
Static Scheduling with Interruption Costs for Computer
Vision Applications

Francisco A. Candelas, Fernando Torres, Pablo Gil, Santiago T. Puente

DFISTS, University of Alicante,
Campus of San Vicente del Raspeig, P. O. Box. 99, E-03080 Alicante, Spain

{fcandela,medina,pgil,spuente}@disc.ua.es
Phone & Fax: +34 96 590 36 82

Abstract. It is very difficult to find pre-emptive scheduling algorithms that
consider all the main characteristics of computer vision systems. Moreover,
there is no generic algorithm that considers interruption costs for such systems.
Taking the interruption of tasks into account scheduling results can be
improved. But it is also very important to take the costs that arise from
interruptions into account because they not only increase the total execution
time, but also because the scheduler can evaluate whether it is adequate to
interrupt certain tasks or not. Thus, the result can be more realistic. Therefore,
we present an extension to the static algorithm SASEPA for computer vision
which considers interruption costs.

Keywords. Static scheduling, interruption costs, computer vision, task.

1 Introduction

Of the many specific characteristics of computer vision applications regarding
scheduling, we would like to emphasize the following:
1. Multi-processor systems with different kinds of processors are generally employed.

Thus, techniques for spatial allocation and temporal scheduling which consider it
are needed. It is possible to differentiate between generic CPUs and IAPBs (Image
Acquiring and Processing Boards). This classification involves three basic kinds of
tasks: cpu, iapb and cpu/iapb. The last one is a communication task between
processors of different kinds [1][2].

2. There are precedence and exclusion relations among tasks. The first ones are
determined by the executing order and the data flow between the operations. The
second ones establish what tasks can be interrupted by others and which can not
be, and they are considered in pre-emptive scheduling techniques [3][4].

3. The elementary tasks are generally sporadic, and their creation times depends on
precedence relations.
Taking task interruptions into account, allow more flexibility in distributing tasks

in scheduling [3]. This can improve the results since the execution time of the
processors is better used and the parallelism of the execution is greater [4][5].

Though many scheduling strategies are been developed and implemented, few are
directly designed for computer vision applications. Moreover the majority are
designed for specific architectures and they do not take all of the important
characteristics of such applications into account [1][2]. As an example, we can
consider techniques such as the PREC 1 [6], the Empty-Slots Method [7] or the
Critical Path [1][2]. The first one takes the precedence relations, sporadic tasks and
interruptions into account, but it does not consider different kinds of processors. The
second one considers the different characteristics, but it works with sporadic tasks and
is designed for RT-LANs. The third takes all of the characteristics mentioned above
into account, but it does not make spatial allocation for a multi-processor system.
Also, there are scheduling strategies for computer vision as the one proposed in [8]
and [9], but this does not consider interruptions or different kinds of processors.

References [10] and [2] describe the static algorithm SASEPA (Simultaneous
Allocation and Scheduling with Exclusion and Precedence Relations Algorithm),
which carries out a spatial allocation and a temporal scheduling over a multi-
processor system considering all of the above-mentioned characteristics for computer
vision systems. This algorithm also does a pre-emptive scheduling and considers the
task interruptions to make the resulting scheduling better. But it does not take the
temporal costs derived from interruptions into account. Because it is static, it is
suitable for the research and design steps of an computer vision application [3].

In this paper, a SASEPA extension that considers interruption costs is proposed. It
represents a new approach in the scheduling algorithms for computer vision
applications which can be also applied to other systems. After describing the basic
aspects of SASEPA below, Section 2 explains how interruptions and their costs are
modelled. Next, Section 3 describes how interruption costs are considered in the
SASEPA extension. The practical evaluation of the proposed extension is described in
Section 4. Finally, our conclusions are presented in Section 5.

1.1 Basic Aspects of SASEPA

Each high-level operation of a computer vision application can be divided into a set of
elementary tasks. The scheduling algorithm takes a DAG (Directed Acyclic Graph)
which contains the attributes of the tasks and the relations between them as an input
[6]:

G=(T, A) .

T={τ1, τ2, …, τN}, τi=(ci, ki, IntCosti), i=1,2,…,N .

A={(τi, τj) / τi precedes τj}, i,j=1,2,…,N .

(1)

Each task has its computation time ci and its kind ki (which can be cpu, iapb or
cpu/iapb) associated. It also has a set o function IntCosti that gives interruption costs.
The creation time of each task is not explicitly specified and it is determined by
means of the precedence relations. Nor are the deadlines considered.

The result of the algorithm is the spatial allocation and the temporal scheduling of
tasks in the available processors (CPU and IAPB) taking the kinds of tasks and the

relations between they into account. The algorithm also minimizes the total execution
time, making the necessary interruptions of tasks to do so.

Fig. 1 shows the main steps of the SASEPA. After initiating the algorithm, ready
tasks are searched for among the unfinished tasks. These are tasks that have all their
preceding tasks finished and the minimum creation time. The creation time of a task
depends on the finishing time of its preceding tasks and the accumulated delay due to
interruptions and deferments of the task due to a lack of free processors.

Fig. 1. Block diagram of the main procedure of SAPEPA

Next, all the processors executing tasks that can be interrupted are interrupted, and
corresponding tasks also become ready tasks. The interruption costs are not
considered.

If there are ready tasks (Nr > 0), one is selected to be scheduled. The criterion for
selecting a task is based on finding the critical task first, which is the task with a
maximum finishing time. Then a ready task that is a predecessor of the critical task is
selected. In order to resolve ties among several tasks, a weight is associated to each
one, and the task with the highest weight is selected. The weight of a task expresses
the current computation time required to execute it and all of its successors with the
maximum parallelism. Thus, the selected task is the one that delays the total execution
most.

Then, a the suitable processor (or processors if the task is cpu/iapb) is chosen for
the selected task and this is scheduled. The selection is based on minimizing
communications between different processors.

When a task is scheduled, one of two situations may occur. If the processor (or
processors) is free, the task is scheduled in it, and the number of ready tasks (Nr) is
decreased. On the other hand, if the processor is not free (it executes a non-
interruptible task; otherwise, the processor would have been interrupted before) the
task is not scheduled to test the selection of another processor in a future iteration of
the internal loop. When all of the processors are tested without success, the task is
delayed and Nr is decreased.

The above steps are repeated while there are ready tasks to be scheduled. When it
is no longer possible to find ready tasks, the loop ends. Then the tasks that are still
being executed are completed, and finally, all the tasks are consolidated. This last step
removes unnecessary interruptions made by the algorithm.

2 Interruption Costs

In computer vision systems, as in others, it is necessary to save the state of a task
when it is interrupted, to be able to resume its execution in the future. It is also
necessary to retrieve the saved state just before resuming the task. These operations,
which are called context switching, involve time costs which may become important
if many interrupts are generated. Because of this, it is advisable to bear these costs in
mind. Moreover, if the scheduler takes the interruption costs into account it can
evaluate whether it is suitable to make an interruption or not.

Fig. 2 shows how the interruptions affect any task τi. Due to the interruptions, the
execution of a task may be broken down into several intervals of time. If a generic
interval j is considered, with j∈{1,2,...,M}, a reading cost ri,j-1 is required to retrieve
the original state of the task at the beginning of the interval. The cost ri,j-1 depends on
the previous interruption. Furthermore, a writing cost wi,j is required to save its the
state at the end of the interval. For the first interval of a task ri,0 is 0, and for the last
interval wi,M is 0.

Fig. 2. A task broken down into several execution intervals, due t o the interruptions

Because of the interruption costs, the effective time spent in computing a task (eci,j)
is shorter than the duration of the interval (di,j), and the finishing time of the task is
postponed. Thus, if c’i is defined as the remaining time of computation of the task τi,
this value is increased in each interruption of an interval j according to wi,j+ ri,j:

c’i,0 = ci .

c’i,j = c’i,j-1 – di,j + wi,j+ ri,j j=1,2,...,M .

(2)

It is noteworthy that the writing of the state is performed within the corresponding
interval before the instant of interruption. That is, given a desired instant of
interruption tint, the writing of state wi,j is considered just before this instant,
beginning at tw. In this way the scheduler can get the desired length of time di,j for the
interval. This approach simplifies the interruption management. However, it is
necessary that the scheduler algorithm is static to be able to carry it out.

To simplify the modelling and the management of interruptions by the scheduler,
the costs of writing and reading the state can be considered constant for each task τi:

wi,1 = wi,2 = … = wi .

ri,1 = ri,2 = … = ri .

(3)

2.1 Interruption Cost Function

However, costs for writing and restoring the state of a task are not constant, but
depend on the instant of time tw in which the task interruption begins. This instant is
measured relative to the effective computation time of the task. For example, let us
consider an operation for computer vision that searches for some characteristics of an
image and processes them all at the end. The more advanced the operation is, the
more information about characteristics detected will have to be saved temporarily in
case of interruption.

Thus, a more realistic but more complex model is considering a function for each
task that returns the writing and reading costs for it. The parameter of these functions
is the instant in which the interruption begins in relation to the effective computation
time of the task:

 (wi, ri) = IntCosti(tw) , tw∈[0,ci) . (4)

This cost function can be defined by the different intervals of time that involve
different writing and reading costs. As an example, let us consider the function that
Fig. 3 shows, which can be expressed in this way:









<≤
<≤
<≤
<≤

==

14t11)6,4(
11t5)3,2(
5t2)1,2(
2t0)1,1(

)t(IntCost)r,w(

w

w

w

w

wiii .

(5)

Fig. 3. Example of a cost function for a task τi

2.2 Considerations about the Interruption Cost Function

When the cost function is used to determine interruption costs in a static scheduling,
two problematic situations may arise. To illustrate the first situation, let us suppose
that the scheduler needs to interrupt the first interval of a task τi in instant tint=10. The
task has the following cost function associated:







<≤<≤
<≤<≤
<≤<≤

=
12t10)3,4(8t7)4,3(

10t9)4,3(7t6)3,4(
9t8)2,2(6t0)3,9(

)t(IntCost
ww

ww

ww

wi .
(6)

For the sake of simplicity, the interval starts at instant 0 of time. The scheduler
disposes of the following options to carry out that interruption: to initiate the state
writing at tw=8 which involves a writing cost wi,1=2; to initiate state writing at tw=7
with wi,1=3; or to consider tw=6 with wi,1=4. These cases are illustrated in Fig 4.

Fig. 4. Task with three interruption options for instant t int=10

In the previous example, the best option is A since it maximizes the effective
computation time of the task for the interrupted interval.

Now let us consider a new cost function for τi:







<≤
<≤
<≤

=
12t8)2,3(
8t5)4,5(
5t0)3,4(

)t(IntCost
w

w

w

wi .
(7)

In this case, if the scheduler wants to interrupt the first interval at tw=10 there are
no possible options to finish the interval at that precise instant. The best option is to
begin the writing at tw=4 and finish the interval at tint=8 as shown in Fig. 5.

Fig. 5. Interval which can not be interrupted at the desired instant

The criterion that the scheduler must apply to solve the former situations when it
needs to interrupt a task is not just to determinate the instant tw which involves a
interval that finishes before the desired instant of interruption, but also to maximize
the effective computation time for the task.

3 SASEPA with Interruption Costs

We have developed an extension of the SASEPA algorithm explained in Section 1.1.
This extension considers the aspects related to the task interruptions that were
described in Section 2. As described in that section, the interruption costs must be
considered when a task is being scheduled or interrupted. Thus, these two operations
will be the next procedures to be described.

3.1. Interruption of a task

Fig. 6 shows the steps required to interrupt a processor, considering that interruption
costs are constant, as (3) expresses. Three different situations can be distinguished
depending on the duration of the interval that has been interrupted in relation to the
costs of the interruptions. In case A, the interval is just long enough to include the
costs of the interruption, but not the effective computation time. In such a case, the
execution of the task is allowed to continue. In case C, the interval is pot long enough
to include the effective computation of the task, and so it is temporarily postponed.

Fig. 6. Steps followed to interrupt a task

The same steps are followed in quite a similar way to consider the cost functions
where they are specified. The only difference is that now it is necessary to calculate
the instant tw by means of the cost function of a task before calculating tint. If tw is
found, then ri,j, wi,j, tint and di,j are determined from it. On the other hand, if tw is not
found, the interval is postponed. Furthermore, it is necessary to time the effective
duration of the computation of each task to be able apply the cost functions.

3.2 Scheduling a task

The procedure shown in Fig. 7 is followed to schedule a pre-emptable task,
considering constant interruption costs. If the assigned processor is free then one of
two basic situations can occur: either the previous interval can be continued or it is
necessary to start a new interval, depending on how and where the previous interval
of the task was finished.

If the previous interval was interrupted in the same processor just before the instant
which is being scheduled, it is possible to continue that interval (case A). In this case,
the interruption costs that were considered before must be subtracted from ci,j. If the
previous interval was postponed in the same processor it is also possible to continue
it, to achieve a longer interval (case C). In this case, it is not necessary to subtract the
interruption costs, since they were not considered before. In other cases, a new
interval must be considered.

The same steps are considered to take the cost functions into account during
scheduling, but adding a new feature: it must be possible to continue an interval
which has been interrupted before the desired instant.

Fig. 7. Step followed to schedule (begin or continue) a task

4. Evaluation

To evaluate the proposed SASEPA extension that considers interruption costs, a real
computer vision application has been considered; a correspondence algorithm for the
characteristics of two images captured with a pair of stereoscopic cameras.

The first step was to define the tasks and to estimate their characteristics, including
state writing and reading costs for each task. We should point out that the developed
extension can manage both constant costs and function costs models for each task,
and that the two models can be used in the very execution of the algorithm. The cost
function has only been defined for the more complex tasks.

Afterwards, the application was specified as a high-level scheme using the tools
described in [2] and [11]. These tools also generate the task graph that has been used
as the input for the static scheduling algorithms tested. Fig 3. shows this DAG. Table
1 shows the main characteristics of the most outstanding tasks of the task graph which
will be discussed later on.

Table 1. Characteristics of the most outstanding tasks of the graph in Fig. 8

Task Kind Execution time Writing costs Reading costs
5 iapb 118 ms 5 ms 5 ms

23 iapb 130 ms 5 ms 5 ms
31 iapb 130 ms 5 ms 5 ms
32 iapb 130 ms 5 ms 5 ms
93 cpu 600 ms IntCost93()

Fig. 8. Tasks graph used to evaluate the scheduling algorithms

The tasks have been scheduled using four different scheduling algorithms
considering a target architecture with a CPU and two IAPBs. The four algorithms
were the PREC 1 [6], the Critic Path [1], the SASEPA [10] and the SASEPA
extension with interruption costs. In order to apply the two first algorithms for the
target architecture it was necessary to improve then with several new features (kinds
of tasks, sporadic tasks, spatial allocation…).

The main results for the four algorithm are shown in Table 2. We can see that the
SASEPA executes all of the tasks in less time and with a higher processor occupation
than the PREC 1 and the Critic Path. Moreover, the SASEPA makes fewer
interruptions. Regarding the SASEPA extension, it takes more time to execute all of
the tasks and decreases the processor occupation. This it is logical because it takes the
interruption costs into account. Furthermore, the SASEPA extension interrupts
different tasks than the previous algorithm. This shows how this algorithm considers
interruption costs to decide what tasks it can interrupt. This important aspect is
explained in more detail below.

Table 2. Result of scheduler algorithms for the graph in Fig. 8

Scheduler Execution
time

Processor
occupation

Number of
interruptions

Interrupted tasks

PREC1 - M 2494 ms 56 % 0 -
Critic Path - M 1774 ms 79 % 8 43, 46, 83 (3), 93 (3)

SASEPA 1766 ms 79 % 5 5, 31 (2), 32 (2)
SASEPA with

int. costs
1838 ms 77 % 5 23, 93 (4)

The resulting scheduling of the SASEPA is shown in Fig. 9, and Table 3 details the

intervals into which the interrupted tasks are broke down. We can verify that intervals
I5,1, I31,1 y I32,2 are not long enough to be able execute the state reading and writing in
accordance with the values shown in Table 1. Some intervals are even just one or two
milliseconds long, in contrast with the total duration of over a hundred milliseconds
of the task. As such, they are invalid intervals for an implementation in practice.

Fig. 9. Resulting scheduling of SASEPA

Table 3. Intervals of tasks interrupted by SASEPA

Task Intervals (ms) Length of intervals (ms) Total length (ms)
5 (182,184), (186,302) 2, 116 118

31 (96, 1083), (1084,1092),
(1100,1101)

121, 8, 1 130

32 (96, 1084), (1085,1092),
(1096,1097)

123, 7, 1 130

In contrast, Fig. 10 shows how the resulting scheduling, when the SASEPA

extension is considered, is different from the result shown in Fig. 9, previously
commented. This is because this algorithm has decided to interrupt other tasks, which
have been broken down into the intervals detailed in Table 4. In this case, the
intervals are sufficiently long to execute the context switching, in addition to a portion
of the task. Thus, it is possible to implement the resulting scheduling in practice.

Table 4 also shows how the durations of the tasks are increased by including the
interruption costs.

Fig. 10. Resulting scheduling of SASEPA with interruption costs extension

Table 4. Intervals of tasks interrupted by SASEPA with interruption costs

Task Intervals (ms) Length of intervals (ms) Total length (ms)
23 (575,702), (1096,1109) 127, 13 130+10
93 (483,562), (875,1083),

(1117,1290), (1326,1396),
(1707,1797)

479, 208, 173, 70, 90 600+420

It must be remembered that the of scheduling algorithm employed is static, and the

scheduling of the tasks is done in an off-line manner before they are executed. Even
the system in which the scheduler is executed can be different from the target system.
As such, the cost of scheduling does not influence the final execution. Furthermore,
the algorithm has been originally designed for computer vision systems in which the
static scheduling is done in the first stages of the design, and in this case, the costs in
time and space are not much more important than other aspects like the friendliness
that the interface of the design tools should offer. As such, we have not considered a
detailed study of the costs or a comparison with other algorithms necessary. In any
case, other static scheduling algorithms with the same features as the one we propose
here do not exists and, as such, a direct comparison would not be useful.

However, we have verified, in practice, that the SASEPA static scheduler with the
model presented here has a lower time cost. So much so, that a dynamic version of the
scheduler is now being studied. For example, with an implementation of the algorithm
for MS Windows 95 being used in a Pentium III of 450MHz PC, a complete
scheduling of the computer vision application mentioned in Section 4 can be done in
170ms.

5. Conclusions

In this paper we have presented a new model which allows us to consider the costs
involved in reading and writings the state, derived from interruptions made by a static
scheduling algorithm. In this particular case, an SASEPA extension for computer
vision applications has been considered. However, the model can be applied to other
pre-emptable static scheduling algorithms.

Interruption costs can be modelled as constant values or as a cost function for each
task. Although the second approach is more realistic, it is usually difficult to estimate
such functions for all tasks in practice, and it is easier to considerer constant costs.
However, the extension developed allows us to use the two models simultaneously,
choosing the most suitable one to express the costs over tasks, according to the
characteristics of the tasks.

The proposed model is interesting for other applications that use static and pre-
emptive scheduling, since it offers a more realistic result, as it does not create any
interruptions that are impossible to carry out later on in practice. However, to be able
to apply the model directly, the costs of task interruptions must be known or estimated
some how. This way, the model is useful in applications whose task are well defined
before their scheduling, such as computer vision applications like the industrial
inspection of products, in which the characteristics of the tasks to be done and the
images to be processed are known in advance. In other words, the task algorithms and
how their execution depends on the images that they process are known. This way,
the costs of storing and retrieving the state of the tasks can be estimated, even in
relation to the part of the task that has already been carried out at a given moment.

When interruption costs are considered in a pre-emptable static scheduling
algorithm, not only is a more realistic and generally longer execution time obtained,
but also the tasks can be scheduled in a more intelligent way. In other words, the
scheduler can avoid interruptions that can not be implemented in practice or that are
not the most appropriate.

We should point out that it is not necessary to know the exact costs of interruption
to enjoy the advantages of the model proposed here. By estimating the values of the
costs of interruption concerning the execution of the task and taking them into
account in the scheduling, a certain “intelligence” can be afforded to the pre-emptive
scheduler so that it can decide whether it is more convenient to interrupt a certain task
at a given moment or not.

References

1. Torres, F., Candelas, F.A., Puente, S.T., Jiménez, L.M. et al.: Simulation and Scheduling
of Real-Time Computer Vision Algorithms. Lecture Notes In Computer Science, Vol.
1542. Springer-Verlag, Germany (1999) 98-114

2. Candelas, F.A.: Extensión de Técnicas de Planificación Espacio -Temporal a Sistemas de
Visión por Computador. P.D. Thesis. University of Alicante, Spain (2001)

3. Nissanke, N.: Realtime Systems. Prentice Hall Europe, Hertfordshire (1997)
4. Zhao. W, Ramamritham, K., Stankovic, J.A.: Preemptive scheduling under time and

resource constrains. IEEE Transactions on Computers, Vol. 36 (1987) 949 -960

5. Xu, J., Parnas, D.L.: On satisfying timing constrains in hard-real-time systems. IEEE
Transactions on Software Engineering, Vol. 19 (1993) 74-80

6. Krishna, C. M., Shin, K. G. : Real-Time Systems. McGraw-Hill (1997)
7. Santos, J., Ferro, E., Orozco, J., Cayssials, R.: A Heur istic Approach to the Multitask-

Multiprocessor Assignment Problem using Empty-Slots Method and Rate Monotonic
Scheduling. Real-time Systems, Vol. 13. Kluwer Academic Publishers, Boston (1997) 167-
199

8. Lee, C., Wang, Y.-F., Yang, T.: Static Global Scheduling for Optimal Computer Vision and
Image Processing Operations on Distributed-Memory Multiprocessors. Technical Report
TRC94-23, University of California, Santa Barbara, California (1994)

9. Lee, C., Wang, Y.-F., Yang, T.: Global Optimization for Mapping Parallel Image
Processing Task on Distributed Memory Machines. Journal of Parallel & Distributed
Computing, Vol. 45. Academic Press, Orlando, Fla. (1997) 29-45

10. Fernández, C., Torres, F., Puente, S.T.: SASEPA: Simultaneous Allocation and Scheduling
with Exclusion and Precedence Relations Algorithm. Proc. PPAM'2001, Naleczow, Poland
(2001)

11. Torres, F., Candelas, F.A., Puente, S.T. Ortíz, F.G.: Graph Models Applied to
Specification, Simulation, Allocation and Scheduling of Real -Time Computer Vision
Applications. International Journal of Imaging Systems & Technology, Vol. 11. John Wiley
& Sons, Inc., USA (2000) 287-291

