. Knuth, The art of computer programming., Volume 2, Seminumerical Algo-

rithms, second edition, Addison-Wesley, 1981.
6. A.K. Lenstra, E.R. Verheul, The XTR public key system., Proceedings of Crypto

2000, LNCS 1880,Springer-Verlag, 2000,1-19; available from www.ecstr.com.



Optimal Extension Fields for XTR 381

7. A.K. Lenstra, Using Cyclotomic Polynomials to Construct Efficient Discrete Log-
arithm Cryptosystems over Finite Fields., Proceedings of ACISP 1997, LNCS
1270,Springer-Verlag, 1997,127-138.

8. A.K. Lenstra, Lip 1.1, available at www.ecstr.com.

9. Seongan Lim, Seungjoo Kim, Ikkwon Yie, Jaemoon Kim, Hongsub Lee, XTR Ex-
tended to GF(p6m). Procee dings of SAC 2001,317-328, LNCS 2259, Springer-Verlag,
2001,125-143.

10. Martijn Stam, A.K. Lenstra, Speeding Up XTR. Proceedings of Asiacrypt 2001,
LNCS 2248, Springer-Verlag, 2001,125-143; available from www.ecstr.com.

11. A.J Menezes, Applications of Finite Fields., Waterloo, 1993.

12. S.B.Mohan and B.S.Adiga, Fast Algorithms for Implementating RSA Public Key
Cryptosystem., Electronics Letters, 21917):761,1985.

13. S.Oh, S.Hong,D.Cheon,C.Kim,J.Lim and M.Sung, An Extension Field of Charac-
teristic Greater than Two and its Applicatins. Technical Report 99-2, CIST,1999.
Available from http://cist.korea.ac.kr/.

Appendix

A. Comparison of Arithmetic Performance in GF (p)

The first three results were made with freelip version 1.1 [8] and the last two
were made by our own hands.

extension field prime p Mul (µsec) Add (µsec) Sub (µsec)

GF (p6)→ GF (p2) 2174 + 7 7.884 0.761 0.431

GF (p12)→ GF (p4) 288 + 7 4.095 0.53 0.67

GF (p18)→ GF (p6) 261 + 15 3.365 0.5 0.31

GF (p36)→ GF (p12) 230 + 3 0.131 0.006 0.006

GF (p66)→ GF (p22) 216 − 17 0.0507 0.006 0.006

Table 6. GOEF arithmetic timings on a 700 MHz

B. Karatsuba-like Multiplication of Two Elements with Degree 12

For a prime p and A, B ∈ GF (p12), let A = a1x + a2x
2 + · · · + a12x

12 and
B = b1x + b2x

2 + · · ·+ b12x
12

Now, we shall compute AB = C = c1x+c2x
2 + · · ·+c12x

12 mod 1+x+ · · ·+x12

using Karatsuba-like multiplication where ai, bi ∈ GF (p).
We previously compute the followings.



382 Dong-Guk Han et al.

Step 1

G1 = a1b1 G2 = a2b2 G3 = G17G18

G4 = G3 −G1 −G2 G5 = a3b3 G6 = a4b4

G7 = G19G20 G8 = G7 −G5 −G6 G9 = (a1 + a3)(b1 + b3)

G10 = (a2 + a4)(b2 + b4) G11 = (G17 + G19)(G18 + G20) G12 = G9 −G1 −G5

G13 = G11 −G4 −G8 G14 = G10 −G2 −G6 G15 = G12 + G2

G16 = G14 + G5 G17 = a1 + a2 G18 = b1 + b2

G19 = a3 + a4 G20 = b3 + b4

Step 2

H1 = a5b5 H2 = a6b6 H3 = H17H18

H4 = H3 −H1 −H2 H5 = a7b7 H6 = a8b8

H7 = H19H20 H8 = H7 −H5 −H6 H9 = (a5 + a7)(b5 + b7)

H10 = (a6 + a8)(b6 + b8) H11 = (H17 + H19)(H18 + H20) H12 = H9 −H1 −H5

H13 = H11 −H4 −H8 H14 = H10 −H2 −H6 H15 = H12 + H2

H16 = H14 + H5 H17 = a5 + a6 H18 = b5 + b6

H19 = a7 + a8 H20 = b7 + b8

Step 3

I1 = I17I18 I2 = I21I22 I3 = (G17 + I17)(G18 + I18)

I4 = I3 − I1 − I2 I5 = I19I20 I6 = I23I24

I7 = I25I26 I8 = I7 − I5 − I6 I9 = I27I28

I10 = I29I30 I11 = (I27 + I29)(I28 + I30) I12 = I9 − I1 − I5

I13 = I11 − I4 − I8 I14 = I10 − I2 − I6 I15 = I12 + I2

I16 = I14 + I5 I17 = a1 + a5 I18 = b1 + b5

I19 = a3 + a7 I20 = b3 + b7 I21 = a2 + a6

I22 = b2 + b6 I23 = a4 + a8 I24 = b4 + b8

I25 = G19 + I19 I26 = G20 + I20 I27 = I17 + I19

I28 = I18 + I20 I29 = I21 + I23 I30 = I22 + I24

Step 4

J1 = a9b9 J2 = a10b10 J3 = J17J18

J4 = J3 − J1 − J2 J5 = a11b11 J6 = a12b12

J7 = J19J20 J8 = J7 − J5 − J6 J9 = J21J22

J10 = J23J24 J11 = (J17 + J19)(J18 + J20) J12 = J9 − J1 − J5

J13 = J11 − J4 − J8 J14 = J10 − J2 − J6 J15 = J12 + J2

J16 = J14 + J5 J17 = a9 + a10 J18 = b9 + b10

J19 = a11 + a12 J20 = b11 + b12 J21 = a9 + a11

J22 = b9 + b11 J23 = a10 + a12 J24 = b10 + b12



Optimal Extension Fields for XTR 383

Step 5

K1 = K17K18 K2 = K21K22 K3 = K29K30

K4 = K3 −K1 −K2 K5 = K19K20 K6 = K23K24

K7 = K31K32 K8 = K7 −K5 −K6 K9 = K25K26

K10 = K27K28 K11 = (K25 + K27)(K26 + K28) K12 = K9 −K1 −K5

K13 = K11 −K4 −K8 K14 = K10 −K2 −K6 K15 = K12 + K2

K16 = K14 + K5 K17 = a1 + a9 K18 = b1 + b9

K19 = a3 + a11 K20 = b3 + b11 K21 = a2 + a10

K22 = b2 + b10 K23 = a4 + a12 K24 = b4 + b12

K25 = K17 + K19 K26 = K18 + K20 K27 = K21 + K23

K28 = K22 + K24 K29 = K17 + K21 K30 = K18 + K22

K31 = K19 + K23 K32 = K20 + K24

Step 6

L1 =(K17+a5)(K18+b5) L2 =(K21+a6)(K22+b6) L3 =(K29+H17)(K30+H18)

L4 =L3 − L1 − L2 L5 =(K19+a7)(K20+b7) L6 =(K23+a8)(K24+b8)

L7 =(K31+H19)(K32+H20) L8 =L7 − L5 − L6 L9 =L17L18

L10 =L19L20 L11 =(L17+L19)(L18+L20) L12 =L9 − L1 − L5

L13 =L11 − L4 − L8 L14 =L10 − L2 − L6 L15 =L12+L2

L16 =L14+L5 L17 =I27+J21 L18 =I28+J22

L19 =I29+J23 L20 =I30+J24

Step 7

M1 = I1 −G1 −H1 + G16 M2 = I4 −G4 −H4 + G8

M3 = I15 −G15 −H15 + G6 M4 = I16 −G16 −H16 + H1

M5 = I8 −G8 −H8 + H4 M6 = I6 −G6 −H6 + H15

Q = H13 + K13 −G13 − J13

Step 8

The following are the table of the coefficients of multiplication of two polynomials
after reduction mod 1 + x + · · ·+ x12.



384 Dong-Guk Han et al.

Degree Coefficients Addition Subtraction

1 H16 + K16 + L1 −K1 −H1 −M1 − J16 −Q 2 5

2 G1 + H8 + K8 + L4 −K4 −H4 −M2 − J8 −Q 3 5

3 G4 + H6 + K6 + L15 −K15 −H15 −M3 − J6 −Q 3 5

4 G15 + L13 −K13 −H13 − I13 + G13 + H13 −Q 3 4

5 G13 + H1 + L16 −K16 −H16 −M4 + J1 −Q 3 4

6 M1 + H4 + L8 −K8 −H8 −M5 + J4 −Q 3 4

7 M2 + H15 + L6 −K6 −H6 −M6 + J15 −Q 3 4

8 M3 + J13 −Q 1 1

9 I13 −G13 −H13 + J16 −Q 1 3

10 K1 −G1 − J1 + M4 + J8 −Q 2 3

11 K4 −G4 − J4 + M5 + J6 −Q 2 3

12 K15 −G15 − J15 + M6 −Q 1 3

Sum 27 44

Table 7. Amount of operation in a reduction step

Step 1 2 3 4 5 6 7 8 Total

Multiplication 9 9 9 9 9 9 0 0 54

Addition 12 12 20 12 20 20 7 27 130

Subtraction 10 10 10 10 10 10 14 44 118

Table 8. Total amount of operation


	Introduction
	Review on the XTR Public Key Cryptosystems
	Generalized Optimal Extension Field
	Efficient Arithmetic in GOEF
	Addition and Subtraction
	Multiplication
	Extension Field Modular Reduction
	Fast Subfield Multiplication with Modular Reduction

	Implementation Results
	Application to XTR

	Conclusion

