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Abstract. An authenticated-encryption scheme is frequently used to
provide a communication both with confidentiality and integrity. For
stream ciphers, i.e., an encryption scheme using a cryptographic pseudo-
random-number generator, this objective can be achieved by the simple
combination of encryption and MAC generation. This naive approach,
however, introduces the following drawbacks; the implementation is likely
to require two scans of the data, and independent keys for the encryption
and MAC generations must be exchanged. The single-path construction
of an authenticated-encryption scheme for a stream cipher is advanta-
geous in these two aspects but non-trivial design.

In this paper we propose a single-path authenticated-encryption scheme
with provable security. This scheme is based on one of the well-known
ε-almost-universal hash functions, the evaluation hash. The encryption
and decryption of the scheme can be calculated by single-path operation
on a plaintext and a ciphertext. We analyze the security of the proposed
scheme and give a security proof, which claims that the security of the
proposed scheme can be reduced to that of an underlying PRNG in the
indistinguishability from random bits. The security model we use, real-
or-random, is one of the strongest notions amongst the four well-known
notions for confidentiality, and an encryption scheme with real-or-random
sense security can be efficiently reduced to the other three security no-
tions. We also note that the security of the proposed scheme is tight.
Keywords: Stream cipher, mode of operation, provable security, mes-
sage authentication, real-or-random security.

1 Introduction

A symmetric-key encryption is a cryptographic primitive that is mainly used to
provide confidentiality to communicated (or stored) data against adversaries who
do not possess the secret key. However, many cryptographic protocols implicitly
use symmetric-key encryption to provide not only data confidentiality but also
data integrity [R97].
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Although a secure communication in terms of data confidentiality can be
achieved by using an encryption scheme, use of an encryption scheme does
not always provide data integrity at the same time. Typically, data integrity
is achieved by making use of an independent mechanism to generate a message
authentication code (MAC).

A naive solution to achieve the two securities is a simple combination of two
mechanisms, namely, an encryption and a MAC generation. However, we note
that this simple approach does have some drawbacks. One is that the encoding
and decoding mechanisms must manage two keys independently, e.g., random
generation, exchange, storage, and discarding of the two keys. More importantly,
there is another drawback in that the typical software implementation encoding
and decoding processes are not single-path operation. This potential drawback
is critical even for modern computers when they are dealing with, for example,
streaming multimedia data. A construction to void those two drawbacks is not
a trivial problem.

For the block cipher, there are reports of recent studies where an efficient
mode of operation providing data authenticity as well as data confidentiality
was provided [GD01, J01, RBBK01]. The modes in all cases demonstrated that
they can provide the two securities independently if the underlying block cipher
is treated as a pseudorandom permutation. On the other hand, there have been
fewer reports on stream ciphers, i.e., an encryption scheme based on a secure
key stream.

In this paper, we present an approach to construct an encryption scheme
based on a key stream and analyze its security. Our main objectives of the
construction are: 1. An encryption scheme that operates with single-path calcu-
lation on a plaintext or ciphertext; and 2. An encryption scheme using only one
initialized key stream without compromising any security.

Our start point is a typical stream cipher; that is a bitwise xor operation of
a key stream and a plaintext stream. The security of this scheme can be proven
in terms of the confidentiality in the strongest sense. The information theoretic
approach of Shannon’s theorem proves this fact [S49]. For the computational
approach, a similar technique that proves the security of CTR mode can be used
to provide four major notions of confidentiality [BDJR97].

On the other hand, there is a well-known construction for MAC schemes
that fits a stream cipher. We chose the Wegman-Carter construction [WC81] to
embed the integrity mechanism into the Vernam cipher. The Wegman-Carter
construction is a provably secure approach to the generation of a MAC, using
universal hashing [CW79] and one-time paddness. Because there are a number of
(almost) universal hash functions using a pseudorandom sequence, the adoption
of an additional Wegman-Carter’s MAC mechanism to a stream cipher looks less
expensive1.

The design of universal hashing is important not only for MAC generation
but also for operations on databases. There are many reports of extensive re-

1 Golić proposed primitive-converting constructions based on a PRNG [G00]. These
are rather theoretical works and less efficient than dedicated universal hash functions.
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search on the construction of a universal hashing. The evaluation hash analyzed
by Shoup [S96] has piqued our interest for three reasons. R1: The required length
of random bits is constant and short. R2: All the operations used in the evalua-
tion hash are invertible, the hash achieves sufficient performance both in software
and hardware implementations. R3: Security reduction is very small with com-
parison to the hash length. These characteristics play important roles in making
the proposed scheme practical. Because of R1, the output length of the PRNG
required for encryption (or decryption) can be reduced by a factor of two in
comparison with the most inefficient construction, such as the combination of a
stream cipher and MMH [HK97]. R2 enables the proposed scheme to become a
single-path operation both for encryption and decryption. The security bound
of R3 is critically important for the security bound of the proposed scheme.

In the latter part of this paper, we analyze the security of a scheme based on
the studied construction. We mainly use the security notion in terms of real-or-
random sense [BDJR97]. The reason we use this notion is that the notion can be
efficiently reduced to three other well-known notions. This means that a scheme
with a provable security of the real-or-random sense can be said to be as secure
as the currently known strongest schemes.

The proof consists of two independent parts, i.e., security proofs for data
confidentiality and data authenticity. In both proofs, we use indistinguishability
of PRN from random bits. This notion of security can be also efficiently reduced
to other notions of security, left-or-right sense, semantic security, and find-then-
guess security [BDJR97].

There are known results on single-path authenticated-encryption schemes.
Especially for the modes of block ciphers, there are designs and security analyses
on XCBC [GD01], XIAPM [J01] and OCB [RBBK01]. As for stream ciphers,
there are also results of authenticated-encryption schemes. Taylor’s work [T93]
is one of the practical message authentication mechanisms that is based on a
PRNG. Although Taylor also describes the enhancement of his MAC scheme to
achieve both confidentiality and integrity in [T93], the required additional length
pseudorandom sequence over Vernam cipher is not a constant. Therefore, for a
longer message the additional cost to a Vernam cipher cannot be negligible.

The chain and sum primitive [JV98] is another efficient scheme to achieve au-
thenticity with an encryption based only on a PRNG. Moreover, the additional
pseudorandom number consumption is constant. However, the scheme manda-
torily requires a sequential two-path process. The scheme initially calculates the
chain and sum of the plaintext, then it encrypts the Vernam cipher with a PRNG
keyed by the resultant value of the chain and sum. This means that the inter-
mediate value, which must not be disclosed for security, is as big as the size of
message. Therefore, if this scheme deals a very long message, the same size of
secure storage is required.

Many reports on the design of universal hashing are relevant to our past work
and future problems. The MMH [HK97] and the Square hash [PR99] are efficient
universal hashing schemes based on a PRNG. However, either of the two modes
consumes a pseudorandom sequence increasingly proportional to a message’s
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Fig. 1. Encryption block diagram (S01).

length. NMH universal hashing is used in UMAC [BHKKR99] and NMH is an
extremely efficient universal hashing scheme. Also we note that whether or not
the UMAC construction (instead of Wegman-Carter’s) can be used to embed
the message authenticity into a stream cipher is an open problem to us.

This paper is organized as follows: We introduce the studied encryption
scheme S01 in Section 2 followed by two security discussions. The confidentiality
is discussed in Section 3 and the integrity is in Section 4. In Section 5, summarize
the feasibility of implementing the proposed scheme from the practical point of
view. Finally, we offer our concluding remarks in Section 6.

2 Studied Model

Let n be a parameter that specifies the block length. The encryption takes two
input data: an mn-bit message M and an n-bit redundancy R; using n-bit non-
zero key stream and (m+3)n key stream, the encryption generates (m+2)n-bit
ciphertext. The decryption also takes two input data: an c′n-bit ciphertext C′

and an n-bit redundancy R; using n-bit non-zero key stream and (c′+1)n-bit key
stream, the decryption outputs either a forgery detection signal φ or (c′−2)n-bit
message M ′. If the length of a ciphertext does not change, m + 2 = c′.

For both encryption and decryption, three key streams are used, namely SA,
SB, and SP . The key streams are generated as follows:

Key stream generation:

SA n-bit Non-zero key stream: Generate n-bit pseudorandom number. If the
generated number is zero, discard it and generate n-bit random number
again until n-bit non-zero key stream is obtained.

SB (m + 2)n-bit key stream: Generate (m + 2)n-bit pseudorandom number fol-
lowing the SA generation.

SP n-bit key stream: Generate n-bit pseudorandom number following the SB

generation.

The encryption consists of three processes: data padding, data masking and data
randomization. This is depicted in Fig. 1.
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Encryption process

Padding Append SP and R at the end of the message M . Therefore, the padded
message M ′ is (m + 2)n-bit length.

Masking Generate F = M ′ ⊕ SB.
Data randomization Divide F into n-bit blocks. Each block is multiplied by

SA over a finite field F2n. Each block of the resultant data is xored by the
previous block of F . Then concatenate all blocks to generate the ciphertext
C.

We describe the mathematical description of S01 encryption scheme [FS01].

M ′ = M |SP |R,

M ′ = (M ′
1, . . . , M

′
m+2),

F0 = 0,

Fi = Mi ⊕ SBi, (1)
Ci = (SA ⊗ Fi) ⊕ Fi−1, (2)
C = C1|C2| · · · |Cm+2.

For Equations (1) and (2), 1 ≤ i ≤ m + 2.
The decryption is a combination of the inverse of encryption and message

authentication. We leave only its mathematical description.

F0 = 0,

C′ = (C′
1, C

′
2, . . . , C

′
c′),

Fi = (Ci ⊕ Fi−1) ⊗ S−1
A , (3)

M ′
i = Fi ⊕ SBi, (4)

M ′ = M ′
1|M ′

2| · · · |M ′
c′−2,

S′
P = M ′

c′−1,

R′ = M ′
c′ . (5)

The last two blocks of M ′, i.e., S′
P and R′, are used to check the integrity of

the ciphertext. If and only if S′
P = S′′

P and R′ = R, the decryption outputs M ′.
Otherwise output the forgery detection signal φ.

3 Confidentiality

In this section, we prove the confidentiality of the S01 scheme. To discuss the
security, we have to determine the notion of confidentiality. There are four major
notions of confidentiality in the symmetric-key setting. We study the confiden-
tiality in the real-or-random sense, since the security in the real-or-random sense
can be efficiently reduced to that of the other three notions. That means that
the real-or-random sense is one of the strongest security notions.
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Real-or-random setting The encryption oracle tosses a coin (= {0, 1})to decide
which game to play. There are two games in this setting. In Game 1, in response
to an input message M , the oracle (ignores the message and) generates a secret
random string with the same length to M and encrypts it under a randomly-
chosen key K. In Game 2, in response to an input message M , the oracle encrypts
M under a randomly-chosen key K. The adversary is a deterministic algorithm.
He is allowed to generate a message and make oracle calls so that the adversary
obtains the oracle outputs. Based on the knowledge of these oracle queries and
oracle outputs, the adversary outputs one bit value Jrr = {0, 1}. The advantage
of the adversary is defined as

Advrr def=
∣∣∣Pr(Jrr = 1|Game 1) − Pr(Jrr = 1|Game 2)

∣∣∣.

We call that encryption scheme (t, µ; ε)-secure if Advrr ≤ ε holds for any ad-
versary with computational time tA ≤ t and total oracle-query length µA ≤ µ.
Following these definitions we introduce the main theorem concerning the secu-
rity of the S01 scheme.

Theorem 1. A pseudorandom number generator (PRNG)π is (tπ, µπ; επ)-secure
in the indistinguishability from random bits, i.e.,

Advrr
π = Pr(Jrr

π = 1|Game(π)) − Pr(Jrr
π = 1|Game($)) ≤ επ,

with computational time tπ and amount of query µπ, where Game(π) and
Game($) are games with the oracle outputting the π sequence and random se-
quence, respectively.

The encryption scheme S01 with π, i.e., S01π is (tS01·π, µS01·π; εS01·π) secure
in the real-or-random sense, where (tS01·π, µtS01·π ; εS01·π) = (tπ−c1µπ +c2, µπ−
c1c2, επ).

Proof: We prove this through contradiction. Assume that an adversary Arr
S01·π

can (tS01·π , µS01·π; εS01·π)-break S01π in the real-or-random sense. We construct
a new adversary Arr

π that can (tπ , µπ; επ)-break π in the indistinguishability from
random bits.

Let Oπ(·) be Arr
π ’s oracle. Arr

π will run Arr
S01·π, using Oπ(·) to provide an

appropriate simulation of Arr
S01·π ’s oracle OS01·π(·) as indicated below.

Algorithm Arr
π

1. Invoke Arr
S01·π, and obtain Arr

S01·π’s outputs a message, M and a redundancy
R,

2. (Gen. SA) Obtain n-bit oracle output to generate SA. If SA = 0, repeat the
generation until SA �= 0.

3. (Gen. SB) Calculate the length of M (the number of n-bit blocks in M , m)
and obtain (m + 2)-block (or equivalently (m + 2)n-bit) oracle output.

4. (Gen. SP ) Obtain n-bit oracle output to generate SP .
5. Using SA, SB, SP , and R, encrypt M to generate the ciphertext C.
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6. Send C to Arr
S01·π.

7. Obtain Jrr
S01·π = {0, 1}, the output of Arr

S01·π.
8. Output Jrr

π = Jrr
S01·π, and terminate this run.

Let Pr[E] stand for the probability of event E occuring. Then, Advrr
AS01·π is

defined as follows:

Advrr
AS01·π = Pr[Jrr

S01·π = 1|Game(S01 · π)]
− Pr[Jrr

S01·π = 1|Game($)]
≥ εS01·π.

Oπ(·) outputs either (Game π) the output sequence of π, or (Game $) the random
sequence.

We now compute Arr
π ’s advantage, Advrr

Aπ
.

Advrr
Aπ

= Pr[Jrr
π = 1|Game(π)]

− Pr[Jrr
π = 1|Game($)]

= Pr[Jrr
S01·π = 1|Game(S01 · π)]

− Pr[Jrr
π = 1|Game($)] (6)

= Pr[Jrr
S01·π = 1|Game(S01 · π)]

− Pr[Jrr
S01·π = 1|Game($)] (7)

≥ εS01·π.

Equations (6) and (7) are obtained because of Lemma 1 and 2. Therefore, we
have

tπ = tS01·π + c1 · µS01·π,

µπ = µS01·π + 4n +
n

2n
+

n

22n
+ · · ·

= µS01·π + c2,

επ = εS01·π.

where c2 = 3n + n
1−2−n . Therefore, we solve µS01·π, tS01·π, and εS01·π.

µS01·π = µπ − c2,

tS01·π = tπ − c1 · µS01·π
= tπ − c1 · (µπ − c2)
= tπ − c1 · µπ + c1c2,

εS01·π = επ.

Therefore, Arr
π can (tS01·π, µS01·π; εS01·π)-break π in the indistinguishability from

random bits. ��
Lemma 1. In the proof of Theorem 1, the following equation holds.

Pr[Jrr
π = 1|Game(π)] = Pr[Jrr

S01·π = 1|Game(S01 · π)].
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In other words, in Game(π), i.e., a game with Oπ outputting π sequence, the
probability that Arr

π outputs Jrr
π = 1 is equal to the probability that Arr

S01·π outputs
Jrr

S01·π = 1 in Game(π).

Proof: In the game with Oπ outputting π sequence, Arr
S01·π (invoked by Arr

π )
receives a ciphertext C encrypted by S01 ·π. Therefore the operations of Arr

S01·π
are exactly the same as Arr

S01·π playing in Game (S01 · π). Because Arr
π always

outputs Jrr
S01·π such that Jrr

S01·π = Jrr
π ,

Pr[Jrr
π = 1|Game(π)] = Pr[Jrr

S01·π = 1|Game(S01 · π)].

��
Lemma 2. In the proof of Theorem 1, the following equation holds.

Pr[Jrr
π = 1|Game($)] = Pr[Jrr

S01·π = 1|Game($)]. (8)

In other words, in Game($), i.e., a game with Oπ outputting a random se-
quence, the probability that Arr

π outputs Jrr
π = 1 is equal to the probability that

Arr
S01·π outputs Jrr

S01·π = 1 in Game(π).

Proof: At first we evaluate the left-hand-side term of Equation (8), i.e., Pr[Jrr
π =

1|Game($)]. As we mentioned in the proof of Lemma 1, the relation Jrr
π = Jrr

S01·π
always holds. Therefore,

Pr[Jrr
π = 1|Game($)] = Pr[Jrr

S01·π = 1|Game(S01 · $)]. (9)

Note that Arr
S01·π is a deterministic algorithm that generates a message M and

output JS01·π =0(random number)/1(ciphertext) in response to a ciphertext C.
There exist a function fArr

S01·π such that for ∀(P, C), fArr
S01·π(P, C) = Jrr

S01·π. Let
CAS01·π,0 = {C : fArr

S01·π(C) = 0} and we have following equations.

Pr(Jrr
π = 0|Game($)) =

∑

C∈C

Pr(C)

=
∑

C∈C

1
2|C| (10)

=
|C|
2|C| .

Because of the uniformity of a random number as the input C, Equation (10)
can be evaluated as Pr(C) = 1

2|C| .
We now evaluate the right-hand-side term of Equation (8), i.e., Pr[Jrr

S01·π =
1|Game($)].

Pr(Jrr
S01·π = 0|Game($)) =

∑

C∈C

Pr(C)

=
∑

C∈C

1
2|C| (11)

=
|C|
2|C| .
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Because of the uniformity of the ciphertext that Arr
S01·π receives (stated and

proven in Proposition 1), Equation (11) is obtained.
Hence, Equation (9) holds and the following relation also holds.

Pr[Jrr
π = 1|Game($)] = Pr[Jrr

S01·π = 1|Game($)].

��
We now show Proposition 1 and its proof.

Proposition 1. Uniformity of ciphertext of S01 · $: If the scheme S01 · $ uses
random number, ciphertexts distributes uniformly. The distribution is indepen-
dent of a message.

Proof: Let M ′ be the padded message. More specifically a secret random padding
SP and redundancy data R are appended to M in order to generate M ′. Because
of Proposition 2 shown in the latter part of the paper, for an arbitrary M ′, the
number of key streams (SA, SB) that maps a message M ′ on to a ciphertext
C, is 2n − 1, which is independent of M ′. Therefore, for an arbitrary M ′ the
probability that the corresponding ciphertext coincides with C is (2n − 1)/2mn

(over possible key streams).
Remember that the way to generate M ′ out of M is independent of (SA, SB).

Hence, for an arbitrary message M , M ’s ciphertext distributes uniformly, as well.
��

Proposition 2. For a arbitrary (M ′, C) pair there are exactly 2n−1 key streams
of (SA, SB) that maps a message M ′ to a ciphertext C. Moreover each key-stream
candidate for a fixed (M ′, C) has distinct SA value. Hence, SA value cannot be
determined only from a (M ′, C).

Proof: From Equations (1) and (2), we solve SBi’s recursively.

SB1 = (C1 ⊕ F0) ⊗ S−1
A ⊕ M ′

1, (12)
SBi = (Ci ⊕ M ′

i−1 ⊕ SBi−1) ⊗ S−1
A ⊕ M ′

i . (13)

For an arbitrary SA, SB sequence is uniquely determined. Therefore, (SA, SB)
pairs that map M ′ to C exist at least as many as SA’s, i.e., 2n − 1.

We then fix SA value and prove that only one SB sequence maps M ′ to C.
In total we conclude there exist (2n − 1) key streams (SA, SB) that map M ′ to
C.

We assume two different key streams, (SA, S′
B) and (SA, S′′

B). Note that these
two share common SA value. When these two key streams encrypt M ′,

F ′
i+1 = Pi ⊕ S′

Bi,

C′
i = (F ′

i+1 ⊗ SA) ⊕ F ′
i ,

F ′′
i+1 = Pi ⊕ S′′

Bi,

C′′
i = (F ′′

i+1 ⊗ SA) ⊕ F ′′
i .
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Let j be the least index where S′
B and S′′

B differs. From Equations (1) and (2),
we have F ′

j = F ′′
j , S′

B �= S′′
B and F ′

j+1 �= F ′′
j+1. Therefore, C′

j �= C′′
j .

Hence, there is no message M ′ that is mapped to the same C under two
different keys streams that shares the same SA.

We therefore conclude that the number of key streams (SA, SB) that encrypts
M ′ and generates ciphertext C is 2n − 1. ��

4 Integrity

In this section we study security in terms of message integrity. We first define an
model of the adversary. We assume the adversary that can choose a message and
the redundancy and obtain the corresponding ciphertext. Because the studied
model is a stream cipher, the key stream is used in the one-time-pad manner,
or equivalently any part of the key stream is never re-used. An adversary forges
a ciphertext out of the knowledge of a message, the redundancy and the corre-
sponding ciphertext. The adversary is capable of altering even the length of the
ciphertext. The aim of this study is to give an upperbound probability of a suc-
cessful forgery. We give Theorem 2 about the security of the studied encryption
scheme.

Theorem 2. A pseudorandom number generator (PRNG)π is (tπ, µπ; επ)-secure
in the indistinguishability from random bits, i.e.,

Advrr
π = Pr(Jrr

π = 1|Game(π)) − Pr(Jrr
π = 1|Game($)) ≤ επ,

with computational time tπ and amount of query µπ, where Game(π) and
Game($) are games with the oracle outputting the π sequence and random se-
quence, respectively.

The encryption scheme S01 with π, S01π is (talter
S01·π, µalter

S01·π; palter
S01·π) secure

against the adversary, i.e., an adversary cannot generate a successful forgery
with computational time (talter

S01·π data complexity µalter
S01·π and the upperbound of

the successful probability palter
S01·π, where (talter

S01·π , µalter
S01·π, palter

S01·π) = (tπ − c3 · µπ +
c3c4, µπ − c4, επ + (m + 1)/(2n − 1)).

Proof: We prove this through contradiction. Assume that an adversary Aalter
S01·π

can (talter
S01·π, µalter

S01·π; palter
S01·π)-forge S01π. We construct a new adversary Arr

π that
can (trr

π , µrr
π ; εrr

π )-break π in the indistinguishability from random bits.
Let Oπ(·) be Arr

π ’s oracle. Arr
π will run Aalter

S01·π, using Oπ(·) to provide an
appropriate simulation of Aalter

S01·π’s oracle OS01·π(·). More specifically, Aalter
S01·π is a

deterministic algorithm that generates a message and a redundancy. In response
to the ciphertext C, or equivalently the output of the oracle OS01·π(·), Aalter

S01·π
outputs the forged ciphertext C′, which is different from C. The probability that
C′ passes the integrity check of the decryption is palter

S01·π.
We indicate the algorithm of the constructed adversary below.
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Algorithm Arr
π

1. Invoke AS01·π, and obtain AS01·π’s outputs. The output consists of a message
M and a redundancy R,

2. (Gen. SA) Obtain n-bit oracle output to generate SA. If SA = 0, repeat the
generation until SA �= 0.

3. (Gen. SB) Calculate the length of M (the number of n-bit blocks in M , m)
and obtain (m + 2)-block (or equivalently (m + 2)n-bit) oracle output.

4. (Gen. SP ) Obtain n-bit oracle output to generate SP .
5. Using SA, SB, SP , and R, encrypt M to generate the ciphertext C.
6. Send C to Aalter

S01·π.
7. Obtain C′, the output of Aalter

S01·π .
8. Check the validity of C′. If the decryption result is the forgery detection

signal φ, output Jrr
π = 0. Otherwise, output Jrr

π = 1.
9. Terminate this run.

Let Oπ(·) be the oracle of Arr
π . Oπ(·) outputs either (Game π) the output se-

quence of π, or (Game $) the random sequence.
We now compute Arr

π ’s advantage, Advrr
Aπ

.

Advrr
Aπ

= Pr(Jrr
π = 1|Game(π))

− Pr(Jrr
π = 1|Game($)).

Because of the following Lemma 3, the following equation holds.

Advrr
Aπ

= palter
S01·π − Pr(Jrr

π = 1|Game($)).

From Lemma 4, we have

Advrr
Aπ

≥ palter
S01·π − (m + 1)/(2n − 1).

Therefore, we can evaluate the cost and advantage of Arr
π as follows:

trr
π = talter

S01·π + c3 · µalter
S01·π

µrr
π = µalter

S01·π + 4n +
n

2n
+

n

22n
+ · · ·

= µalter
S01·π + c4,

επ = palter
S01·π − (m + 1)/2n,

where c4 = 3n + n
1−2−n . We finally solve talter

S01·π, µalter
S01·π, palter

S01·π and obtain the
following relations:

µalter
S01·π = µπ − c4,

talter
S01·π = tπ − c3 · µS01·π

= tπ − c3 · (µπ − c4)
= tπ − c3 · µπ + c3c4,

palter
S01·π = επ + (m + 1)/2n.

��
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Lemma 3. In the proof of Theorem 2, the following equation holds.

Pr[Jrr
π = 1|Game(π)] = palter

S01·π.

In other words, in Game(π), i.e., a game with Oπ outputting π sequence, the
probability that Arr

π outputs Jrr
π = 1 is equal to the probability that Aalter

S01·π outputs
a valid forged ciphertext in Game(π).

Proof: In the game with Oπ outputting π sequence, Aalter
S01·π (invoked by Arr

π )
receives a ciphertext C encrypted by S01 ·π. Therefore, the operations of Aalter

S01·π
are exactly the same as Aalter

S01·π playing in Game(S01 ·π). Note that Arr
π outputs

JS01·π = 1 if and only if Aalter
S01·π outputs the successful forgery C′. Therefore, we

have the following equation.

Pr[Jrr
π = 1|Game(π)] = palter

S01·π.

��
Lemma 4. In the proof of Theorem 2, the following equation holds.

Pr[Jrr
π = 1|Game($)] ≤ (m + 1)/(2n − 1).

In other words, in Game($), i.e., a game with Oπ outputting a random sequence,
the probability that Arr

π outputs Jrr
π = 1 is at most (m + 1)/(2n − 1).

Proof: We first consider attacks without changing the length of the ciphertext
(namely, the attack is limited only to changing the ciphertext value). The proofs
for the cases of (1) eliminating the length of the ciphertext and (2) appending
new ciphertext blocks will be discussed in the latter part of the proof.

Assuming that Aalter
S01·π with known-plaintext tries to alter ciphertext and the

decryptor receives the maliciously altered ciphertext, C′, instead of C. The one
of the necessary objective of the attacker is to alter a message such that the
recovered (modified) message has the same redundancy. Due to the algebraic
structure of the scheme, a successful forgery must have special relation that
includes an unknown SA value. The proof of the SA’s uncertainty out of a known
plaintext is given in Proposition 2.

We construct the necessary condition to match R. From Equations (3) and
(4), the recovered message M ′ of the forged ciphertext is:

F ′
1 = F1,

F ′
i = (C′

i ⊕ F ′
i−1) ⊗ S−1

A ,

M ′
i = F ′

i ⊕ SBi.

Aalter
S01·π also knows the original message, so that he has following equations:

F1 = F1,

Fi = (Ci ⊕ Fi−1) ⊗ S−1
A ,

Mi = Fi ⊕ SBi.
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From these equations, we solve R and R′. Consequently we have

R = Mm+2 = SBm+2 ⊕
m+2⊕

i=1

Cm+3−iS
−i
A ⊕ F0S

−(m+2)
A ,

R′ = M ′
m+2 = SBm+2 ⊕

m+2⊕

i=1

C′
m+3−iS

−i
A ⊕ F0S

−(m+2)
A .

The necessary condition is to hold R = R′. Then we have a condition.

0 = δm+2S
−1
A ⊕ δm+1S

−2
A ⊕ δmS−3

A ⊕ . . . ⊕ δ2S
−(m+1)
A ⊕ δ1S

−(m+2)
A . (14)

Remember that Aalter
S01·π is a deterministic algorithm and Aalter

S01·π determines δ
without the knowledge of SA (Proposition 2). Then for a fixed δ value, there
exist at most m + 1 roots for non-zero SA of Equation (14). Because SA is
random and independent of the Aalter

S01·π’s actions, the probability of a successful
forgery is upperbounded by (m + 1)/(2n − 1).

Eliminating ciphertext length: In this part of the proof, we concentrate on the
case in which the ciphertext is shortened. Here we use SP = S′

P as a necessary
condition for the successful forgery.

Let c′ be the length of the forged ciphertext (c′ < m+2). Then the decryptor
will identify M ′

c′−1 as SP . More specifically,

S′
P = M ′

c′−1 = SBc′−1 ⊕
c′−1⊕

i=1

C′
c′−iS

−i
A ⊕ F0S

−(c′−1)
A . (15)

On the other hand, the decryption scheme generates SP as the next pseudoran-
dom block after SBc′ . Therefore,

SP = SBc′+1 = Mc′+1 ⊕
c′+1⊕

i=1

C′
c′+2−iS

−i
A ⊕ F0S

−(c′+1)
A . (16)

From Equations (12), and (13), SBc′−1 can be expressed only by the public value
and SA as follows:

SBc′−1 = Mc′−1 ⊕ S−1
A Cc′−1 ⊕ S−2

A Cc′−2 ⊕ · · · ⊕ S
−(c′−1)
A C1 ⊕ F0S

−(c′−1)
A

= Mc′−1 ⊕ F0S
−(c′−1)
A ⊕

c′−1⊕

i=1

Cc′−iS
−i
A . (17)

From Equations (15), (16) and (17), the necessary condition for matching SP

and S′
P is expressible only with known values (M, C, C′), and an unknown inde-

pendent value SA as follows:

0 = Mc′+1⊕Mc′−1⊕F0S
−(c′+1)
A ⊕C′

2S
−c′
A ⊕C′

1S
−(c′+1)
A ⊕

c′−1⊕

i=1

(δc′−i⊕Cc′+2−i)S−i
A .

(18)
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Being similar to the previous case of attack, Aalter
S01·π determines δ, c′, and C′

without the knowledge of SA (Proposition 2). Then for a fixed set of (δ, c′, C′),
there exist at most c′ + 1 roots for non-zero SA of Equation (18). Because SA is
random and independent of the Aalter

S01·π’s actions, the probability of a successful
forgery is upperbounded by (c′ + 1)/(2n − 1) ≤ m/(2n − 1).

Appending new ciphertext blocks: We briefly describe the proof of the case in
which the adversary appends a new ciphertext block (in addition to changing
the existing ciphertext blocks). Let c′ be the length of the appended ciphertext
(c′ > c).

In this case we consider the difficulty of controlling R′. From Equation (5),
R′ can be expressed by

R′ = SBc′ ⊕ Mc′ ⊕ Fc′ . (19)

Note that what AS01·π can control is limited to something about Fc′ . SBc′ is
a new value that has never appeared in the encryption process, i.e., SBc′ is
independently random from any public value. Therefore, although he can control
the actual value of Fc′ , the probability that R′ = R is 1/2n. ��

5 Implementation and Efficiency

In this section, we discuss the implementation and efficiency of the proposed
scheme. For the practical parameters, we set the block length to be 64 bits for
all evaluations.

In terms of software implementation, we implemented the proposed scheme
together with the PANAMA stream cipher [DC98]. As a result, we have per-
formances of 202 Mbps (encryption) and 207 Mbps (decryption) on a 600-MHz
Alpha processor. The code is written in C-language and compiled by a DEC cc
compiler.

The hardware suitability of our scheme is very high because of operations in
F264. We estimated additional hardware cost to the PRNG. Generally speaking,
there are considerable trade-offs between performance and hardware size. Our
evaluation demonstrates two instances: the maximum throughput model and the
smallest gate size model. All estimations were evaluated with a 0.35-µm CMOS
process.

For the maximum throughput, the multiplication is implemented with full
logical expression, and is estimated by the size (the number of gates) and the
propagation delay. As a result of an estimation with Verilog-HDL, the multipli-
cation in F264 is implemented in a 36-K gate and its propagation delay is 5.4 ns.
This is an optimized circuit in the sense of the propagation delay. The circuit
performs up to 150 MHz and encrypts a block (64-bit) with a clock. Thus, the
maximum throughput is estimated to be 9.6 Gbps (when the PRNG performs
fast enough).

Similarly we estimated the smallest gate count implementation, in which a
multiplication in a finite field is realized very cheaply with a linear feedback shift
register. we found that the additional circuit to the PRNG can be implemented
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with no more than 3 K gate. This circuit works with clocks up to 800 MHz.
Since a block en(de)cryption takes 65 clocks, this smallest gate count instance
practically performs about 200 Mbps at 200 MHz.

6 Concluding Remarks

We proposed an encryption scheme both for data confidentiality and data in-
tegrity that uses a n(m+4)-bit random number stream, where n is the length of
a block and m is the number of blocks in a message. We proved the probability
of a forgery in known-plaintext environments.

The proposed scheme is practical as we demonstrated implementations both
on software and hardware. In particular, hardware suitability is very high since
operations in the scheme are suitable for a hardware platform. Therefore, either
the additional gate count is very small, or the maximum throughput can be very
high with acceptable gate counts. Because of the possibility of parallel PRNG,
the maximum throughput of 9.6 Gbps is a reasonably realistic estimation.

As for efficiency, the scheme has two more advantages. First of all, the scheme
achieves single-path encryption scheme so that streaming data can be also dealt
with using a limited hardware resource. Secondly, the PRNG is independent of
either the intermediate value or the message. This means that parallel computa-
tion and precomputation are very easy and effective for increasing the maximum
throughput.

An additional issue regarding security is that any part of an actual key stream
value cannot be determined by an adversary so that the most likely target to
crack, the PRNG, is unreachable directly from the attacker. This cannot be
construed to mean any concrete additional security. However, in a cryptographic
attack on a PRNG, the attacker must make use of the actual value, then the
scheme itself may bring a certain hedge against attacks.
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