
Multi-User Evaluation of
XML Data Management Systems with XMach-1

Timo Böhme, Erhard Rahm

University of Leipzig, Germany
{boehme, rahm}@informatik.uni-leipzig.de

http://dbs.uni-leipzig.de

Abstract. XMach-1 was the first XML data management benchmark designed
for general applicability [1]. It is still the only benchmark supporting a multi-
user performance evaluation of XML database systems. After a brief review of
XMach-1 we summarize three additionally proposed benchmarks (XMark,
XOO7, Mbench) and provide a comparison between these benchmarks. We
then present experiences and performance results from evaluating XML data-
base systems with XMach-1.

1 Introduction

Current XML database systems exhibit considerable differences in their architectural
foundations, concepts and functionality. When choosing a system for a specific appli-
cation scenario these aspects and the resulting performance should be taken into con-
sideration. The intention of XML database benchmarks is the comprehensive and
realistic evaluation of XML database systems in order to allow for a performance
comparison of them.

Several papers about storing XML in databases contain performance measurements
based on self defined benchmarks [2, 3]. These studies commonly lack a detailed
benchmark description, have only a few very specific operations tailored to the corre-
sponding subject of the paper and are therefore not suitable for a general comparison.

The growing demand for well defined XML data management benchmarks led to
the specification of various benchmarks in the last two years. The applicability of a
benchmark depends on how close the benchmark simulates the application domain in
question. To find the most appropriate benchmark it is necessary to carefully study
the specifications of each of them. We therefore provide a comparison between four
benchmarks highlighting their key features and distinctive features.

The rest of this paper is organized as follows. In the next section, we give an over-
view of the first general XML database benchmark, XMach-1. Section 3 briefly intro-
duces three further XML database benchmarks: XMark, XOO7 and Mbench. We then
compare the four benchmarks with respect to key features. In Section 5, we present
experiences and results from evaluating XML database systems with XMach-1.

2 XMach-1 – An Overview

XMach-1 was developed by us at the University of Leipzig in 2000 and published at
the beginning of 2001 [1]. It was thus the first published XML database benchmark
with general applicability.

Three objectives are central for the design of the benchmark: scalability, multi-user
processing and evaluation of the entire data management system. XMach-1 is based
on a web application in order to model a typical use case of an XML data manage-
ment system. The system architecture consists of four parts: the XML database, appli-
cation servers, loaders and browser clients. The database contains a directory structure
and XML documents that are assumed to be loaded from various data sources in the
internet by loader programs (e.g. robots crawling the web or a registration tool where
web-site authors can add documents to the database). Every document has a unique
URL which is maintained together with document metadata in the directory structure.
The application servers run a web (HTTP) server and other middleware components
to support processing of the XML documents and to interact with the backend data-
base.

The XML database contains of both types of documents: document-centric and
data-centric. The largest part consists of document-centric XML data which mimic
text documents such as books or essays in structure and content. These documents are
synthetically produced by a parameterizable generator. In order to achieve realistic re-
sults when storing and querying text contents, text is generated from the 10,000 most
frequent English words, using a distribution corresponding to natural language text.
The documents vary in size (2-100 KB) as well as in structure (flat and deep element
hierarchy). Fig. 1 shows the element and attribute hierarchy of these documents.

The data-centric type is represented by a document containing metadata about the
other documents such as URL, name, insert time and update time. All data in this

documentXX

@author

@xlink:href

@doc_id

@id

@id

sectionXX +

chapterXX +

titleXX ?

link *

paragraph +

author ?

headXX

headXX

sectionXX * (rek)

Fig. 1. Node hierarchy of XMach-1 text
document

directory

host +

@name

@name

@doc_id

doc_info

host + (rek)

path +

path + (rek)

@loader

@insert_time

@update_time

Fig. 2. Node hierarchy of XMach-1
metadata document

document is stored in attributes (no mixed content) and the order of element siblings
is free. Compared to structured data in relational databases it shows some semi-
structured properties like variable path length using recursive elements or optional at-
tributes. The structure of this document is depicted in Fig. 2.

A distinctive feature of XMach-1 is support of a large number of document sche-
mas with 2-100 documents per schema. This allows us to test a database system’s
ability to cope with a variable number of different element types and to test query
execution across multiple schemas. Additionally, the benchmark supports schema-
based as well as schema-less document storage.

The database contains at least 1000 text documents and can be scaled by increasing
the number of documents by a factor of 10, 100, 1000, etc. The metadata document
scales proportionally with the number of text documents. Ratios such as the number
of documents per schema, number of authors per document etc. remain constant when
scaling the database.

The XMach-1 workload mix consists of 8 query operations and 3 update operations
which are described in Table 1. They cover a wide range of processing features like

Table 1. Operations defined in XMach-1

ID Description Comment
Q1 Get document with URL X. Reconstruction of complex structured

document with ordering preserved.
Q2 Get doc_id from documents contain-

ing phrase X in a paragraph element.
Tests full-text retrieval capabilities.

Q3 Start with first chapter element and
recursively follow first section ele-
ment. Return last section elements.

Simulates navigating a document tree
using sequential operators.

Q4 For a document with doc_id X return
flat list of head elements which are
children of section elements.

Restructuring operation simulating
creation of a table of contents.

Q5 Get document name (last path ele-
ment in directory structure) from all
documents which are below a given
URL fragment.

Operation on structured unordered
data.

Q6 Get doc_id and id of parent element
of author element with content X.

Selection using element content.

Q7 Get doc_id from documents which
are referenced at least X times.

Tests group by and count functionality.

Q8 Get doc_id from the last X updated
documents having an author attribute

Needs count, sort, join and existential
operations and accesses metadata.

M1 Insert new document. Tests insert performance for complex
document with activated indices.

M2 Delete document with doc_id X. Tests deletion performance for com-
plex document with activated indices.

M3 Update name and update_time attrib-
utes for document with doc_id X.

Tests efficiency of update operations
on attribute values.

querying complete complex structured documents, full-text retrieval, navigational
queries, queries using sorting and grouping operators etc. A formal specification of
the operations in XQuery1 syntax can be found in [4]. Update operations cover insert-
ing and deleting of documents as well as changing attribute values. Despite the miss-
ing data manipulation language for update operations, we consider it as essential es-
pecially for multi-user performance to evaluate workloads with both queries and
updates.

Since XMach-1 is a multi-user benchmark the primary performance metric is
throughput measured in Xqps (XML queries per second). This value is calculated
from the workload mix which defines firm ratios for each operation. The mix empha-
sizes the retrieval of complete documents whereas update operations have only a mi-
nor share of 2%. Nevertheless the latter one can have a significant impact on the con-
current execution of queries requiring access to the most recent data.

3 Further XML Database Benchmarks

After the specification of XMach-1 was published a number of additional XML data-
base benchmarks were proposed. In this section we briefly introduce the benchmarks
XMark, XOO7 and Mbench.

XMark. This benchmark was developed at the National Research Institute for
Mathematics and Computer Science (CWI) of the Netherlands and made public in the
middle of 2001 [5]. The benchmark focuses on the performance evaluation of the
query processor which is reflected by the large number of specified operations. The
guidelines of the benchmark design are discussed in [6].

The benchmark data is modeled after an internet auction database. It consists of a
number of facts having a firm structure with data-centric aspects. However some
document-centric features are introduced by the inclusion of textual descriptions. The
complete data is contained within a single document. For most of the element types
the sibling order is free.

XMark’s operations are made up of 20 queries. No update operations are specified.
The queries are designed to capture different aspects of the query processing. Some
queries are functional similar to test certain features of the query optimizer. In [7]
seven systems were evaluated using XMark. It was shown that no system was able to
outperform the others in all disciplines. Rather each physical XML mapping favors
certain types of queries for which efficient execution plans could be generated.

XOO7. This benchmark was published [8] shortly after XMark and is a development
from the National University of Singapore. It is derived from the object oriented
database benchmark OO7 [9] with small changes in the data structure and additional
operation types to better meet XML usage patterns.

In contrast to XMach-1 or XMark no specific application domain is modeled by
the data. It is rather based on a generic description of complex objects using compo-

1 http://www.w3.org/TR/xquery/

nent-of relationships. This regular and fixed structure having all values stored in at-
tributes exhibits a strong data-centric character. Similar to XMark some document-
centric aspects are included using document tags with mixed content. Likewise the
database is represented by a single document.

The benchmark only considers query operations grouped by the authors into rela-
tional queries, navigational queries and document queries. It defines a total of 23 op-
erations including some newly added queries, especially in the document queries
group. The evaluation focus is on the performance of the query processor in single
user mode on a central server (1 computer).

Mbench. One of the latest additions to the family of XML database benchmarks is the
Michigan Benchmark developed at the University of Michigan [10]. In contrast to its
predecessors it is designed as a micro-benchmark aiming to evaluate the cost of
individual pieces of core query functionality. Therefore it abstracts from specific
application-level approaches defining only well-controlled data access patterns. This
kind of benchmark restricts the operation execution to single user mode.

The benchmark data set is a synthetic structure created to simulate different XML
data characteristics and to enable operations with predictable costs. Like XMark and
XOO7 only one document covers the complete data. The main data structure consists
of only one element which is nested with a carefully chosen fanout at every level.
With an element hierarchy of 16 and a fixed fanout for each level most of the ele-
ments are placed at the deepest level. A second element is used to add intra-document
references. The first element contains a number of attributes which can be used to se-
lect a defined number of elements within the database. With only two element types
and the large number of attributes the data has clearly data-centric properties. Docu-
ment-centric features are also represented since every element has mixed content and
the element sibling order is relevant.

In order to meet the requirements of a micro-benchmark Mbench defines many
(56) operations which are grouped into the categories selection queries, value-based
join queries, pointer-based join queries, aggregate queries and updates. Within each
group, often queries differ only with respect to a specific feature such as selectivity to
measure its influence on query performance. Since the data set consists only of two
element types typical navigational operations using element names are missing.

4 Benchmark Comparison

In this section we compare the introduced benchmarks with respect to key features
such as application focus, evaluation scope, multi-user support, database and work-
load characteristics, etc. The comparison is intended to help choosing among the
benchmarks for a particular evaluation purpose or application domain. Table 2 sum-
marizes the main features which we will now discuss.

The high flexibility of XML leads to vastly different data structures, data types and
operations in differents applications. The benchmarks try to accommodate typical
characteristics from both document-centric and data-centric XML usage but with dif-
ferent focus. XMach-1 emphasizes the document-centric aspect the most while the

other benchmarks focus on data-centric properties with a fixed database structure or a
high number of attributes. Mbench is less data-centric (more document-centric) than
XMark and XOO7 since each element has textual content.

A fundamental difference between the benchmarks lies in their evaluation scope.
With its concept of evaluating the entire database system in multi-user mode
XMach-1 covers the user view on the system as a whole. Therefore all components of
the database system like query processing, caching, locking, logging etc. are included
in the evaluation. The other benchmarks restrict themselves to the evaluation of the
query processor in single-user mode to determine the performance for specific que-
ries. XMark and XOO7 evaluate fairly complex queries stressing various features of
the query language, while Mbench uses a higher number of smaller operations to sys-
tematically evaluate core functions (operators) of the query processor.

All XML data of a database can either be in a single document or spread across
several documents. XMach-1 uses many smaller documents with a mean size of
16 KB. This allows easy scalability of the database and gives flexibility to the data-
base system for data allocation, locking, caching etc. The other benchmarks require
the whole database be a single document. This is a significant restriction for some
current XML database systems performing document-level locking etc. and would
make it difficult to use these benchmarks for multi-user processing.

Since one of the strengths of XML lies in the flexible schema handling it should be
natural for an XML database to easily handle multiple schemas. However this feature
is only tested in XMach-1. The other benchmarks use a single fixed schema. As a re-
sult the number of element types remains unchanged for different database sizes. With
its very small number of element types Mbench leads to artificial storage patterns in
systems with a element-determined database organization such as some XML-to-
relational mapping approaches.

Table 2. Comparison of XML database benchmarks

 XMach-1 XMark XOO7 Mbench
main data
focus

document-
centric

data-centric data-centric data-centric

evaluation
scope

DBMS query processor query processor core query op-
erators

user multi-user single-user single-user single-user
server >=1 1 1 1
documents 10n (n>=3) 1 1 1
schemas #documents/20 1 1 1
element
types

4 * #schemas
+ 7

74 9 2

DB size 16 KB *
#documents

10 MB – 10 GB ca.
4 MB – 1 GB

50 MB * 10n
(n=1,2,3,4)

#nodes/KB 10 18 67 12
queries 8 20 23 49
update op. 3 0 0 7

Each of the benchmarks supports a parameterized scaling of the database from a
few megabytes to some gigabytes. However the performance for loading the database,
querying etc. is not only determined by the size but also by the structural complexity
of the data. To give a rough indicator for this we have determined the number of
XML nodes2 per kilobyte data. As indicated in Table 2 for each benchmark this ratio
is invariant w.r.t. the database size. XOO7 has by far the highest ratio which stresses
its data-centric focus. The large share of textual content in Mbench is also reflected in
its comparatively low value.

The differences in evaluation scope can also be seen in the number of query opera-
tions. XMach-1 evaluating the whole database system in multi-user mode specifies
only a smaller number of complex queries since throughput is the primary metric.
XMark and XOO7 having their focus on the query processor use twice as many query
operations to capture most query capabilities. Mbench has even more operations to
evaluate distinct parts of the core functions of the query processor. Only two bench-
marks, XMach-1 and Mbench, consider update operations although they can impact
performance substantially.

The comparison shows that both XMach-1 and Mbench have a clear focus.
XMach-1 is targeted to evaluating entire database systems in multi-user mode using
document-centric data whereas Mbench focuses on evaluating the core operators of
the query processor in single user mode. XMark and XOO7 are similar in many re-
spects. Their key differences come from the different schema characteritics. Here
XMark has some advantages by supporting a rich structure as well as a more realistic
text usage than XOO7.

5 XMach-1 – Experiences and Results

Since the first implementation of XMach-1 in early 2001 we used it to evaluate sev-
eral XML database systems and subsequent versions of them. We discuss some of our
experiences and present some performance results to indicate the performance
achieved by current systems.

We started with the evaluation of native XML database systems. Their increased
XML functionality over XML-enabled relational DBMSs made it easier to implement
XMach-1. Still these products were rather new on the market and exhibited signifi-
cant limitations, especially w.r.t. full-text indexing and multi-user processing. Prob-
lems were unacceptably long full-text index generation times, lacking support for
phrase searches and for indexing across multiple schemas. In multi-user mode we ob-
served substantial locking bottlenecks due to document-level locking leading to very
high query response times during parallel writes. Locking at the document level
would obviously be completely unacceptable for a database with a single document
only. Other locking problems were caused by the index updates for inserting or delet-
ing documents. Some systems were unable to support more than 20 concurrent clients
and crashed. In [11] we discuss further problem areas for the first versions of XML
database systems.

2 an XML node is either an element or an attributes.

Most of the issues were resolved in subsequent versions of the systems leading to
improved performance. This is exemplified by Fig. 3 showing the 90% percentile re-
sponse times for the 11 operations (cf. Table 1) specified in XMach-1. Operations Q1-
Q8 are queries ranging from document retrieval (Q1) to complex queries involving
join, sort and aggregation (Q7, Q8). M1-M3 are data manipulation operations includ-
ing document insert (M1), document deletion (M2) and updates (M3). A detailed de-
scription of the operations can be found in [1]. The measurements for this and the fol-
lowing experiments were carried out on an Intel Pentium III computer running at
800 MHz having 512 MB of main memory and a 40 GB IDE hard disk. The database
size was 1000 documents.

Fig. 3 indicates substantial performance improvements of up to several orders of
magnitude between the two versions. All eight query types could be executed with a
single-user response time of under 100 ms, favored by the small database size. Some
of these improvements were achieved by an optimized benchmark implementation
utilizing features of the new version of the system. The high response times for M1
and M2 in both versions stem from an inefficient implementation of the full-text in-
dex which has to be updated.

We also observed significant improvements w.r.t. the space requirements to store
and index a certain amount of raw XML data. As an example, Table 3 compares the
database sizes for data and indexes of consecutive versions of another native XML
database system NXD2. The databases were populated using the 1000 documents
configuration of the benchmark which has a raw data size of about 16 MB. The
changes in the depicted database system resulted in a reduction of the database size of
about a factor of 2.5. In general, a ratio of 1.5 to 3 between the database size and the
size of raw data is typical for current native XML database systems. Database popula-
tion takes between 90 and 600 seconds with the 1000 documents setting. Including

1

10

100

1000

10000

100000
R

es
p

o
n

se
 t

im
e

(m
s)

 f
o

r
1,

00
0

d
o

cu
m

en
ts

old version 250 2684 120 80 30 2713 6709 370 1E+05 32306 291

new version 40 81 10 40 10 50 10 10 671 5518 570

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 M1 M2 M3

Fig. 3. Comparison of 90th percentile response times for old and new version of a native XML
database (NXD 1) in single-user mode

index generation, 200 to 800 seconds are needed primarily due to full-text indexing.
This corresponds to a poor loading throughput of about 20 – 80 KB raw data per sec-
ond which would result into unacceptable loading times for larger databases.

Table 3. Changes in database size for a native XML database system (NXD 2)

 data (MB) index (MB)
NXD 2 version 1 64,4 72,4
NXD 2 version 2 44,5 35,6
NXD 2 version 3 25,9 31,9

When we recently started our evaluation of XML-enabled relational database sys-
tems (XRDB) we still found functional shortcomings compared to native XML data-
base systems. One major drawback is insufficient support of an XML query language.
Whereas native XML databases have at least a complete XPath implementation and
are starting to support XQuery as well, XRDB’s have in most cases only a limited
support of XPath with restricted utilization of indices. Another problem is that current
XRDBs cannot efficiently run queries across multiple schemas because of their
schema driven XML architecture. On the other hand, XRDBs benefit from mature re-
lational functionality and comparably efficient full-text support.

In Fig. 4 and Fig. 5 we compare results for current XML databases running
XMach-1. Systems NXD 1 and NXD 3 are commercial native XML databases
whereas system RDB is a standard relational database system. The relational imple-
mentation of XMach-1 uses a newly developed middleware for a generic mapping of
XML data to relations. The RDB mapping is independent of an XML schema and
uses only three tables for elements, attributes and large element contents. The map-
ping supports a sophisticated numbering scheme for XML nodes incurring low re-

1

10

100

1000

10000
R

es
p

o
n

se
 t

im
e

(m
s)

 f
o

r
1,

00
0

d
o

cu
m

en
ts

NXD 1 40 81 10 40 10 50 10 10 671 5518 570

NXD 3 391 141 280 361 260 151 371 971 2374 2804 1231

RDB 411 131 30 180 30 50 230 701 6740 2093 30

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 M1 M2 M3

Fig. 4. Comparison of 90th percentile response times in single-user mode

numbering effort for updates as well as a fast navigation and extraction of document
fragments.

The 90th percentile response time of all XMach-1 operations for the three database
systems are shown in Fig. 4. As can be seen NXD 1 outperforms both other systems
in most query operations by an order of magnitude. However update operations are
quite slow which stems partly from the full-text index deficiency. The fast execution
of Q7 and Q8 was achieved by using extra data structures automatically maintained
by database triggers. These optimizations for queries come at the expense of increased
overhead for loading and inserting/deleting the XML documents. NXD 3 and RDB
exhibit comparable performance figures. The mentioned mapping approach with its
optimizations was key to the remarkably good query performance of RDB.

Fig. 5 illustrates the multi-user performance of the three systems. The throughput
value Xqps (XML queries per second) measures the number of Q1 operations per
second within the query mix. Each client has to wait between two consecutive re-
quests for 1-10 seconds. The small database size largely excludes congestion access-
ing the external storage devices. Therefore throughput is bound by CPU and locking
bottlenecks raised by update operations. NXD 1 again reaches the best value and
scales nearly linearly until 50-80 clients. With approximately 3 Xqps it achieves the
top value of all evaluated XML database systems so far. Both other systems reach
their maximum with 0.9 Xqps and 20 clients. For more clients somewhat higher
throughput values (shown in parentheses) were achieved but without meeting the 3
second response time limit of XMach-1.

We started to examine multi-user performance for larger databases requiring a
higher degree of IO activity. Some systems had significant scalability problems pre-
venting the execution of some query types. Response times for some queries were or-

2,98

1,06

2,32

0,53

0,05

0,91

0,50

(1,18)(1,19)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 20 40 60 80 100

Clients

X
q

p
s

NXD 1
NXD 3
RDB

Fig. 5. Throughput comparison

der of magnitudes higher than with a 1,000 documents collection. Our XML-to-
relational mapping also faced scalability problems for larger data sizes since the rela-
tional query optimizer cannot use information provided by the numbering scheme.

6 Conclusion

XML database benchmarks allow to compare the performance of XML database sys-
tems for a well-defined environment and operation mix. We reviewed and compared
four proposed benchmarks to reveal their primary focus and applicability. From these
benchmarks, XMach-1 is the only one supporting the performance evaluation for both
single-user and multi-user processing. Moreover it considers not only the query proc-
essor but measures the performance of an entire XML database system. Furthermore,
it has a focus on document-centric XML databases and considers schema-less and
schema-based document collections.

Our experiences with XMach-1 have shown that functionality and performance of
XML database systems have considerably improved during the last two years. Native
systems have generally performed better than XML-enabled relational database sys-
tems. Still, our prototype implementation of a generic XML to relational mapping in-
dicates that generic XML data management on relational databases can reach compa-
rable performance to native XML databases at least for smaller databases. Most XML
database systems still face significant scalability problems with larger data volumes
and multi-user mode. Hence, there is a big need for further performance improve-
ments and enhanced implementation concepts for XML data management.

References

1. Böhme, T.; Rahm, E.: XMach-1: A Benchmark for XML Data Management. In Proceedings
of German database conference BTW2001, pp. 264-273, Springer, Berlin, March 2001

2. Florescu, D.; Kossmann, D.: Storing and Querying XML Data using an RDMBS. In: IEEE
Data Engineering Bulletin, Volume 22, Number 3, pp. 27-34, September 1999.

3. Florescu, D.; Kossmann, D.; Manolescu, I.: Integrating Keyword Search into XML Query
Processing. In: Proc. of the 9th WWW Conference, Amsterdam, June 2000.

4. Böhme, T.; Rahm, E.: Benchmarking XML Data Management Systems. http://dbs.uni-
leipzig.de/en/projekte/XML/XmlBenchmarking.html, June 2002

5. Schmidt, A.; Waas, F.; Kersten, M. L.; Florescu, D.; Manolescu, I.; Carey, M. J.; Busse, R.:
The XML Benchmark Project. Technical Report INS-R0103, CWI, Amsterdam, Niederlan-
de, April 2001.

6. Schmidt, A.; Waas, F.; Kersten, M. L.; Florescu, D.; Carey, M. J.; Manolescu, I.; Busse, R.:
Why And How To Benchmark XML Databases. SIGMOD Record, Volume 30, Number 3,
pp. 27-32, September 2001

7. Schmidt, A.; Waas, F.; Kersten, M. L.; Carey, M. J.; Manolescu, I., Busse, R.: XMark: A
Benchmark for XML Data Management. In Proceedings of the 28th VLDB Conference,
Hong Kong, 2002

8. The XOO7 Benchmark. http://www.comp.nus.edu.sg/~ebh/XOO7.html, 2002
9. Carey, M. J.; DeWitt, D. J.; Naughton, J. F.: The OO7 Benchmark. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, pp.12-21, June 1993

10. Runapongsa, K.; Patel, J. M.; Jagadish, H. V.; Al-Khalifa, S.: The Michigan Benchmark.
http://www.eecs.umich.edu/db/mbench/description.html, 2002

11. Böhme, T.; Rahm, E.: Benchmarking XML Database Systems – First Experiences. Ninth In-
ternational Workshop on High Performance Transaction Systems (HPTS), Pacific Grove,
California, October 2001

