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Abstract. Proof-carrying code (PCC) allows a code producer to asso-
ciate to a program a machine-checkable proof of its safety. In traditional
implementations of PCC the producer negotiates beforehand, and in an
unspecified way, with the consumer the permission to prove safety in
whatever high-level way it chooses. In practice this has meant that high-
level rules for type safety have been hard-wired into the system as part
of the trusted code base. This limits the security and flexibility of the
PCC system.

In this paper, we exhibit an approach to removing the safety proof rules
from the trusted base, with a technique by which the producer can con-
vince the consumer that a given set of high-level safety rules enforce a
strong global invariant that entails the trusted low-level memory safety
policy.

1 Introduction

Proof-carrying code (PCC) [Nec97] is a technique that shifts the burden of cer-
tifying properties of a program or data from the consumer to the producer,
with the main goal of keeping the consumer’s trusted code base (TCB) as small
and trustworthy as possible. However, in the existing implementations of proof-
carrying code there seems to exist a tension between the minimality of the TCB
and engineering considerations necessary for handling realistic safety policies
and large programs.

The system described by Colby et al. [CLNT00] was engineered to scale to
large programs (e.g. half a million lines of code) and to realistic safety policies
(e.g. a type-safety policy for native machine code compiled from Java [CLN*00])
with a relatively modest investment.
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The typical interaction taking place in this PCC system is depicted in Fig-
ure 1 as a negotiation between a code producer and a code consumer. Upon
being presented with a code fragment, the code consumer uses a verifier to pro-
duce a set of verification conditions (VC), whose validity entails the safety of
the code. The verifier consists of two components: an instruction decoder that
is responsible for interpreting the semantics of individual instructions, and a
verification-condition generator (VCGen) that is responsible for handling the
control-flow aspects of the code. The validity of the VC must be proved with
respect to a set of proof rules that are provided (and trusted) by the code con-
sumer. In the second stage, the code producer constructs a representation of a
proof of the VC and presents that to the code consumer, who can now simply
run a proof checker to satisfy itself that the VC is provable.
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Fig. 1. The structure of a proof-carrying code system showing a dialogue be-
tween the code producer (on the left) and the code consumer (comprised of the
trusted elements shown shaded).

Thus, in addition to the proof checker, the TCB for this system includes a
decoder, a verification-condition generator (VCGen) and a list of proof rules,
which together constitute the safety policy. Altogether the TCB requires about
15,000 to 25,000 lines of code, depending on configuration and underlying archi-
tecture. It is not inaccurate to describe this infrastructure as simple and small,
and therefore easy to trust, at least when one considers possible alternatives
such as trusting optimizing compilers.

However, it is reasonable to ask whether it is possible to create a working
PCC with a smaller TCB. In particular, we observe that among the many lines
of code that one must trust in a PCC implementation, most are independent of
the safety policy, and change rarely, which implicitly means that they are tested
more extensively and thus are more trustworthy. On the other hand the proof
rules of the safety policy change with every safety policy. In our experience these
parts are more likely to contain errors. The strategy we adopt in this paper is
to use heavy-weight tools such as theorem provers for the purpose of certifying
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the set of proof rules used in a PCC system, while trusting the implementation
of the core system. In future work we will consider mechanisms for moving even
components of the VCGen system out of the TCB.

In this paper we introduce a framework in which the proof rules can be
formally proven sound (in the sense that they can be used to ensure safety). This
increases the security of a PCC system, because it removes the proof rules from
the trusted code base, and also increases its flexibility, because code producers
would be able to supply their own safety policies without compromising security.
One way to view this approach is as an attempt to extend the dialogue between
the code producer and the code consumer to the level of the safety-policy rules:
the code producer expresses the intention to install a new set of proof rules; the
code consumer inspects the rules and replies with a soundness theorem which the
code producer must prove. The question then is what is the framework in which
the receiver of a set of rules can state and verify a proof of their soundness? And
furthermore, what is the reference proof system against which the new rules are
being judged?

The supplied framework shows how to take proof rules for a safety policy,
and produce a formal theorem to guarantee that, relative to the still-trusted
behavior of VCGen, the notion of safety given by the proof rules really does
imply memory safety. Note that we do not show how to produce the formal proof
of this theorem; in particular, although it is necessary to the feasibility of a PCC
system that the safety proofs for programs can be generated automatically (e.g.
by a certifying compiler), at this point the soundness proofs for safety policies
still need to be generated interactively. This is reasonable, as a single safety
policy is expected to be used with a large number of individual programs. Also
note that our framework ensures only memory safety. Safety policies are often
expected to handle more than memory safety: for instance, a type-safety policy
may also enforce abstraction, or a safety policy may include other features such
as instruction counting. Memory safety can be considered to play the role of a
safety meta-policy: the system does not accept a new safety policy unless it can
at least guarantee memory safety, regardless of what else it promises to do.

In a previous paper [NS02], we first introduced a method to prove a set of
safety-policy proof rules sound with respect to a reference policy of memory
safety; in that framework we used the specification language of the Coq [Coq02]
system to prove the soundness of a set of typing rules for native machine code
compiled from Java. This paper introduces a different method to accomplish
the same tasks. The new method allows for a more precise description of how
the new safety policy is integrated into the PCC system; additionally, we feel
that the new method can be extended more easily with plans for removing parts
of the VCGen itself from the trusted code base. Although the framework has
changed, it seems that much of the formal proof construction done in the older
framework can be easily adapted into this new setting.

In order to provide a concrete example for how our framework operates we
discuss first an example of a set of safety policy rules. Then, in Section 4, we in-
troduce the method used by the PCC system to enforce safety, and make precise
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the reference memory-safety policy. In Section 5 we discuss how to incorporate
a new custom safety policy, and what is required to show that the custom safety
policy is at least as strong as the reference policy; we prove the soundness of the
original motivating example in Section 6. Finally we discuss related work and
conclude.

The results of this paper (including minor details which have been omitted
due to reasons of space or presentation) have been formalized in the Coq [Coq02]
system; this development is available on the web at the following URL:
http://www.cs.berkeley.edu/ necula/ISSS02 .

2 An Example

Consider a code receiver that sets aside an area of accessible memory for the
use of the untrusted code and wishes to ensure that the untrusted code accesses
memory only within this area. We are going to refer to addresses that fall in the
accessible area as valid addresses.

One producer of untrusted code chooses to use the accessible memory area to
store lists that use the following representation invariant: (1) the value 1 is a list
(the empty list), (2) a valid even address of a memory location containing a list is
a list (a non-empty list), and (3) nothing else is a list.> We show in Figure 2 one
possible fragment of untrusted code that uses this invariant. This code operates
on two non-empty lists stored in registers r, and ry; it first truncates the list r,
to one element and then sets the second element in the list r; to point to r,.

0r:=1

1 [ra] i=1¢

2 5= T3]

3 branch odd(rs),5
4 [rs] =14

5 halt

Fig. 2. An untrusted code fragment

The notation [rj] means dereference of address in r; and it is a read if
appearing on the right-hand side of the assignment or a write otherwise. Notice
that if r, and rp are aliases then r, will be equal to 1 and the write at line 4 is
skipped.

We can state informally the conditions that the code receiver wants to hold
before this code is executed. We state these conditions on the initial values of
registers:

— The value of r,, is a valid address (write in line 1 is safe),
— The value of r, is a valid address (read in line 2 is safe),

3 Such lists are of limited usefulness because there is no data in the list cells. However,
they provide a simple but non-trivial example.
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— Ifr, # rp and the contents of address ry, is even, then the contents of address
T, is a valid address (write in line 4 is safe)

But as far as the code producer is concerned these conditions are too low-
level. Instead, the code producer would prefer to use the following two simple
conditions:

— The value of r, is a non-empty list
— The value of ry is a non-empty list

These conditions, along with a statement of the representation invariant,
ensure that our example is memory safe. Not only have we reduced the number
of the conditions to be proved but we have also eliminated the need to reason
about memory aliasing: as long as all memory writes preserve the representation
invariant we can assume that the result of memory reads satisfies the same
invariant, without having to consider all of the possible writes that the read
depends on. This is arguably one of the secrets that make type checking such a
practical method to ensure memory safety.

In traditional implementations of PCC we have taken the view that the
producer negotiates beforehand (and in an unspecified way) with the consumer
the permission to prove safety at whatever high-level it chooses. In this paper, we
show one possible way in which the producer can actually convince the consumer
that a given set of high-level safety rules enforce a strong global invariant that
entails the low-level memory safety policy.

In the next section we introduce notation necessary for stating the safety
conditions formally, first from the low-level perspective of the code consumer
and then from the high-level perspective of the code producer.

3 Preliminaries

We work in an underlying logic containing a type val to be used for values and
addresses, and a type state of machine states. To keep our approach general we
leave the machine state largely unspecified; however for the sake of examples we
use a state that consists of various registers of type val together with a pseudo-
register rps of type mem (denoting the state of memory), which comes equipped
with functions upd and sel for memory update and select.

A symbolic expression is a function of type state — val, such that when
given some values for the registers we obtain its value. Thus if e is a symbolic
expression and p a state, then “e p” is the value of e in state p. For notational
convenience we also write symbolic expressions as expressions involving variable
names. For example, we write “ry +rs” for the function that given a state yields
the sum of the values of registers r; and ro in that state. Consequently we write
“ry p” for the value of register ry in state p.

We also use symbolic predicates (or simply predicates), which are functions
of type state — Prop, where Prop is the type of propositions; and we write A p
to say that the predicate A holds in state p.
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For convenience, we overload the arithmetic operators and the boolean con-
nectives to work on symbolic expressions and predicates. For example, the no-
tation dx.r; + ro > x denotes a symbolic predicate whose de-sugared form is
Ap.3x.ry p+ 19 p > . We write p[r; — v] for the state p altered by setting the
value of r; to v. We write A[r; — v] to denote the symbolic predicate obtained
from A by replacing references to r; by v, namely Ap.(A (p[r; — v])). Finally,
in order to simplify the handling of assignment, we use r; :=, e as shorthand
for r; = e[r; — z]. With this notation we can say, for example, that after an
assignment ry := ry + ry the predicate Jx.r; :=, r; + r; holds, where x is the
prior value of ry.

VCGen works with local invariants, which are a subtype of symbolic pred-
icates (type state — Prop). For the purposes of this paper, we assume that
all local invariants have the form (rpc = n) A A, where n is a literal of type
val denoting the value of the program counter, and A does not depend on the
program counter; that is, each local invariant specifies a literal program counter,
and (possibly) other facts about the state except the program counter. We use
the notation (n, A) to represent this local invariant; we use the type locinv for
local invariants.

4 A Formalization of Memory Safety

In this section we are going to describe the precise mechanism that a code con-
sumer can use to enforce memory safety. First, we assume that the logic contains
a predicate addr to indicate when a value is a valid address: (addr p F) means
that E is a valid address in state p. The exact definition of addr depends on
the particular machine and safety policy. The dependence on the machine state
is useful in the presence of dynamic allocation, where p contains the allocation
state; as with other symbolic predicates, we often suppress the dependence on p
for convenience.

The Decoder. The code consumer uses a decoder to interpret individual in-
structions. In this paper we will define a couple of different decoders. The code
consumer specifies a trusted reference decoder, and the code producer intro-
duces the untrusted custom decoder for its custom safety policy. The result of
any decoder for an individual instruction consists of two elements:

— The safety condition, which is a predicate that holds for states in which
execution of the instruction meets the safety policy, and

— A set of possible machine states resulting from the execution of the instruc-
tion.

For example, the safety condition for memory access instructions specifies
that the addresses involved are valid. For all but the branching instructions the
decoder returns a single result state.

For convenience we state the decoder as a function of our type locinv of
local invariants:

decode,s : locinv — (state — Prop) X (set locinv).
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The decoder takes a local invariant (p, A) and produces a pair (P, D); P is a local
safety condition, which must hold for a machine state satisfying (p, A) to make
safe progress, while D is a list of local invariants, one of which is guaranteed to
hold of the new machine state if safe progress is made.

A possible definition of the decoder for the language used in the example from
Figure 2 is shown in the Figure 3. We use r1, ro, and r3 as meta-variables which
need not be distinct. Notice that for the assignment instructions the resulting
invariants are constructed using strongest postconditions.

Input state (p, A) |Local safety Result states

with Instr(p) = ...|condition

rii=n True (p+1,r1 =n A Jz.Alr1 — z])

T =712 +1T3 True (p+1,3z.11 :=5 (x2 + 13) A A[11 — Z])

T := [r2] Ap.addr p (r2 p)|(p+ 1,3z.11 :=; (sel ry r2) A Alr1 — z])
[r1] := 12 Ap.addr p (r1 p)|(p+ 1,Im.xryr = (upd m r1 r2) A Alra — m])
branch Cond,n  |True (n, AN Cond),(p+1,A N —=Cond)

halt True none

Fig. 3. The definition of the reference decoder

The decoder interprets the semantics of an individual instruction. It is the
responsibility of the VCGen to reflect in the final verification condition all of the
local safe-progress conditions identified by the decoder. It is also the responsi-
bility of VCGen to consider the safety of all of the “next” states specified by the
decoder. To do this properly VCGen must recognize loops (possibly helped by
some required annotations in the untrusted code that specify loop invariants)
and must ensure that the decoder is invoked only once for each loop body.

Details of a possible definition of VCGen can be found in [Nec97,Nec9s].
Here by way of example, we show in Figure 4 the sequence of invocations of
the decoder that VCGen makes for the untrusted code from Figure 2, where P,
is the local invariant at the beginning of the code fragment (the precondition
of the code fragment). We assume that r,, 1, rs, and ry are distinct registers.
Notice how each of the states mentioned in the column labeled “Result states” is
eventually scanned; this is why the instruction at program counter 5 is scanned
twice: it is in the result of the instructions at program counters 3 and 4.

To assemble the final verification condition, VCGen states that for each row
with a non-trivial safety condition in Figure 4 the local invariant (shown in the
column labeled A) implies the local safety condition. By rewriting the equalities
generated by the assignments, we find that the resulting verification condition
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lp‘A ‘Local safety condition ‘Result states

0|Py|True {(1,3z¢.P1)}
where PL =1 = 1 A Polrs — x4]
1|P;|addr r, {(2, 3z Izpm.Po)}

where P = vy = (upd 2m To 1) ATe =1 A

Polry — x4, v — T
2| Ps|addr Ty {(3, Fzt Iz pFs. P3)}
where P3 = 1, = (sel (upd za 7o 1) T5) A

rv = (upd zm To ) AT = 1A

Polre — x4, tm — Ta, Ts — T

3| Ps|True {(4, 3z Iz p3xs. Py), (5, I IxprIzs. Ps) }

where Py = P; A even (sel (upd Tar To 1) rb)
and Ps = P3; A odd (sel (upd zas o 1) rb)

4|Py|addr (sel (upd zum o 1) 1) |{(5, Iz Iz nr Tz Tyns . P5) }

where P, = ry = (upd yam Ts To) A Pilrar — yu]

Ps|True {}

Pi|True {}

ot

ot

Fig. 4. The operation of the reference decoder on the example code.

is essentially:

Py = addr r, A addr r;, A
(even (sel (upd rpr 1o 1) rb) = addr (sel (upd rps o 1) rb))

If the code producer is willing to prove such safety predicates then we have an
effective PCC system. However, one can see that the size of the predicates grows
exponentially with the size of the program, and that proving them requires very
low-level reasoning about aliasing relationships (which is necessary for reasoning
about constructs such as “sel (upd rps ¥, 1) rp”). In the next section we show
how a code producer can on one hand construct these proofs at a higher level,
and on the other hand convince the code consumer to accept them instead of
the low-level proofs.

First, we must state precisely the property that we assume to hold of the
reference decoder. Let represent the state transition relation of the machine,
restricted so that only safe transitions are allowed; thus for example memory
operations will be executed only if they are memory-safe. We assume that the
machine is deterministic; if any transition is possible from a state, only one
transition is possible. As usual T indicates a sequence of one or more transitions.
The following correctness property is assumed to hold:

Property 1 (Reference Decoder Correctness). Let C be a local invariant. Then

decode,es C' = (P, D)
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where P : state — Prop and D is a set of local invariants, such that

Vp : state.(C p) A (P p) = \/Ep’ s state.(ptp) A (D p').
DeD

This means that if the local safety condition holds then the machine can
make safe progress to a state that satisfies one of the “next” states identified by
the decoder.

5 Custom Safety Policies

In the safety policy enforced by the code consumer, memory operations require
the provability of particular instances of addr. We shall call this the reference
safety policy. A code producer may find it easier to prove a stronger property,
such as type safety, and prove separately that any program considered safe under
this new policy also meets the conditions of the reference policy. For our example
with lists, the code producer could add the typing predicates 1ist L (meaning
L is a list) and nelist L (meaning L is a non-empty list). For these predicates,
the code producer specifies the proof rules shown in Figure 5.

nelist L list L even L
list 1 list L nelist L

Fig. 5. Proof rules for a type system with lists

These proof rules do not need to be a complete description of the repre-
sentation invariant. The code producer can choose to publish only those proof
rules that it knows are necessary for proving the verification condition. Observe
that the proof rules alone provide no instances of the form nelist L. Instead,
recall that the VC consists of conjuncts that a local invariant implies a local
safety condition; so via these implications the local invariants can provide cer-
tain nelist assumptions to be used along with the typing rules. For example,
we would assume that the code fragment of Figure 2 would be called with the
precondition that nelist r, and nelist ry.

These rules are not immediately useful for proving the verification conditions
that we produced in the previous section. We would very much like to intervene
in the process of producing the verification condition in order to produce smaller
verification conditions that refer to the newly added predicates. It is apparent
from the way in which the verification conditions are created that to accomplish
this we must use a different decoder.

The Custom Decoder. The code producer achieves its desired form of the
verification condition by changing the instruction decoding rules as shown in
Figure 6. There are quite a few differences between this custom decoder and
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the reference one. The addr address validity safety conditions are replaced with
stronger conditions, specifically that all memory reads are from non-empty lists
and that all memory writes are storing lists to addresses that are non-empty lists.
Also, the custom decoder gives only an approximate description of the next state.
The value with which a register is initialized is forgotten, unless that value is 1,
indicating the empty list. An addition is always safe but since the code producer
knows that it never generates code that mixes lists with arithmetic, it chooses
to ignore the actual result of the addition. In memory operations the deliberate
loss of information is significant in terms of efficiency. For a memory read the
decoder does not specify what value was read but only that it must be a list. And
for a memory write the new contents of the memory is kept completely abstract.
This makes sense because in a subsequent memory read all the decoder cares
about is that a read from a non-empty list yields a list value. This last form of
abstraction makes sure that terms such as (sel (upd ...)...) do not arise in the
verification condition. Finally, the custom decoder abstracts the state following
a conditional except in the case of the parity conditional, which it knows is used
to test whether a list is a non-empty list in preparation for a memory operation.

Input state (p, A) |Local safety condition|Result states

with Instr(p) = ...

r =1 True (p—|— 1,r1 =1A3z.Alr1 — m])
rii=n True (p + 1,3z Alr1 — m])

r1 =10+ 13 True (p +1,3z.Alr1 — a:])

r1 = [rg] nelist ro (p + 1,list r1 A Jz.Alr1 — m])
[r1] := 2 nelist ri A list ro (p + 1,3z Alrm — x])

branch odd(ri),n |True (n,A),(p+1,AAevenr)
branch Cond,n  |True (n,A),(p+1,A)

halt True none

Fig. 6. The definition of the custom decoder

Consider again the program of Figure 2. With the custom decoder the VCGen
produces the following verification condition:

Py = nelist r, A list 1 A nelist r, A

(Vx.list xr N\ even r = nelist x A list ra)

Here, nelist r, A list 1 arises from the write in line 1; nelist r; arises from
the read in line 2. In the remaining part, the quantified variable = refers to the
result of the memory read in line 2; all we know is that, because it is a result of
a well-typed memory read, then it is a 1ist. We also have even z as a result of
the branch, and finally we must show nelist x A list r, for the memory write
in line 4.

It is easy to see how this predicate can be proved using the typing rules
for lists, provided that the precondition of the code ensures that r, and r,
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are both non-empty lists. Notice also the similarity between this proof and a
typing derivation. This is precisely the situation that the code producer wants
to achieve.

The question now is how can the code producer convince the code consumer
to use the custom decoder instead of the reference one, and to use the specified
typing rules while checking the proof of safety.

6 Checking the Soundness of the Custom Decoder

In this section we describe the steps that the code producer must take to convince
the code consumer that the combination of the custom decoder and the custom
proof rules is sound with respect to the reference decoder. The overall approach
is to prove that there exists a global invariant that is preserved by all instructions
whenever their execution is deemed safe by the custom decoder, and furthermore
that this global invariant, along with the local safety conditions produced by the
custom decoder, implies the local safety conditions of the reference decoder. We
use the example of the 1ist safety policy, but will show the general case of the
statement of the custom decoder theorem that the code producer must provide
to the consumer.

First, observe that the code consumer manipulates the predicates 1ist and
nelist (when running the custom decoder) and their associated proof rules
(when checking the proof of the V'), without actually having a complete def-
inition of these predicates. The proof of the V(' is parametric in the actual
definition of the custom predicates, with only the assumption that they satisfy
the proof rules. A proof of the VC then applies to any instantiation of list and
nelist that satisfies the proof rules.

To formalize this detail, let preds be the type of the tuple of custom pred-
icates used in a particular custom safety policy. (For the example with lists,
preds = (val — Prop) X (val — Prop).) The custom proof rules, the custom
decoder and the resulting verification condition (i.e., all elements that mention
the custom predicates) are parameterized by an actual instantiation v : preds
for the custom predicates. In all of these elements we attach the subscript ¢ to
all occurrences of the custom predicates, to denote their particular instantiation
under . (For example, list, = fst ¢ and nelist, = snd ¢.) In general, we
write Ay to refer to the predicate A in which all occurrences of custom predicate
symbols use the instantiation .

Next, we can write the set of proof rules as a predicate Rules parameterized
by an instantiation . In this predicate each of the rules contributes a conjunct.
For the example with lists (the rules shown in Figure 5):

Rules, =1listy 1 A
(VL.nelisty L = listy L) A
(VL.listy L A even L = nelist, L)
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The custom predicates in our example are unary and appear to be indepen-
dent of the execution state. Yet, their instantiations implicitly refer to the state
of the memory since a value can be a non-empty list only in a state in which
the memory location it denotes contains a list. In general, the instantiations of
the custom predicates depend on the state, and we might need to change the
instantiation when the state changes.

The next major element in the proof of soundness of the custom decoder
is a generalized form of decoder correctness property that allows for a global
invariant:

Property 2 (Generalized Decoder Correctness). Let preds be the type of the
custom predicates and Rules : preds — Prop be the custom proof rules. Let
I : preds — state — Prop, the global invariant, be some predicate of states
involving the custom predicates. Then we say that a decoder d satisfies the
correctness property with invariant I if, for any C' with d C = (P, D), we have

Vp : state. Vi) : preds. (Rulesy) A (Iy p) A (Cy p) A (Py p) =

3o’ : state. (ptp') A \/ J" : preds. (Rulesy ) A (Iy p') A (Ey p)
EeD

This is worth restating: consider a state p, and an instantiation v of the
custom predicates such that ¥ obeys the custom proof rules. If p satisfies the
global invariant, the input local invariant, and the output proof obligation (all
instantiated at ¢), then the machine can make safe progress to some new state p’.
Furthermore, there is a (possibly) new instantiation ¢’ of the custom predicates
corresponding to the new state, which obeys the custom proof rules, such that
p’ satisfies the global invariant and one of the output local invariants, each
instantiated at v’

We use without proof the following fact about the trusted VCGen. VC-
Gen functions correctly—in that the provability of the VC implies safety of the
program—using any custom predicates, custom proof rules, and custom decoder,
as long as there is a global invariant I such that

1. the decoder satisfies the correctness property with invariant I, and

2. there is some instantiation v of the custom predicates, obeying the custom
proof rules, such that I, holds of the initial state of the machine upon
execution of the program.

The second fact depends depends on the particular machine and safety policy,
and is typically much less interesting, and so we will not consider this requirement
in this paper.

We now consider how to go about proving the correctness of a custom de-
coder. Since we already have access to the reference decoder, which is known
to satisfy the correctness property (with invariant True), we can use the refer-
ence decoder to prove correctness for the custom decoder. In particular, we have
the following lemma that allows us to replace all consideration of the transition
relation with consideration instead of the reference decoder.
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Lemma 1. Let I : preds — state — Prop. The following conditions ensure
that decodec,s satisfies the correctness property with invariant I: let C be any
local invariant (possibly dependent on preds) and let i be any instantiation of
preds that obeys the custom proof rules Rules. Let decodecys C' = (P, Deys); let
decodeyer (Iyy A Cy A Py) = (Q, Dret). The conditions are

1. Yp.(Iy p) A (Py p) = (Q p);

2. /\Vp’.(D o) = \/Eh// : preds. (Rulesy ) A (Iyr p') A (Ey p').
DeDyes E€Dcys

Proof. We are going to show that the custom decoder satisfies the generalized
decoder correctness property. Let p be any state that satisfies all of I, Cy, and
P, By the first condition, we have that (Q p), and therefore, by the correctness of
the reference decoder, safe progress can be made to a new state p’ which satisfies
one of the local invariants D in Dy,e¢. But then the second condition ensures that
there is some local invariant E in D.ys, and a (possibly) new instantiation 1)’
that obeys the custom proof rules, such that p’ satisfies E, as well as ;. This
suffices to establish the correctness of the custom decoder. O

A decoder can be specified as a table indexed by the instruction kind, as
we have seen in previous sections. The code consumer verifies the safety of the
custom decoder by applying Lemma 1. Thus, the code producer must supply
a global invariant I and a number of proofs, as follows. For each row in the
definition of the custom decoder, let P and D,s be respectively the local safety
condition and the resulting states corresponding to an arbitrary local invariant
C. Find the row in the definition of the reference decoder that corresponds
to the same instruction kind; let @ and D,s be respectively the local safety
condition and the resulting states of the reference decoder for the local invariant
(Iy N Cy A Py), where 9 is some instantiation of the custom predicates that
obeys the custom proof rules. Observe that since the reference decoder output
is parametric in the input local invariant (except the program counter), we can
consider () and each D € Dy to be parameterized by ; thus, we write @y and
Dy,. The following items must be provided:

1. A proof that, for any instantiation ¢ such that 1) satisfies the custom proof
rules, Iy A Py = Qy;

2. for each D € D¢, and for any instantiation v obeying the custom proof
rules, a new instantiation ¢’ obeying the proof rules together with a proof
that Dy, = Iy A Ey, for some E € Deys.

In the absence of any sort of allocation operation, the second condition will
often be established with )’ = 1) as we shall see.

Once the code consumer receives the above elements and checks the included
proofs, it knows that all of the conditions required by Lemma 1 are satisfied
and thus the combination of the custom proof rules and the custom decoder is
safe to use instead of the reference decoder. In the next section we give concrete
examples of these elements for the list-based safety policy.
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The Soundness of the Example Safety Policy. First we must introduce an
appropriate global invariant I with which to prove the correctness of the custom
decoder for the 1ist safety policy. We will use

Iy p) = Vz.(nelisty x) = ((addr px) A (listy (sel (ra p) x)))

Thus every non-empty list must be a valid memory address containing a list.
For a more complicated safety policy, one can expect some work in determining
an invariant which has the correct strength, neither too strong nor too weak, to
be preserved. For our example this invariant suffices.

Next we have to provide the necessary proofs for each row in the definition of
the custom decoder (shown in Figure 6). We show below only some representative
cases.

For an addition, @) is True, and thus condition 1 is trivial. For condition 2,
there is only one state in Dy e and also in Dys, and given an instantiation v of
the predicates obeying the proof rules, we have to find a new instantiation 1’
obeying the proof rules, such that:

(Fr.ry :=5 (ra+13) A (Iy A Cy)lr1 — 2]) = Iy A Fo.Cyr[ry — 2

Since the global invariant depends only on the memory, and in particular not
on the changed register ry, we simply choose ¥’ = 1) and the required condition
follows.

For the case of a memory read we have

P, = (nelisty ra);
Dews = {(p+ 1, (Listy r1) A Jz.Cyplr1 — z]) };
Qy = (addr p ry);
Dres = {(p+1,32.11 1=, (sel rpr r2) A (Iy A Cy A Py)lr1 — z])}.

Condition 1 (I, A Py = Q) follows from the definition of the global invariant.
Condition 2 requires showing that

ch.(rl =z (selrprra) A (Iy A Cy A Py)lry — x]) =
Ll” A (listwl I‘1) A HZ.Cw/ [I‘l — .’ﬂ]

Since a memory read does not change which values denote lists or non-empty
lists, we choose 1’ = 1. This mostly follows as for the addition; to show that
(listy r1), observe that it is equivalent to (1istw/ (sel ry rg))[rl — ),
which follows from (I, A Py)[r; — z], where x is the value of r; prior to the
assignment. (The x is only important in the case where r1 and ry are the same
register.)

For the case of a memory update, the proof of condition 1 follows in a similar
manner. Condition 2 is more interesting, since we must show that the global
invariant still holds in the state after the memory update. However, since a
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memory update does not change which values denote lists or non-empty lists,
we can still choose ¢’ = 1. In this case we have:

P, = (nelisty rq1) A (1isty ra);
Dews = {(p+1,IM.Cylrp — m]) };

Qy = (addr pr1);
Drer = {(p+1,IMm.rpys = (upd mry ra) A (Iy A Cy A Py)[rar — m])}

The difficult part is to show that, given the fact that Vz.(nelist, z) =
(1isty (sel m z)) for the old memory state m, we still have Va.(nelisty ) =
(1isty (sel (upd mry r2) x)). If # # r1 then we use the fact that (selm z) =
(sel (upd m r r3) z); and if = ry, then (sel (upd m r; ra) ) = ro, and we
can use P, which guarantees that (1ist, rs).

The remaining rows in the definition of the custom decoder are relatively
simple proofs that we omit here. This proof of generalized decoder correctness
has been formalized in Coq and is available on the web at the following URL:
http://www.cs.berkeley.edu/ “necula/ISSS02 . The formal development also in-
cludes formalizations of the notions of local invariants and decoders, and the
proof of Lemma 1.

Notice that the proofs that the code producer must supply with the custom
safety policy are not likely to be produced completely automatically. However,
we have found that these proofs can be done with relatively modest effort using
a proof assistant such as Coq. Coq has support for the inductive definitions of
instantiation predicates and for reasoning with them. Ideally, the code consumer
would have a (small, more easily trusted) proof checker that is also able to verify
such reasoning.

7 Conclusion and Future Directions

Appel, Felty, and others have introduced foundational proof-carrying
code (FPCC) [AF00,App01], a variant PCC framework in which the trusted
computing base contains only a definition of the semantics of machine instruc-
tions and the notion of safety in some foundational logic. The safety theorem is
then directly expressible in the logic: simply that when the integers that com-
pose the program are loaded into memory and the machine’s program counter
is set to the beginning of the program, the machine will never reach a state of
attempting an unsafe instruction. Finally, the code is accompanied by a proof
of the safety theorem.

It is worth pointing out a difference in our approach to formal type-safety
proofs. Appel and Felty in [AF00] advocate a semantic approach: typing judg-
ments are assigned a semantic truth-value relative to the state, such that typing
rules are to be proven as lemmas, and the safety of a well-typed machine state
follows immediately from the semantic definition of well-typedness. In contrast
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we have found the syntactic approach (where we work directly with the induc-
tive definitions of derivations of typing judgments) to be successful, and almost
certainly conceptually simpler. In this respect, our work bears some similarity
to the work of Hamid et al. [HSTT02], who also aim to develop a full-fledged
FPCC system, but advocate the syntactic approach.

While we think that the FPCC approach is quite a promising research di-
rection it is already apparent that the cost of implementing such a system that
operates on large programs is much higher than the cost of implementing a
traditional PCC system (such as Touchstone [CLNT00]).

Touchstone and FPCC constitute two extremes in the PCC design spectrum.
We propose in this paper one incremental step that will take a traditional PCC
system closer to the ideal goal of FPCC. In future work we plan to make more
steps in the same direction and more specifically to address the issue of the
trusted VCGen. Ideally, we imagine a completely generic PCC system in which
the code producer first uploads a custom safety policy consisting of a specialized
decoder and VCGen, along with new trusted proof rules. Then, the code producer
can upload programs whose proofs can be very short and easy to generate, since
the bulk of the safety argument is embodied in the custom safety policy elements.
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