
Theoretical Informatics and Applications
Theoret. Informatics Appl. 37 (2003) 51–66

DOI: 10.1051/ita:2003010

COMPLEXITY THEORETICAL RESULTS
ON NONDETERMINISTIC GRAPH-DRIVEN READ-ONCE

BRANCHING PROGRAMS

Beate Bollig
1,∗

Abstract. Branching programs are a well-established computation
model for boolean functions, especially read-once branching programs
(BP1s) have been studied intensively. Recently two restricted nondeter-
ministic (parity) BP1 models, called nondeterministic (parity) graph-
driven BP1s and well-structured nondeterministic (parity) graph-driven
BP1s, have been investigated. The consistency test for a BP-model M
is the test whether a given BP is really a BP of model M . Here it is
proved that the consistency test is co-NP-complete for nondeterminis-
tic (parity) graph-driven BP1s. Moreover, a lower bound technique for
nondeterministic graph-driven BP1s is presented. The method gener-
alizes a technique for the well-structured model and is applied in order
to answer in the affirmative the open question whether the model of
nondeterministic graph-driven BP1s is a proper restriction of nonde-
terministic BP1s (with respect to polynomial size).

Mathematics Subject Classification. 68Q05, 68Q15, 94C10.

1. Introduction

1.1. Branching programs or binary decision diagrams

Besides boolean circuits and formulae branching programs (BPs), sometimes
also called binary decision diagrams (BDDs), are one of the standard representa-
tions for boolean functions. (For a history of results on branching programs see,
e.g., the monograph of Wegener [24].)

Keywords and phrases. Computational complexity, read-once branching programs, nondeter-
minism, lower bounds.

1 FB Informatik, LS2, University Dortmund, 44221 Dortmund, Germany;
e-mail: bollig@ls2.cs.uni-dortmund.de
∗ Supported in part by DFG We 1066/9.

c© EDP Sciences 2003

52 B. BOLLIG

Definition 1.1. A branching program (BP) or binary decision diagram (BDD)
on the variable set Xn = {x1, . . . , xn} is a directed acyclic graph with one source
and two sinks labeled by the constants 0 and 1. Each non-sink node (or decision
node) is labeled by a boolean variable and has two outgoing edges, one labeled
by 0 and the other by 1. A nondeterministic branching program is a branching
program with some additional unlabeled nodes, called nondeterministic nodes or
guessing nodes, which have out-degree 2.

An input a ∈ {0, 1}n activates all edges consistent with a, i.e., the edges labeled
by ai which leave nodes labeled by xi. A computation path for an input a in a BP
G is a path of edges activated by the input a which leads from the source to a sink.
A computation path for an input a which leads to the 1-sink is called accepting
path for a.

Let Bn denote the set of all boolean functions f : {0, 1}n → {0, 1}. The BP G
represents a function f ∈ Bn for which f(a) = 1 iff there exists an accepting path
for the input a.

The size of a branching program G is the number of its nodes and is denoted
by |G|. The branching program size of a boolean function f is the size of the
smallest BP representing f . The length of a branching program is the maximum
length of a path.

Note that in a deterministic BP each input defines exactly one computation
path, whereas in a nondeterministic BP several computation paths are possible
for each input.

It is well known that the logarithm of the branching program size is essentially
the same as the space complexity of the nonuniform variant of Turing machines.
Hence, it is a fundamental open problem to prove superpolynomial lower bounds
on the size of branching programs for explicitly defined boolean functions even in
the deterministic case. The nondeterministic case seems to be still harder (see e.g.
the survey of Razborov [17]). In analogy to the definition for Turing machines
different acceptance modes can be studied for branching programs.

Definition 1.2. A parity branching program (or ⊕-BP for short) is syntactically
a nondeterministic branching program but instead of the usual existential non-
determinism the parity acceptance mode is used. An input a is accepted iff the
number of its accepting paths is odd.

In the following if nothing else is mentioned nondeterministic BPs mean BPs
according to the usual existential nondeterminism (∨-BPs for short).

Despite considerable efforts the best lower bound on the size of unrestricted
branching programs remains the almost quadratic lower bound of order
Ω(n2/ log2 n) proved by Nechiporuk in 1966 [16]. In order to learn more about
the power of branching programs, various restricted models have been investi-
gated intensively and several interesting restricted types of BPs could be analyzed
quite successfully (for the latest breakthrough for semantic super-linear length BPs
see [1, 2], and [3], where using a subtle combinatorial reasoning super-polynomial
lower bounds were obtained).

NONDETERMINISTIC GRAPH-DRIVEN BP1S 53

There are several possibilities to restrict BPs, among them restrictions on the
multiplicity of variable tests or the ordering in which variables may be tested.

Definition 1.3. i) A branching program is called (syntactically) read k times
(BPk) if each variable is tested on each path at most k times.

ii) A branching program is called s-oblivious, for a sequence of variables s =
(s1, . . . , sl), si ∈ Xn, if the set of decision nodes can be partitioned into disjoint
sets Vi, 1 ≤ i ≤ l, such that all nodes from Vi are labeled by si and the edges
which leave Vi-nodes reach a sink or a Vj -node where j > i.

Definitions of nondeterministic variants of restricted BPs are derived in a straight-
forward way. Borodin et al. [7] have proved one of the first exponential lower
bounds for nondeterministic BPks. Moreover, Thathachar [22] was even able to
prove an exponential gap between the size of nondeterministic BPks and deter-
ministic BP(k + 1)s for an explicitly defined boolean function. This shows that
the lower bound techniques for these models are highly developed. For parity
branching programs the situation is quite different. Even the problem of prov-
ing superpolynomial lower bounds for parity read-once branching programs is still
open.

Besides this complexity theoretical viewpoint people have used branching pro-
grams in applications. Representations of boolean functions which allow efficient
algorithms for many operations, in particular synthesis (combine two functions by
a binary operation) and equality test (do two representations represent the same
function?) are necessary. Bryant [9] introduced ordered binary decision diagrams
(OBDDs) which are up to now the most popular representation for formal circuit
verification.

Definition 1.4. An OBDD is a branching program with a variable ordering given
by a permutation π on the variable set. On each path from the source to the sinks,
the variables at the nodes have to appear in the order prescribed by π (where some
variables may be left out). A π-OBDD is an OBDD ordered according to π.

OBDDs in general do not have nice algorithmic properties. There are exam-
ples known such that gn and hn are two boolean functions which have linear-size
OBDDs (for different variable orderings) but fn = gn ∨ hn has even exponential
BP1 size (for an example see, e.g., Prop. 2 in [4]). If a variable ordering π is fixed,
all important operations can be performed efficiently (for a list of the operations
see, e.g. [24]). Unfortunately, several important and also quite simple functions
have exponential OBDD size. Therefore, more general representations with good
algorithmic behavior are necessary. Gergov and Meinel [10, 11] and Sieling and
Wegener [20] have shown independently how deterministic read-once branching
programs can be used for verification. In order to obtain efficient algorithms for
many operations they have generalized the concept of variable orderings to graph
orderings.

Definition 1.5. A graph ordering is a (deterministic) branching program with a
single sink, where on each path from the source to the sink all variables appear

54 B. BOLLIG

exactly once. A (nondeterministic) graph-driven BP1 is a (nondeterministic) BP1
G for which there exists a graph ordering G0 with the following property: If for
an input a, a variable xi appears on a computation path of a in G before the
variable xj , then xi also appears on the unique computation path of a in G0

before xj .
A well-structured (nondeterministic) graph-driven BP1 G is a BP1 for which

there exists a graph ordering G0 and a mapping α from the node set of G to the
node set of G0 such that for every node v in G the node α(v) is labeled with
the same variable as v, and such that if a computation path of an input a passes
through v, then the computation path of a in G0 passes through α(v).

(Note that in [10, 11] only (usual) graph-driven BP1s have been investigated.
Furthermore, we use the notation of Sieling and Wegener [20] which is more com-
mon.) In (nondeterministic) graph-driven BP1s according to a fixed graph order-
ing for each input the variables are tested in the same ordering, whereas (different
from OBDDs) for different inputs different orderings may be used. For nondeter-
ministic BP1s graph orderings do not exist in general. For an input a there can
exist computation paths for the input a according to different orderings. Well-
structured graph-driven BP1s according to a fixed graph ordering G0 can easily
be obtained in the following way. Since we are interested in lower bounds, we may
assume that each graph ordering does not contain identical subgraphs. We start
by a complete decision tree which is ordered according to G0, afterwards we merge
all identical subgraphs. Finally, all nodes which have the same 0- and 1-successor
are deleted. The difference between the two graph-driven models is the follow-
ing one. For graph-driven BP1s G according to a graph ordering G0 it is possible
that a node v with label xi is reached on the computation paths for two inputs
a and b in G whereas the nodes with label xi on the computation paths for the
inputs a and b in G0 are different. This is not allowed in the well-structured case.
Figure 1 shows an example of a graph ordering G0, a well-structured nondetermin-
istic G0-driven BP1 G1 and a nondeterministic G0-driven BP1 G2. Sieling and
Wegener [20] observed that there is a time-space trade-off between graph-driven
and well-structured graph-driven BP1s in the deterministic case. The stronger
structural property of the latter model leads to the design of simpler and faster
algorithms but the storage space of these algorithms is larger than the storage
space of the algorithms for graph-driven BP1s.

Any (nondeterministic) OBDD is well-structured since there exists exactly one
xi-node in any variable ordering for each variable xi. In [4] it has been shown
that even restricted well-structured nondeterministic graph-driven BP1s, called
tree-driven nondeterministic BP1s, are a proper generalization of nondeterministic
OBDDs.

The concept of graph-driven branching programs has turned out to be also
useful in other settings, see e.g. [13] and [21]. Parity variants of these models
are defined using the parity acceptance mode. Gergov and Meinel [10] were the
first ones who suggested parity graph-driven BP1s as a data structure for boolean
functions. Another reason for the investigation of parity graph-driven BP1s is

NONDETERMINISTIC GRAPH-DRIVEN BP1S 55

Figure 1. A graph ordering G0, a (well-structured) nonde-
terministic G0-driven BP1 G2 (G1) representing the function
f(x1, x2, x3, x4) = x1 x2x3 ∨ x1x2x4 ∨ x1x3x4 ∨ x1x3 x4. Missing
edges are leading to the 0-sink.

that until now exponential lower bounds on the size of parity read-once branching
programs for explicitly defined boolean functions are unknown. One step towards
the proof of such bounds might be to investigate BP models inbetween determin-
istic and parity BP1s. Nondeterministic and parity graph-driven BP1s have been
investigated more intensively in [4]. For the parity case Brosenne et al. [8] were
the first ones realizing that the property of being well-structured can be used to
prove lower bounds on the size of BP1s. They have proved the first (not strongly)
exponential lower bound of order 2Ω(n1/2) on the size of well-structured parity
graph-driven BP1s representing the characteristic function of linear codes. Well-
structured parity and nondeterministic BP1s have been further investigated in [5]
and [6].

A further variant of restricted nondeterministic branching programs which al-
lows a very fine control of the available amount of nondeterminism is the follow-
ing one.

Definition 1.6. An (ω, k)-BP1 G, ω ∈ {∨,⊕}, consists of k deterministic read-
once branching programs G1, . . . , Gk. If f1, . . . , fk are the functions represented
by G1, . . . , Gk, then G represents the function f = f1ωf2ω · · ·ωfk. The size of G
is |G1|+ . . .+ |Gk|. If G1, . . . , Gk are OBDDs, G is also called a partitioned binary
decision diagram (PBDD).

Jain et al. [15] have introduced PBDDs as a representation of boolean functions
for practical purpose. This type of nondeterministic BP is also interesting for
complexity theory because it allows a bounded non-oblivious access to the input

56 B. BOLLIG

variables. Savický and Sieling [18] have presented the first lower bound methods
for (∨, k)-BP1s and (⊕, k)-BP1s.

1.2. The results

Until now exponential lower bounds on the size of (usual) nondeterministic
graph-driven BP1s for functions with polynomial nondeterministic BP1s size have
been unknown. Hence, it should be clarified whether nondeterministic BP1s are
really more powerful than nondeterministic graph-driven BP1s. The research on
such questions may also lead to refinements of the known lower bound methods.

In Section 2, we investigate the consistency test. The consistency test for a
BP-model M is the test whether a given BP is really a BP of model M . A rule of
thumb that can be obtained by comparing several variants of BPs is that variants
with a larger class of functions with small-size representations usually have less
efficient algorithms. In Section 2, we prove the surprising result that this rule is
not true for nondeterministic BP1s and the consistency test. Although there exist
polynomial time algorithms for the consistency test for nondeterministic BP1s and
oblivious nondeterministic BP1s (nondeterministic OBDDs) the consistency test
for nondeterministic graph-driven BP1s is co-NP-complete.

In Section 3, we describe a criterion for boolean functions such that the lower
bound method for well-structured nondeterministic graph-driven BP1s described
in [6] still works.

Finally, Section 4 deals with the relationship between the restricted variants of
nondeterministic BP1s. We show that the two restrictions being graph-driven or
using a restricted number of nondeterministic nodes are incomparable with respect
to polynomial size. Applying the lower bound criterion presented in Section 3
we prove that nondeterministic graph-driven BP1s are in fact significantly more
restricted than nondeterministic BP1s. This answers an open question stated
in [4].

2. The consistency test

The consistency test for nondeterministic BP1s is simple. Let G be the given BP.
Let label(u) be the variable which is the label of the node u if u is a decision node
and the empty set if u is a nondeterministic node. According to a topological order
of the nodes, we compute for each decision node w the set P (w) of variables tested
on some path from the source to w excluding the label of w. If label(w) ∈ P (w),
G cannot be a nondeterministic BP1. Otherwise the consistency test succeeds.

The consistency test for oblivious nondeterministic read-once branching pro-
grams (nondeterministic OBDDs) is also simple. Let G be the given BP on the
variable set {x1, . . . , xn}. For each variable xi, 1 ≤ i ≤ n, we merge all nodes
labeled by xi. The resulting graph is called G′. Afterwards we test whether G′

has the read-once property. For this reason we test whether label(u) 6∈ P (w) for
all nodes w in G′.

NONDETERMINISTIC GRAPH-DRIVEN BP1S 57

For (usual) nondeterministic graph-driven BP1s the consistency test is more
difficult.

Theorem 2.1. The problem to decide for a given branching program G whether
G is a nondeterministic graph-driven BP1 is co-NP-complete.

Proof. We prove that the inconsistency test for nondeterministic graph-driven
BP1s is NP-complete. The problem is contained in NP since we can guess two
computation paths for an input a with contradictory orderings of the variables.

Now we present a polynomial time reduction from 3-SAT. Let (X, C) be an
instance of 3-SAT where X = {x1, . . . , xn} is the set of variables and C =
{c1, . . . , cm} is the set of clauses. W.l.o.g. we assume that each clause consists
of tree different literals and each variable occurs in each clause at most once. Fur-
thermore, we assume for each clause ci = x

bi,1
i1

∨ x
bi,2
i2

∨ x
bi,3
i3

, 1 ≤ i ≤ m and
bi,j ∈ {0, 1} for 1 ≤ j ≤ 3, that i1 < i2 < i3.

First, we introduce m new variables h1, . . . , hm. Then we construct for each
clause ci the component Gi, 1 ≤ i ≤ m, shown in Figure 2.

The constructed branching program G represents the disjunction of all these
components. The upper part of G looks like a switch and consists of m − 1
nondeterministic nodes (see Fig. 3).

We have to prove that the resulting branching program G is not a nondeter-
ministic graph-driven BP1 iff the instance (X, C) for 3-SAT is satisfiable.

⇐ We prove that there exists an input with at least two computation path
with different variable orderings. Let a = {0, 1}n be a satisfying assign-
ment for (X, C). Let a′ be the assignment which consists of the assignment
a to the x-variables and hi = 1, 1 ≤ i ≤ m. There exist m accepting paths
for a′, on each of these accepting paths two h-variables are tested. The
corresponding orderings of the h-variables are hi → hi+1, 1 ≤ i ≤ m − 1,
which means that the variable hi has to be tested before the variable hi+1

is tested and hm has to be tested before h1. Contradiction.
⇒ We construct a graph-ordering G0 such that G is a nondeterministic graph-

driven BP1 if (X, C) is unsatisfiable. Since (X, C) is unsatisfiable there
exists for each assignment a of the x-variables a first clause which is un-
satisfied by a. Our graph ordering starts with a complete binary tree of
size 2n− 1 on the x-variables, where the x-variables are ordered according
to x1, . . . , xn. If ci is the first clause that is unsatisfied by the assignment
a of the x-variables the path that corresponds to a in G0 continues with
the ordering hi+1, . . . , hm, h1, . . . , hi. 2

Obviously Theorem 2.1 can be extended to the parity case.

3. A lower bound method for nondeterministic

graph-driven bp1s

We already know that the theory of communication complexity is a powerful
tool for proving lower bounds on the size of nondeterministic oblivious BPs. (See,

58 B. BOLLIG

Figure 2. The components Gi, 1 ≤ i ≤ m − 1, and Gm in the
co-NP-completeness proof.

e.g. [12] and [14] for the theory of communication complexity.) In [6] it has been
shown how this tool can be used for proving large lower bounds on the size of
well-structured nondeterministic and parity graph-driven BP1s. First, we restate
the lower bound technique described in [6]. Consider a boolean function f ∈ Bn

which is defined on the variables in Xn = {x1, . . . , xn}, and let Π = (XA,XB) be
a partition of Xn. Assume that Alice has access only to the input variables in XA

and Bob has access only to the input variables in XB. In a one-way communi-
cation protocol, upon a given input x, Alice is allowed to send a single message
(depending on the input variables in XA) to Bob who must then be able to compute
the answer f(x). In an ω-nondeterministic communication protocol, ω ∈ {∨,⊕},
Alice is allowed to guess a message. The function value is one if the number of
guesses upon which Bob accepts the input matches the corresponding acceptance

NONDETERMINISTIC GRAPH-DRIVEN BP1S 59

Figure 3. The structure of the upper part of G, if m = 6.

mode ω (is at least one in the case of ω = ∨ or odd in the case of ω = ⊕). The
ω-nondeterministic one-way communication complexity of the function f is the
number of bits of communication which have to be transmitted by such a protocol
that computes f . It is denoted by NDA→B

ω (f, Π). We abbreviate NDA→B
∨ (f, Π)

by NDA→B(f, Π).
A filter of a set X is a closed upward subset of 2X (i.e. if S ∈ F , then all

supersets of S are in F). Let F be a filter of Xn = {x1, . . . , xn}. A subset
B ⊆ Xn is said to be in the boundary of F if B 6∈ F but B ∪ {xi} ∈ F for some
xi ∈ Xn.

Let f be a function in Bn defined on the variables in Xn and F be a filter on Xn.
For a subset Z ⊆ Xn, we denote by A(Z) the set of all possible assignments to the
variables in Z. Let Π = (XA, XB) be a partition of Xn. If XB is in the boundary
of F , then Π is called F-partition of Xn. Finally, a function f ′ ∈ Bn is called
(ε, Π)-close to f , if there exists a set R ⊆ A(XA) with |R| ≥ ε · 2|XA|, such that f
and f ′ coincide on all inputs in R ×A(XB).

Theorem 3.1 ([6]). Let F be a filter on Xn, f ∈ Bn, 0 < ε ≤ 1 and ` ∈ N. If
for every F-partition Π of Xn and for every function f ′ which is (ε, Π)-close to f

it holds that NDA→B
ω (f ′, Π) > `, then any ω-nondeterministic graph-driven BP1

representing f either has a size of at least 2` or its graph ordering has a size of
more than 1/ε (for ω ∈ {∨,⊕}).

The technique does not yield directly lower bounds for nondeterministic graph-
driven BP1s because the size of the graph ordering of such a branching program
is not part of the nondeterministic graph-driven BP1 size. In the well-structured
case Bollig et al. [5] have proved that the size of a well-structured nondeterministic
or parity BP1 G and the size of a graph ordering G0 of minimal size such that G
is G0-driven is polynomially related.

60 B. BOLLIG

Proposition 3.2 ([5]). For any well-structured ω-nondeterministic graph-driven
BP1 G on n variables and ω ∈ {∨,⊕}, there exists a graph ordering G0 such that
G is G0-driven and |G0| ≤ 2n|G|.

Using Proposition 3.2, Bollig and Woelfel [6] have proved the following lower
bound criterion for well-structured ω-nondeterministic graph-driven BP1s, ω ∈
{∨,⊕}.
Corollary 3.3 ([6]). Let f ∈ Bn be a function satisfying the conditions of
Theorem 3.1 for some filter F on Xn and the parameters ε and `. Then any
well-structured ω-nondeterministic graph-driven BP1 for f has a size of at least
min{2`, (ε · 2n)−1}.

The proof of Proposition 3.2 cannot be generalized in a straightforward way
for (usual) ω-nondeterministic graph-driven BP1s because the existence of the
α-function is an essential part of the proof. Therefore, we cannot simply apply
Corollary 3.3 to obtain lower bounds on the size of (usual) nondeterministic graph-
driven BP1s. Until now it is an open question whether there exists a sequence
of functions fn which has polynomial complexity in the nondeterministic graph-
driven BP1 model whereas the size of well-structured nondeterministic graph-
driven BP1s representing fn is exponential.

Definition 3.4. A maxterm of a function f ∈ Bn is a partial input a∗ for which
f|a∗ = 0. A function f is m-dense if the minimal length of a maxterm of f is at
least m. A function f is d-rare if the minimal Hamming distance for two arbitrary
inputs a, b ∈ f−1(1) is at least d.

Theorem 3.5. Let F be a filter on Xn and S be a set of F of minimal size and
m = n − |S| + 2. Let f be a 2-rare and m-dense function, 0 < ε ≤ 1 and ` ∈ N.
Furthermore, for every F-partition Π of Xn and for every function f ′ which is
(ε, Π)-close to f it holds that NDA→B(f ′, Π) > `. Then any nondeterministic
graph-driven BP1 representing f has a size of at least min{2`, ε−1}.

Proof. We assume that |G| < min{2`, ε−1}. Let G0 be a graph ordering of minimal
size such that G is G0-driven.

1) |G0| ≤ ε−1

Combining the assumption |G0| ≤ ε−1 with Theorem 3.1 we can conclude
that |G| ≥ 2`. Contradiction.

2) |G0| > ε−1

Let S+(v) be the set of variables tested on a path in G0 from v to the sink
including the label of v. The filter F defines a cut in G0, called frontier,
in the following way. A node w is a frontier node if there exists an edge
(v, w), S+(v) ∈ F but S+(w) /∈ F . We know that S+(s) = Xn for the
source s and S+(t) = ∅ for the sink and S+(w) = S+(v) \ {xi} for each
edge (v, w), where v is labeled by xi. Hence, each path from the source
to the sink passes through exactly one frontier node and if w is a frontier
node S+(w) is in the boundary of F .

NONDETERMINISTIC GRAPH-DRIVEN BP1S 61

In the next step we define a partition V1, . . . , Vk, k ≤ |G0|, of the nodes on
the cut. Two nodes vi1 and vi2 are in the same set Vi iff S+(vi1) = S+(vi2).
If there are at most ε−1 different sets Vi we can continue similarly to Case 1.
Otherwise we know that there exist more than ε−1 nodes on the cut for
which S+(vi) 6= S+(vj) if vi 6= vj . For each of theses nodes v we consider
a 1-input for f that corresponds to a path from the source through v. We
know that such inputs exist since f is m-dense. Similar to the cut in G0

a cut in G can be defined. We choose one accepting path for each of the
chosen 1-inputs. Each accepting path passes through exactly one node of
the cut. Two of these accepting paths cannot pass through the same node
since f is 2-rare and G has the read-once property. Otherwise, we can
conclude that there is an implicant of f of length less than n and f cannot
be 2-rare. Contradiction. 2

For some functions a weaker characterization is helpful.

Corollary 3.6. Let f ∈ Bn be a function satisfying the conditions of Theorem
3.5 for some filter F on Xn and the parameters ε and ` but f is not m-dense.
Let Π = (XA, XB) be an F-partitioning of Xn and f|XA

be a subfunction of f ,
where we have replaced the XA-variables by constants. If for every Π and for every
subfunction f|XA

it holds f|XA
6= 0, then any nondeterministic graph-driven BP1

representing f has a size of at least min{2`, ε−1}.
The proof of Corollary 3.6 follows directly from the proof of Theorem 3.5. We

only want to mention here that for the proof of Theorem 3.5 it is even sufficient
that for every F -partition Π = (XA, XB) and for every subfunction f|XA

there
exists at least one prime implicant of length |XB| instead of the 2-rareness of the
function f .

4. Restricted nondeterministic read-once branching

programs

The main result of this section is the proof that nondeterministic graph-driven
BP1s are in fact restricted nondeterministic BP1s (with respect to polynomial
size). Bollig and Woelfel [6] have shown that there exists an explicitly defined
boolean function representable by (ω, 2)-BP1s, ω ∈ {∨,⊕}, of polynomial size
but with exponential well-structured ω-nondeterministic graph-driven BP1 size.
Here we complete their result and prove that nondeterministic graph-driven BP1s
and (∨, k)-BP1s, k a constant, are incomparable, which means that there exist
explicitly defined boolean functions representable in polynomial size by one of
the models but with exponential size for the other model. A first hint that the
two models are incomparable has already been given by the observation that the
addition of one nondeterministic node may already decrease the size of (∨, k)-BP1s
from an exponential to a polynomial function in n (for small values of k) [18]. This
is in contrast to the situation for nondeterministic graph-driven BP1s, where a

62 B. BOLLIG

constant number of additional nondeterministic nodes may decrease the size only
polynomially [4].

Proposition 4.1. There exists a sequence of boolean functions with exponential
(∨, k)-BP1 size, k constant, which can be represented by nondeterministic graph-
driven BP1s of polynomial size.

Proof. First, we consider the following function due to Savický and Z̆ák [19]. For
a natural number n let p(n) be the smallest prime greater than n. The function
weighted sum WSn is defined on x = (x1, . . . , xn) ∈ {0, 1}n. Let s = s(n) =
(
∑n

i=1 ixi) mod p(n). If 1 ≤ s ≤ n, WSn(x) = xs and WSn = 0 otherwise.
(Note, that in [19] in the case s 6∈ {1, . . . , n} the function value of WSn is defined
as x1. But this does not change the complexity of the function in the following.)
The disjoint conjunction (WSn)k on kn variables is defined as follows. WSk

n(x) =
WSn(x1)∧. . .∧WSn(xk), where xi = (x(i−1)n+1, . . . , xin). Using the same pattern
as in the proof of Theorem 6 from [25] a lower bound of 2Ω(n) can be proved, if k
is a constant (this follows directly from [25]).

On the other hand the function (WSn)k can even be computed by nondeter-
ministic OBDDs. For x = (x1, . . . , xn) ∈ {0, 1}n, let fi(x) = 1, 1 ≤ i ≤ n, iff
i = ((

∑n
i=1 ixi) mod p(n)). Now we can define WSn in the following way.

WSn(x) =
∨

1≤i≤n

fi(x) ∧ xi, for x = (x1, . . . , xn) ∈ {0, 1}n·

Obviously the functions fi(x) can be represented by OBDDs of polynomial size
and the same holds for fi(x) ∧ xi. Now WSn is represented by a nondeterministic
OBDD with n − 1 nondeterministic nodes at the top. An index i ∈ {1, . . . , n} is
guessed, afterwards fi(x) ∧ xi = 1 is checked. The generalization for (WSn)k is
easy, an index vector (i1, . . . , ik), ij ∈ {1, . . . , n} and 1 ≤ j ≤ k, is guessed at the
top using nk−1 nondeterministic nodes. (Note that the size of the nondeterministic
OBDD is even independent of the chosen variable ordering.) �

Now applying Corollary 3.6 we prove that nondeterministic graph-driven BP1s
are in fact restricted nondeterministic BP1s.

One step in this direction has been done in [6]. The function n/2-MRCn is
defined on an n× n boolean matrix X on the variables Xn×n = {x1,1, . . . , xn,n}.
Its function value is 1 if and only if the following two conditions are fulfilled (for
the sake of readability we assume that n is an even number).

(1) The number of ones in the matrix is at least n2/4+n and at most (3/4)n2−
n.

(2) The matrix either contains exactly n/2 monochromatic rows and each non-
monochromatic row contains exactly n/2 ones, or it contains exactly n/2
monochromatic columns and each non-monochromatic column contains
exactly n/2 ones.

NONDETERMINISTIC GRAPH-DRIVEN BP1S 63

It has been proved that n/2-MRCn has exponential well-structured ω-non-
deterministic graph-driven BP1 size, ω ∈ {∨,⊕}, but can be represented by
(ω, 2)-BP1s of polynomial size [6]. Here we investigate a simpler function.

The function n/2-RCn is defined on an n×n boolean matrix X on the variables
Xn×n = {x1,1, . . . , xn,n}. (For the ease of readability we assume that n is an even
number.) Its function value is 1 if and only if there exist exactly n/2 ones in each
row or exactly n/2 ones in each column.

Theorem 4.2. The function n/2-RCn can be represented by (∨, 2)-BP1s of poly-
nomial size but its nondeterministic graph-driven BP1 size is Ω(2n/4).

Proof. The proof of the upper bound is easy. We construct two (deterministic)
BP1s G1 and G2, where G1 (G2) accepts exactly the satisfying inputs with n/2
ones in each row (column). The BP1 G1 (G2) uses a rowwise (columnwise) variable
ordering which means that all variables of one row (column) are tested one after
another. The size of Gi, i ∈ {1, 2}, is bounded above by O(n3). (Note that G1

and G2 are even OBDDs.)
Next, we prove the lower bound of Ω(2n/4) for nondeterministic graph-driven

BP1s representing n/2-RCn. First, we have to define an appropriate filter F on
the variables x1,1, . . . , xn,n. A set T is in the filter F if T contains all variables
from n/2+1 arbitrary rows and n/2+1 arbitrary columns. If Π = (XA, XB) is an
F -partition, then by definition XB /∈ F and there exists a variable xi,j such that
XB ∪ {xi,j} ∈ F . Hence, XA contains exactly n/2 variables from different rows
and at most n/2 variables from different columns or vice versa. Every maxterm of
n/2-RCn contains at least n/2 + 1 literals from different rows and n/2 + 1 literals
from different columns. Therefore n/2-RCn|XA

6= 0 for every subfunction of n/2-
RCn where we have replaced the XA-variables by constants. Furthermore, the
function n/2-RCn is 2-rare since each 1-input consists of exactly n/2 · n 1-entries.

Let ε = 2−n/4. It remains to prove that for every F -partition Π of Xn×n and for
every function f ′ which is (ε, Π)-close to n/2-RCn it holds that NDA→B(f ′, Π) >
n/4. For this we use some of the ideas presented in [6]. We may assume w.l.o.g.
that XA contains variables from exactly the rows 1, . . . , n/2, while there are at
most n/2 columns from which variables are contained in XA. There exists one row
for which exactly one variable has been tested. W.l.o.g. we assume that there is
exactly one variable of the (n/2)th row in XA. Since f ′ is (ε, Π)-close to n/2-RCn,
there exists a subset R ⊆ A(XA), |R| ≥ ε · 2|XA|, such that f ′ coincides with
n/2-RCn on all inputs in R × A(XB). For 1 ≤ i ≤ n/2 let ki be the number of
variables in row i which are contained in XA. We consider the mapping

µ : A(XA) → {0, . . . , k1} × . . .× {0, . . . , kn/2},

which maps a partial assignment α to the tuple µ(α) = (z1, . . . , zn/2), where zi is
the number of bits in row i being fixed to 1 by α.

Let µ(R) = {µ(α)|α ∈ R}. There are exactly 2ki possible settings of the
variables in row i which are contained in XA and among these, there are

(
ki

zi

)

64 B. BOLLIG

settings for which row i contains exactly zi ones. Hence, for every tuple z =
(z1, . . . , zn/2) ∈ {0, . . . , k1} × . . .× {0, . . . , kn/2} we obtain that

|µ−1(z)|
|A(XA)| =

(
k1
z1

) · . . . · (kn/2
zn/2

)

2k1 · . . . · 2kn/2
≤ 2k1−1 · . . . · 2kn/2−1

2k1 · . . . · 2kn/2
= 2−n/2. (1)

Since R is the union of all µ−1(z) for z ∈ µ(R), there exists by the pigeonhole prin-
ciple an element z ∈ µ(R) for which |µ−1(z)| ≥ |R|/|µ(R)|. Using the precondition
that |R| ≥ ε · 2|XA| together with inequality (1) yields

|µ(R)| ≥ |R|
|µ−1(z)| ≥

ε · 2|XA|

2−n/2 · |A(XA)| = ε · 2n/2.

It remains to prove that NDA→B(f ′, Π) > log |µ(R)|. We show that the com-
munication matrix contains a diagonal s × s-submatrix, where s = |µ(R)|. (See,
e.g. [12] and [14] for the theory of communication complexity.) For an arbitrary
partial assignment α ∈ R let µ(α) = (µ1(α), . . . , µn/2(α)). We fix for each such α a
corresponding partial assignment β ∈ A(XB) as follows. By definition of XA there
exists at least one column cj for which the variables xn/2,j , . . . , xn,j are in XB.
We fix theses variables to 0. This guarantees that it is impossible that all columns
have exactly n/2 1-entries. Afterwards the assignment β fixes in row i, 1 ≤ i ≤ n,
exactly n/2 − µi(α) variables to 1, where µi(α) = 0 for i > n/2. Then for (αβ)
all rows contain exactly n/2 ones each. Hence, n/2-RCn(αβ) = 1. We consider
now s arbitrary partial assignments α1, . . . , αs ∈ R such that µ(αi) 6= µ(αj) for
i 6= j. Let β1, . . . , βs be the corresponding partial assignments in A(XB). (It is
obvious that also βi 6= βj for i 6= j.) Clearly, the s × s-matrix which has in row
i and column j the entry n/2-RCn(αiβj) is a submatrix of the communication
matrix of n/2-RCn. It suffices to show that this matrix is a diagonal matrix. For
the diagonal elements, we have already proved above that n/2-RCn(αiβi) = 1.
Consider now an element in row i and column j, i 6= j. Since αi 6= αj , there
exists an index t, 1 ≤ t ≤ n/2, for which µt(αi) 6= µt(αj). Hence, by construction
the matrix X defined by the input αiβj contains in row t not exactly n/2 ones.
The construction also ensures that the jth column contains less than n/2 ones.
Altogether, this yields that n/2-RCn(αiβj) = 0. 2

Figure 4 summarizes the results. For a branching program model M we denote
by P (M) the class of all boolean functions representable in polynomial size by the
model M . Well-structured nondeterministic graph-driven BP1s are denoted by
w.s. ∨-G0-BP1s and (usual) nondeterministic graph-driven BP1s by ∨-G0-BP1s.
Solid arrows indicate inclusions and slashes through the lines proper inclusions. A
dotted line between two classes means that these classes are incomparable.

Acknowledgements. The author would like to thank Ingo Wegener for fruitful discussions
on the subject of the paper.

NONDETERMINISTIC GRAPH-DRIVEN BP1S 65

Figure 4. The complexity landscape for nondeterministic read-
once branching programs.

References

[1] M. Ajtai, A non-linear time lower bound for boolean branching programs, in Proc. of 40th
FOCS (1999) 60-70.

[2] P. Beame, M. Saks, X. Sun and E. Vee, Super-linear time-space tradeoff lower bounds for
randomized computation, in Proc. of 41st FOCS (2000) 169-179.

[3] P. Beame and E. Vee, Time-space trade-offs, multiparty communication complexity, and
nearest neighbor problems, in Proc. of 34th STOC (2002) 688-697.

[4] B. Bollig, Restricted nondeterministic read-once branching programs and an exponential
lower bound for integer multiplication. RAIRO: Theoret. Informatics Appl. 35 (2001) 149-
162.

[5] B. Bollig, St. Waack and P. Woelfel, Parity graph-driven read-once branching programs and
an exponential lower bound for integer multiplication, in Proc. of 2nd IFIP International
Conference on Theoretical Computer Science (2002) 83-94.

66 B. BOLLIG

[6] B. Bollig and P. Woelfel, A lower bound technique for nondeterministic graph-driven read-
once branching programs and its applications, in Proc. of MFCS 2002. Springer, Lecture
Notes in Comput. Sci. 2420 (2002) 131-142.

[7] A. Borodin, A. Razborov and R. Smolensky, On lower bounds for read-k-times branching
programs. Comput. Complexity 3 (1993) 1-18.

[8] H. Brosenne, M. Homeister and St. Waack, Graph-driven free parity BDDs: Algorithms
and lower bounds, in Proc. of MFCS. Springer, Lecture Notes in Comput. Sci. 2136 (2001)
212-223.

[9] R.E. Bryant, Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put. 35 (1986) 677-691.

[10] J. Gergov and C. Meinel, Frontiers of feasible and probabilistic feasible boolean manipulation
with branching programs, in Proc. of STACS. Springer, Lecture Notes in Comput. Sci. 665
(1993) 576-585.

[11] J. Gergov and C. Meinel, Efficient boolean manipulation with OBDDs can be extended to
FBDDs. IEEE Trans. Comput. 43 (1994) 1197-1209.

[12] J. Hromkovič, Communication Complexity and Parallel Computing. Springer (1997).
[13] M. Krause, BDD-based cryptanalysis of keystream generators, in Proc. of EUROCRYT

(2002) 222-237.

[14] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge University Press
(1997).

[15] J. Jain, J. Bitner, D.S. Fussell and J.A. Abraham, Functional partitioning for verification
and related problems. Brown/MIT VLSI Conference (1992) 210-226.

[16] E.I. Nechiporuk, On a boolean function. Soviet Math. Dokl. 7 (1966) 999-1000.
[17] A.A. Razborov, Lower bounds for deterministic and nondeterministic branching programs,

in Proc. of FCT. Springer, Lecture Notes in Comput. Sci. 529 (1991) 47-60.
[18] P. Savický and D. Sieling, A hierarchy result for read-once branching programs with re-

stricted parity nondeterminism, in Proc. of 25th MFCS. Springer, Lecture Notes in Comput.
Sci. 1893 (2000) 650-659.

[19] P. Savický and S. Z̆ák, A read-once lower bound and a (1, +k)-hierarchy for branching
programs. Theoret. Comput. Sci. 238 (2000) 347-362.

[20] D. Sieling and I. Wegener, I. (1995). Graph driven BDDs – A new data structure for boolean
functions. Theoret. Comput. Sci. 141 (1995) 283-310.

[21] D. Sieling and I. Wegener, A comparison of free BDDs and transformed BDDs. Formal
Meth. System Design 19 (2001) 223-236.

[22] J. Thathachar, On separating the read-k-times branching program hierarchy, in Proc. of
30th Ann. ACM Symposium on Theory of Computing (STOC) (1998) 653-662.

[23] I. Wegener, The Complexity of boolean Functions. Wiley-Teubner (1987).
[24] I. Wegener, Branching Programs and Binary Decision Diagrams – Theory and Applications.

SIAM Monographs on Discrete Mathematics and Applications (2000).
[25] P. Woelfel, A lower bound technique for restricted branching programs and applications, in

Proc. of 19th STACS. Springer, Lecture Notes in Comput. Sci. 2285 (2002) 431-442.

Communicated by J. Hromkovič.
Received May, 2002. Accepted January, 2003.

To access this journal online:
www.edpsciences.org

