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Abstract. in this paper we give an overview on a set of time related features, 
useful in the context of real-time system design and classify them into two 
categories, those needed for modeling of non functional aspects and analysis, 
and those needed for functional design. We are careful to allow a clear 
distinction between functional and non functional parts of a specification. We 
show how these features are represented at the semantic level with a minimal 
number of primitives.  

1. Introduction 

The ITU Specification and description language SDL is increasingly used outside 
its historical domain for the development of real-time and embedded systems, in 
particular those, where the functional behavior is time dependent, and therefore time 
plays both a functional and non-functional role which must be clearly distinguished. 

SDL is a modeling language in which sufficient details can be given for the 
generation of code preserving all the properties of the specification, including those 
concerning timing. For the functional design of a real-time system, sufficient 
functional time related primitives are needed. SDL has already some important time 
related features, such as a notion of global time (allowing to measure durations by 
means of appropriate time stamps which can be passed throughout the whole system), 
and the possibility to allow time dependent triggering of transitions (timeouts allow to 
define an earliest triggering time and enabling conditions can define general 
triggering constraints). Explicit means to quit some time consuming activity and to 
describe systems where time is (partly) under the control of the systems are needed 

For modeling nonfunctional aspects for analysis, almost nothing exists in standard 
SDL. Several proposals exist, which enhance SDL to make time and performance 
analysis possible. Previous work is mainly dealing with performance evaluation 
[BB93, SPI97, Rou98, MIT99, Mal99] or on requirements expression [Leu95, 
ALH95, DDH+01], but there exists also work on timed verification [OCK00], 
schedulability [ALV99, ADL+99, ADL+01]. A general real time framework for SDL 
is presented in [SDM+00] and [BGK00, BGM*01], where the first one is meant 
mainly for hardware software co-design. 

Most of these approaches, in particular, the ones mainly concerned by performance 
analysis advocate scenario based timing information, by means of scenario based 
languages (such as Message sequence charts or activity diagrams) which provide 
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timing information for a set of “relevant” scenarios, whereas for all other scenarios 
(supposed to occur rarely) no timing information is available. Some tools, for 
example time enhanced versions of ObjectGeode [Geode] as presented in [Rou98, 
O01] and Tau [Tau] and the tool and methods based on Queuing SDL [QSDL, 
MIT99] propose to attach explicit timing information with SDL constructs such as 
tasks, and to provide some minimal deployment information. 

Our approach [BGK00,BGM01,D21GEN02] is an extension of these latter 
approaches, where we are focusing on timing rather than on performance analysis1. In 
section 2, we discuss a minimal set of primitives and how language level real-time 
concepts can be expressed by means of the semantic level primitives. Concerning the 
needs for real-time primitives at SDL level, as introduced in [D21GEN02], we clearly 
distinguish between needs for modeling non functional aspects – discussed in section 
3 - and needs for functional design – discussed in section 4, where we motivate the 
need of concepts, propose a solution and provide an informal mapping to the semantic 
level.  

2. Time in semantic models 

At the semantic level, it is interesting to have a minimal number of basic primitives 
allowing to express all high level time concepts, functional and non functional ones. 
In fact semantic level models make no distinction between these aspects and in 
semantic models, time is the object of modeling and can be constraint in various 
ways. 

An interesting semantic framework are timed automata [HNSY92, AH94, BST98, 
AGS00, BGS00], where  
� time progress and system progress are along orthogonal dimensions, such that 

system transitions are timeless (instantaneous events) and time progresses in 
system states 

� where the system can restrict time progress in states (by means of a notion of 
urgency) 

� and system transitions can be enabled or disabled by time progress.  
Timed automata have a notion of global state and an explicit notion of concurrency 
and the possibility to synchronize transitions in concurrent entities. 

 
The standard semantic of SDL as given in [Z100] is expressed by means of 

Abstract State Machines [Gur97, EGG*00], which is in fact both a semantic level 
formalism and modeling language itself. ASM has no predefined time concept 
attached with it, but is expressive enough to express almost any time semantics. The 
ASM semantics for SDL as presented in Z100  
1. defines the level of atomicity of SDL by cutting each SDL transition into a number 

of atomic steps, that is a discrete transition between states, where all intermediate 
auxiliary steps, if they exist, do not appear in the model (the exact granularity is 
almost purely functional and not the object of the discussion) 

                                                           
1 Notice that the approach can be adapted to performance analysis in an almost straightforward 

way by using constraints of probabilistic nature  
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2. it does not enforce orthogonality of time and system progress, but allows external 
time progress arbitrarily in both states and transitions.  

For any ASM model with time progress in transitions, can be defined an equivalent 
ASM model with the additional constraint that time does not progress in transitions. 
Every atomic step is split into two instantaneous atomic step, and time passes in states 
only (see the figure below, where possibility of time progress is suggested by time 
intervals). 

 

atomic step 
taking time

 
 S 

 S’ 

 
 S 

 in step

 
 in step

 S’ 

enter atomic step; 
instantaneous 

now ∈  [t1,t2] 

terminate atomic 
step; instantaneous now ∈  [t2,t3]

now ∈  [t3,t4] 

now ∈  [t1,t2] now ∈  [t2,t3] 

now ∈ [t3,t4]

Fig. 1. transforming an atomic step taking time into two instantaneous transitions with 
time progress in states only 
 
(Communicating) timed automata with urgency [BST98, AGS00, BGS00] are a good 
abstract model for time, and expressible in ASM. In the remainder of this section we 
nevertheless prefer to use the timed automata framework to show how time related 
concepts can be expressed at the semantic level, as they are more intuitive.  

 
Timed automata and modeling languages based upon them [BFG*99,BGM01, 
BLL*98] provide for measuring time a primitive called “clock” instead of providing a 
global time now. Such a clock can be set (to zero) to start measuring a duration, 
consulted for its current value (that is the duration since it has been set). The aim of 
the use of clocks is the encapsulation of time stamping for measuring durations 
without using now. In order not to confuse the reader acquainted with SDL, we use in 
all examples now explicitly instead. 
At semantic level, a transition (an instantaneous state change of the system, as in 
Fig.°1) is fully characterized by: 
� its functional triggering condition and transition function or relation, which we 

abstract away for now 
� a time (and possibly data) dependent enabling condition, expressing at which time 

the transition is possible 
� an urgency attribute which is either lazy, delayable or eager where 

o lazy transitions can wait forever. Whenever a lazy transition is enabled, 
it can be taken, or likewise time can progress and possibly disable it. 
This is the default whenever time is considered as external to the system 

o eager transitions never wait. When an eager transition is enabled, only 
instantaneous discrete transitions are possible as long as any eager 
transitions are enabled. 
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o delayable transitions can wait, but only until the falling edge of their 
enabling condition, that is they can never wait until disabled by time 
progress. 

Urgency allows to control time progress at the semantic level in a very general, 
flexible and compositional way [BST98,AGS00]. Formally, the urgency of all 
outgoing transitions of a (global) system state, impose the following restriction on 
possible time progress in s: at time point t, waiting is possible for a duration δ, as long 
as the Time Progress Condition  

TPC(s)(t)(d) = Λtr∈ trans(s) ¬enabled(tr)(t+d) v¬urgent(tr)(t+d) 

holds for every duration d<δ. The predicate urgent(tr) expresses when a transition id 
urgent, that is equivalent to false for lazy transition, equivalent to the enabledness 
predicate for eager transition, and expresses the “falling edge” of the enabledness 
predicate for delayable transitions (which is not allowed to be strict). 

 
An atomic ASM step which is executed before time t0, and which has a duration of 

2 to 3 time units, is modeled as in Fig. 2: the control over the duration of the step is 
expressed exactly in the same way as the control over the starting time of the step, 
namely by a delayable time constraint on the next transition; that is the end of the 
duration of the atomic step is defined by the point of time at which the finish 
transition is triggered. A 

 

S1 in step S2 delayable delayable 

now <=t0; 
x := now 

2 <= now –x <= 3; 

start step finish step 

S1 in step
    2 

S2 delayable delayable 

now <=t0; 
x := now 

now –x <= 3;  

start sequence finish step 1 

in step 
    1

delayable 

2 <= now –x <= 3; 

finish step 2 

Fig.2: representing an atomic step with time constraints 
 
The duration of a sequence of steps can be constrained in a similar way as shown 

in Fig.22.: the intermediate steps can occur at any time, but not later than the maximal 
overall duration, and the last step must additionally satisfy the required minimal 
duration of the overall sequence of steps. This does not exclude the sequence where 
the duration has reached its maximal value already in the starting state s1; this means 
just that time will not progress any further until the end of the sequence. This is 
                                                           
2 Where, in order to keep the figure reasonably small, the internal states “before entering step i” 

and “in step I” are grouped into a single state, which is a correct optimization when the 
starting transitions of intermediate steps are eager, or when they are unobservable; this 
because waiting for duration d1 followed by waiting for duration d2 is equivalent to waiting 
for duration d1 and d2. 
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especially interesting when the intermediate states are considered as “unobservable” 
(for verification) and can altogether be identified with state s1. 

Also duration constraints on communications are expressed in the very same way 
at the semantic level, where a channel with non zero delay can modeled  
� As in timed automata, by an explicit automaton, receiving signals at the time they 

are sent, and inserting them into the input queue of the receiver process when the 
time constraint on the communication delay is satisfied 

� or as in the ASM SDL semantics, by a sequence of instantaneous atomic steps 
triggered by the output command, which insert the signal into the input queue of 
the receiver and associate with it an arrival time in the future. 

The only potential problem of the second model appears when the receiver does 
not yet exist at sending time, but does exist at reception time.  

Both semantics allow to represent variants of channels, allowing losses, 
reordering,…in a straightforward manner.  

From a modeling point of view it is interesting to distinguish channels in which the 
communication delay of each signal is independent of other signals in transit (that is 
all time guards are independent of each other, except that their order is preserved), 
and those in which there exists some dependency between signals in transit. An 
extreme case is sequential dependency, where the delivery date of each new signal is 
obtained by adding its communication delay to the delivery date of the preceding 
signal in the channel. Timed automata allow to express any kind of dependencies, 
which ones are useful is to be decided at modeling level.  

Eager transitions are triggered “as soon as enabled, without letting time pass” 
whether they have a time dependent enabling condition or not: e.g. they can be used 
for modeling transitions triggered by a timeout signal to make timeout immediate, or 
for atomic steps taking zero time.  

States with only lazy transitions are dangerous in real time design, as the system 
may never progress beyond this point. Nevertheless, they are useful for modeling a 
time non deterministic environment, or for modeling alternative behaviors which 
might or might not become possible within some time slice.  

 
Notice that nothing more is needed than urgency and time dependent enabling 

conditions for expressing most concepts useful at language level: 
interrupts do not need any new primitive. An SDL transition which can be 

interrupted just has an alternative representing the interruption in every semantic state 
in between its starting and its end state. As system steps are instantaneous at the 
semantic level, an interrupt is allowed to occur at every point of time during which 
the system is within the transition. Interrupts which leave the process in an 
“undefined” state, has to be modeled at the semantic level by means of an undefined 
value or non deterministic assignments. Modeling of interrupts in the current ASM 
semantics for SDL is more complicated than just an alternative in the semantic model. 

suspension or pre-emption as used in scheduling can also be expressed without 
any new primitive. For this purpose, the state “in-step” associated with each atomic 
step, needs to be refined into two states “computing” and “suspended” and the 
transitions between them to be controlled by a scheduler automaton; the scheduler 
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guarantees that always at most one3 of the to be scheduled concurrent behaviors is in 
the state “computing”, and also that there is as often as possible at least one behavior 
in state “computing” to guarantee maximal progress.  

Obviously in presence of scheduling, the enabling condition of the transition 
exiting each atomic step, which constrains the duration of the step, must take into 
account the time passed in the state “suspended”; that is, in Figure 2, the condition 
“2≤(now-x)≤3” should be replaced by “2≤((now-x) –dsusp)≤3” if the interval [2,3] 
constrains the execution time and not the overall duration of the step. Notice that, in 
timed automata, there exists the concept “stopwatch”, a “clock” which can be stopped 
from time to time and restarted again later, and whose value is the duration since the 
last reset during which it has not been stopped. Thus, stopwatches can be used in an 
obvious manner to model durations in presence of suspension without introducing the 
“suspended” state explicitly in the behavior automaton (see for example [AGS00]). 

 
The representation of scheduling laws, according to which the schedulers suspends 

and (re)starts processes, needs a means to chose the right transition according to the 
scheduling law. In [AGS00] shows that any scheduling laws can be represented by 
means of dynamic priorities, given in the form of rules of the form “ c  ==>  t1 > t2”, 
meaning that whenever condition c holds transition t1 has higher priority than 
transition t2. This is not necessarily how scheduling laws should be implemented, but 
it defines a very general semantic scheduling framework, allowing to model any 
possible scheduling algorithm (such as by process priorities, RMA, EDF,..). The time 
needed for scheduling can, where this is relevant, be modeled by waiting in the 
scheduler during which no scheduled process is active. 

3. Modeling non functional aspects  

Modeling is usually done with the perspective of performing analysis. Modeling 
for analysis requires building a model of the system and of the environment. In the 
context of real time systems the environment includes time.  

The expression of constraints should be convenient, abstract and different from 
functional notations. Standard SDL can not be used for this purpose, as modeling the 
time environment of the systems means imposing constraints on time spent in 
transitions, in communications and also in all other implicitly defined activities, and 
SDL has only functional timing primitives allowing to define minimal bounds on the 
starting time of transitions and tasks. Therefore new concepts have to be introduced, 
which also must be different from functional concepts. 
Notice that the time semantics of current SDL tools [Geode,Tau], in strong 
contradiction to the standard, considers SDL transitions as instantaneous and eager, 
that is time progress is similar as in the underlying semantic model. This allows to 
express maximal bounds on time progress in states, at the price of using functional 
primitives, such as timeouts or time guards, to model non functional aspects. This 
makes the resulting specification hard to read and inadequate for code generation. 

                                                           
3 or at most n, where n is the number of available resources 
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In the sequel of this section we discuss constraints expressing (known, assumed or 
desired) characteristics of the (time) environment, that is the underlying execution 
system.  

The purpose is not the expression of requirements, depending on the environment 
and the system dynamic. 

Communication delays 

For the expression of communication delays, two questions must be answered. What 
kind of constraints are needed, and how to associate them with “communications”. 
Concerning the association, there exist several possibilities: 
� attach constraints with outputs, that is the “source” of communications; this has the 

advantage to ease the expression of signal dependent communication delays, but 
it introduces overheads and possible inconsistencies between delays associated 
with similar communications. 

� as all communication is through channels, a straightforward option consists in 
attaching constraints with delaying channels. This option has been chosen in time 
enhanced versions of Geode and Tau. 

� SDL channels define logical communication paths, which must later on be mapped 
to physical means for communication (which might be everything from a shared 
variable to the internet); obviously taking into account the actual target 
architectures (outside SDL), allows to obtain more faithful estimations of 
communication delays.  

The last two options are not necessarily exclusive. The first one is to be used in 
absence of information on the target architecture. When this information is available, 
it is a better source for assumptions on communication delays. A sanity check 
between the two levels of assumptions, consists in verifying if for every possible end-
to-end communication, the constraint obtained from the architecture refines the 
constraint defined at SDL level. 

 
The types of useful constraints, especially for performance analysis, are manifold, 

and can probably not be fully captured by simple annotations as we propose them. A 
reasonable solution consists in: 
� defining a set of annotations allowing analysis at an abstract level.  
� taking into account characterizations of the communication media which can be 

given in the architecture description; as long as they can be used as a model of 
the channel behavior for the construction of the overall semantic model; SDL can 
be used to define such channel behaviors, where the use of functional time 
constructs is not problematic (as no code is generated for channel behaviors) 

 
We consider only a small set of SDL channel annotations which we believe 

sufficient together with the above mentioned possibility for defining a more fine 
grained performance model. The choice of annotations has been made with the 
motivation to allow at least the features implemented in [O01] in order to take into 
account losses and two types of communication delays. Channels can have 
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� a loss rate, which is defined by an expression evaluating to a real in [0,1].  
� A delay – either of type pipeline or delay –defined by an expression of type 

“interval of duration”; an interval of durations is defined by two duration 
expressions representing its minimal and the maximal value. 

 
Constraints of type “pipeline” are load independent (for modeling communication 
media with some degree of parallelism, such as the internet), and constraints of type 
“delay” are the sequential load dependent type of constraints (for modeling purely 
sequential media) as defined in section 2.  

Restricting loss probabilities and durations to constant expressions allows static 
type checking and eases analysis, whereas data dependent constraints increase 
expressiveness. Our point of view is that, at language definition level, such constraints 
have not there place, but tools will introduce the constraints necessary for analysis. 

Execution times 

Also for execution time constraints, we have to identify the useful types of 
constraints: 
� in the context of timing analysis the assumption that everything takes an arbitrary 

amount of time except if specified otherwise, is unrealistic. A more realistic 
approach is on the contrary that system activities take zero time and no waiting in 
state, unless specified explicitly otherwise. Its up to the designer not to abuse of 
this facility. 

� we consider duration constraints of type “interval of durations” defined by two 
duration expressions for the minimal and the maximal value of the interval 

� we distinguish between  
o absolute durations, constraining the overall time passing between the 

start and the termination of a behavior,  
o and execution times, which do not include time for waiting for the 

environment or the disponibility of the processor resource. 
In models close to the implementation, the second type is more interesting, but 
also global estimations (abstracting away from exact waiting times for 
scheduling by including estimations of them) are quite frequently used. Absolute 
durations allow to constrain signals from the environment without necessarily 
modeling them explicitly. Notice that waiting for communications from within 
the system cannot be considered as included in the constraint durations as they 
are determined by the system itself, whereas the intention here is to express pure 
environment constraints,. 

At the semantic level, a duration constraint on a given behavior - a sub graph of the 
control graph representing the functional model - are expressed by generalizing the 
idea expressed in Fig.2 of section 2. The fact that a duration measure is “stopped” in 
states waiting for the scheduler or a signal to arrive, can also be expressed exactly as 
already explained in section 2. 
 
The second question is for which sort of behaviors one can constrain the duration.  
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� the time extended versions of SDL tools allow to associate duration constraints 
with tasks, outputs, decisions and any single SDL behavior constructs; this is 
acceptable when explicit constraints are explicitly given only for the constructs 
whose duration is judged non negligible. Obviously, this approach requires some 
rigor of the designer as zero time loops (Zeno behaviors) must not be excluded. 

� it is also convenient to associate durations with more complex pieces of sequential 
behavior, such as transitions or procedures constraining the duration between 
start and end state(s). The case of non termination is a functional design error.  

� The possibility to associate a “duration” with agents is restricted as it applies at 
best to passive agents without re-entrance. 

� a more flexible way of constraining sequential behaviors which are not necessarily 
within a single process, is obtained by constraining the time passing between 
pairs of “events” (e1,e2) which need not to be in the same process. In the semantic 
model such a constraint is represented by an automaton as in the figure below, 
executed in parallel with the constraint behavior, “activated” on occurrence of e1, 
deactivated by the occurrence of e2 and imposing time progress by less then the 
minimal duration as long the constraint is active.  

 

I A

?e1 : t0 := now 
eager 

?e2 : :min < (now- t0) – twait < max 
delayable 

?e2 :  is a CSP like synchronous rendez-vous 
twait   is the waiting time obtained by  
           refining state A 

task 1 

task 2 

e1  = exit : x=0 

Possible re-entry can be handled by activating a new occurrence of the constraint 
automaton at each occurrence of the “start” event e1. These “events” correspond 
to semantic level events of type “change” state; states are graphically represented 
vertical lines in an SDL transition, and two events “enter state” and “exit state” 
are associated with them. We therefore attach events with vertical lines and 
distinguish its two events by a keyword enter or exit. Moreover the occurrence of 
an event can be constraint by a condition. 

Notice that a good graphical representation for such constraints is an MSC like 
notation, similar as proposed in [SPI97,DDH+01], which are used for constraining 
time progress. 

 
The discussed features are very interesting from the point of view of expressiveness 
as they allow loose time constraints avoiding over specification,. Nevertheless, 
analysis of systems with time constraints of behaviors containing many system 
interactions induce a tremendous amount of non-determinism, limiting the 
possibilities of analysis. Constraining only pieces of behaviors without 
communications, allows more compositional analysis.  
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Also the use of “overlapping” time constraints is not allowed as the satisfiability of 
the a set of overlapping constraints is undecidable, and thus the underlying semantic 
model. 

Time constraints of the environment 

For the signals arriving from the environment, one needs to specify response times, 
inter arrival times, jitters, … 

In SDL there exists no particular notation for the environment and must be 
modeled by processes (for which no code is generated). Notice that all the above 
features can easily be expressed by means of eager or delayable transitions and time 
guards controlling the time when the environment sends a signal. As for the 
environment process no code is generated, it is unproblematic to use functional 
constructs for expressing non functional time constraints of the environment, and no 
special notations need to be introduced. 

Notice however that a special notation for behaviors representing the environment, 
as the notion of “actor” in UML, would help to obtain more readable designs. 

Scheduling 

How to represent scheduling information in SDL, and the question if it is a good 
option to express scheduling within SDL, is out of the scope of this paper. We briefly 
discuss only the information necessary to construct the semantic level scheduler (as 
introduced in section°2) which controls a set of processes by means of a set of priority 
rules.  
The information on deployment of processes on processing units, allows to define the 
association between the semantic level schedulers of section 2 (representing 
processing units) and controlled processes. Without any further information, the 
semantic model represents non deterministic scheduling and analysis of maximal 
execution times valid for “any” scheduler. 
The set of priority rules allowing deterministic scheduling could be given as such by 
the user or calculated for standard scheduling algorithms (RMA,EDF,..) where it is 
important to have the information about the pre-emptibility of (sequences of) atomic 
steps. In [AGS00] a methodology is presented for defining the priority rules in a 
modular way starting with the innermost agencies; at every level one needs to relate 
transitions of different agents at the same structuring level. 

Local time 

A fundamental aspect of modern real-time distributed systems that makes them 
especially complex to model and reason about, is the absence of a global system 
clock, and thus time. Temporal synchronization between distributed components must 
be achieved by the system itself where the simplifying assumption that the time 
reference now has everywhere the same value is not appropriate. It is also often the 
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case that this temporal coordination of the components is the key area where SDL and 
its associated model checking tools should be applied, i.e. this is the most complex 
design area where unforeseen errors such as deadlocks, livelocks etc caused by the 
temporal coordination of the components, are likely to be introduced. A notion of 
local time or local clock is therefore important. 

Local time can be expressed, but in an awkward manner: in a real time system 
there must always exist a defined relationship between the external reference time 
(now) and local time, defined for example by a maximal drift or offset. In this 
context, any condition on local time can be transformed into a (weaker) condition on 
now, reflecting the possible values of now for a given local time value.  

We proposed to introduce the notion of local time (defined by a drift and/or offset 
with respect to the global time now); local clocks or timers progress with respect to 
their reference time.  
 

4. Functional time related concepts  

SDL is a modeling language, but it is also used to automatically generate code, and 
for this reason the functional constructs must be well distinct from non functional 
constructs. In its classical application domain, that is communication protocols, the 
existing functional features, time guards and timeouts, are sufficient as time is mainly 
used for time stamping and to avoid indefinite waiting4.  

Time stamping 

Time stamping is quite cumbersome in SDL. At certain control points the current 
value “now” is stored in a time variable (or sent as a parameter of a signal) and at a 
later point the difference between the current and the stored value of “now” is used in  
functional decisions  

The “clock” primitive of timed automata, as introduced earlier can also be used 
conveniently in the context of functional design for measuring durations without 
explicit reference to absolute time now. Thus, clocks do not increase expressivity, but 
are a methodological help for the designer to use absolute time now in an 
inappropriate way. 

Interrupts 

During the entire execution of an SDL level transition, the concerned process is 
insensitive to signals from the environment. In order to increase the reactivity of a 
process it is convenient to have the possibility of interruption.  

                                                           
4 E.g., for a signal that has been lost or has never been sent because a part of the system has 

failed silently 
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The real-time language Esterel [BG92,Esterel] has a primitive watchdog for 
exiting a transition on an external signal. State-charts offer in addition the possibility 
of “deep history re-entry” which allows to return to the point of control where the 
transition has been exited, that is to explicitly model pre-emption.  

In SDL, the possibility of pre-emption can be obtained by using concurrent 
processes for the pre-empting and the pre-empted transition, as concurrency leaves 
the room open for arbitrary interleaving of atomic steps of the transitions at execution 
time, that is any possible pre-emptive behavior. 

interruption by signals or time progress can not be expressed in SDL in a 
convenient way, as they imply reactivity to the environment within a transition. An 
inelegant, and often used, workaround consists in  
− testing time at various places within the transition if interrupt can be caused by 

time progress  
− cutting the transition into several transitions allowing to test the arrival of an 

interrupt signals more often. 
− When even a single task may take longer than the allowed reaction time to the 

interrupt, this task is often modeled by a slave process, started by the master 
process which waits for the slave process to terminate and remains always reactive 
to an interrupt signal. 

All these workarounds emulate in more or less precise way at SDL level the 
underlying semantic model; the first two methods imply an undesirable discretisation 
and to unreadable specifications and the third one induces a considerable modeling 
overhead and still does not allow to terminate a time consuming activity which has 
become useless for some reason. The introduction of an explicit “interrupt” primitive 
leads clearly to a greater modularity of the design. We propose to use an extension of  
the exception mechanism to represent interrupts. As it has been shown in section 2, 
the translation of this primitive in the semantic model is straightforward. 

Time under the control of the system 

The assumption that, in the implementation, time is external to the system is 
appropriate in most systems. Nevertheless, whenever a clock synchronization 
algorithm is designed, or whenever the “system clocks” have to be considered “part of 
the system” rather than external, it is important to have primitives which on one hand 
are closely related to external time, but are under the control of the system. A clock as 
those used in timed automata introduced above, can play this role, as it increases with 
time and can be set by the system to any specific value allowing corrections of clock 
values. The recently accepted Profile for Real-time, Scheduling and Performance 
[RFP02] and [MSD+01] propose slightly different “clocks” (in the sequel called UML 
clocks). They also depend on external time, but instead of offering a value whenever 
they are asked for, they are by essence discrete and send periodically a time signal 
containing the current value of the clock. Thus, in terms of SDL, they are cyclic 
timers sending the time value attached with the “timer” signal. As well the timed 
automata clocks as the UML clocks can be used to model system clocks – which have 
to be used instead of “now” in all functional constructs. Notice that the timed 
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automata clocks are more abstract and avoid the explicit consumption of time signals 
when time is not needed. 

5. Conclusion 

This paper motivates a number of time concepts necessary for modeling functional 
and non functional time related aspects of systems and shows how they can be 
expressed in the semantic model.  

The main aim of the paper is to underline the necessity of strict distinction between 
primitives for functional and non functional modeling, and to propose a rich set of 
primitives for modeling non functional aspects, in particular time constraints, so far 
completely lacking in the standard.  

We exclusively consider time constraints representing the environment of the 
system, that is entities outside the system which exchange signals with the system, 
and the underlying execution platform which determines the execution time. The 
constraints are designed in such a way to disallow the expression of mixed constraints 
on both the environment and the system.  

This is the purpose of requirements to be expressed in an requirement language. In 
ObjectGeode, requirements can be expressed by observers. MSC are too weak to 
express general time dependent safety properties. But extensions of MSC, such as 
Live sequence charts [DH99], can be good candidates for a requirement language. 

In this paper we have not discussed the introduction of an appropriate atomicity: to 
allow compositional modeling, a sequence of steps can be considered as atomic if 
interaction with the environment takes place only at starting time and/or at 
termination time of the sequence (atomic steps are represented at the semantic model 
by two transitions, thus guaranteeing a single interaction in each transition). 
Interactions with the environment are sending or reception of signals, but also RPC, 
and use of now in decisions,… Thus individual transitions (and sometimes even the 
evaluation of time dependent expressions) must be cut into several atomic steps, 
resulting in a very fine grained semantic model. Especially, the use of now within 
transitions is problematic, as whatever processes are grouped into a “module”, reading 
time is always a communication with the environment. Fixing the choice of the value 
of now for at least a part of the transition leads to more reasonable granularity (and 
implementation).  

Concerning performance analysis, we don’t believe that very fine grained timing 
analysis (taking into account time for individual assignments, evaluation of single 
expressions, …) are appropriate at SDL level, as the distance between an SDL model 
and the generated code (where several processes may be grouped into a single thread, 
sending of signals become assignments,…and moreover code optimization induced 
important changes) is too important. But, good analysis results can be obtained by 
“measuring” execution times of pieces of behavior for a given implementation on a 
given platform and back annotating them into an SDL model for analysis. The tool 
proposed in [CPP*01] allowing timing analysis of Esterel programs is based on this 
idea. 
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Finally, the relationship with the Profile on Performance scheduling and Time of 
OMG [OMG02] which has been recently accepted, should be clarified. The aim of 
this profile is to provide a catalogue of notations – aiming almost for exhaustivity - 
and the definition of their interdependencies. There is very little about semantics or 
how these notations could be used for analysis. The aim of the work presented in this 
article is on the contrary the definition of a minimal set of notations necessary for 
design and analysis and to provide a precise semantics. Nevertheless, conformance 
with the notations defined in the UML profile, whenever this is reasonably possible, is 
preferable. Some, but not all notations and concepts have already been defined with 
this profile in mind. 
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