Approximate Pruning in Tabled Logic
Programming

Luis F. Castro and David S. Warren

Computer Science Dept

SUNY at Stony Brook

Fax: +1 (631) 632-8334
{1luis,warren}@cs.stonybrook.edu”

Abstract. Pruning provides an important tool for control of non-
determinism in Prolog systems. Current Tabled Prolog systems improve
Prolog’s evaluation strategy in several ways, but lack satisfactory support
for pruning operations. In this paper we present an extension to the eval-
uation mechanism of Tabled Prolog to support pruning. This extension
builds on the concept of demand to select tables to prune. In particular,
we concentrate on systems based on SLG resolution. A once operator is
described, which approximates demand-based pruning, providing for an
efficient implementation in the XSB system.

1 Introduction

Prolog is a programming language in which the programmer uses Horn clauses to
specify a computation. Prolog uses a backward chaining, goal-directed, demand-
driven evaluation strategy that can give it an advantage over forward chaining
systems in that it tries to derive only subgoals that are relevant to the main
query goal. So it evaluates only those predicates which are necessary to derive
the goal. However, its strategy does allow it to derive the same (necessary)
subgoal many times, leading, for example, to unnecessary exponential behavior
when recognizing some context-free languages.

Tabled Prolog [14] improves on Prolog in that, in addition to deriving only
what is necessary for the goal, it will derive such subgoals only once, using a
table to short-circuit multiple recomputations of the same subgoal. So Tabled
Prolog tries to compute only what is necessary to the goal at hand, and for
what it does compute, it computes it only once. For example, this allows Tabled
Prolog to be polynomial when recognizing any context-free language.

So it might seem that Tabled Prolog does the minimal amount of compu-
tation possible. (Of course, this is without “foreknowledge” of which nondeter-
ministic choices would lead to a proof.) However, even Tabled Prolog still does
computation that can easily be seen to be unnecessary.

Consider Prolog and its evaluation of a goal :- p applied to the following
propositional program:

* This work has been partially supported by NSF grant ETA-9705998.

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 69-83, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

70 L.F. Castro and D.S. Warren

;- table_all.

p :- q,t. q :-r.
P q :- s.
r. s -

Note that Prolog will evaluate all of s before eventually failing back to succeed
through the second clause for p. (The first clause must fail since t, having no
facts or rules, cannot succeed.) But note that it can be easily determined that s
need not be evaluated. Once q succeeds (here due to r succeeding), there is no
need to try any other clause that might lead to q succeeding again. For a ground
goal, once it succeeds, there is no reason to search further for other proofs of
that goal. That work is clearly unnecessary for proving (or failing to prove) the
main goal.

Prolog provides a way for the programmer to control the computation so
that the unnecessary evaluation of s in our example is not done. This can be
accomplished by adding a cut (!) after the call to r at the end of the first clause
for g. Alternatively, if we want to constrain somewhat how cuts are used, we
could wrap the call to q with a once operator. These operators would prune the
computation tree so that s would never be tried.

Thus we see that Prolog provides pruning operators that allow the program-
mer to eliminate this kind of unnecessary computation. But in Tabled Prolog
there are no such pruning operators. And this is not just an oversight. In the
presence of multiple tables and multiple demands on the same table, knowing
when a table is not demanded is complex. In Prolog every computation is “on
behalf of” a single chain of requesting goals, so if that chain is broken, all the
computations along that chain can safely be deleted. However with Tabled Pro-
log, a single computation that fills a table is working “on behalf of” all users of
that table. So a single user of the table may decide it no longer needs that table,
but there may be other users still depending on the computation that fills it.
Therefore a pruning operator in Tabled Prolog requires a more complex analysis
of subgoal dependencies.

In this paper we present an extension to the evaluation mechanism of Tabled
Prolog to support pruning. This extension builds on the concept of demand [9)
to select tables to prune. In particular, we concentrate on systems based on SLG
resolution [2].

Use of general demand for pruning requires an expensive reachability analysis
on the evaluation graph. In order to avoid this, we present an approximate
solution that is sound, and preserves the semantics of demand-based pruning.

1.1 Related Work

Implementation of pruning operators on systems where the evaluation strategy
differs from that of standard Prolog present a set of interesting challenges, which
have been the subject of previous study.

Approximate Pruning in Tabled Logic Programming 71

One area where this subject has seen a significant amount of work is that
of parallel implementations of Prolog [6,1]. In that case, the usual goal is to
maintain a semantics that is as close to Prolog as possible. This involves, among
other requirements, the synchronization of tasks when pruning is present.

In the context of Tabled Prolog, the first attempt at providing a pruning
operator, to the best of our knowledge, is presented in [10]. There, an imple-
mentation of the cut operator for SLGq is defined and shown to preserve Prolog
semantics for green cuts [7].

Recently, a new approach has been proposed by Guo and Gupta in [5].
This work presents an implementation of cut for an alternative Tabled Prolog
evaluation strategy called DRA [4]. This operator is defined in terms of the fixed
operational semantics of DRA, which is based on recomputation of so-called
looping alternatives. The main difference of our work is that we attempt to
create a pruning operator with a semantics that is not dependent on the specific
operational semantics of a given implementation.

2 Demand-Based Pruning

SLG resolution [2] is traditionally modeled as a forest of trees. Each tree corre-
sponds to a unique call pattern (parameter instantiation) of a tabled predicate
encountered during evaluation. Trees are expanded by performing clause resolu-
tion against the clauses of the program definitions of the table predicates. Each
resolution step is represented by a node in a tree. Other calls to tabled predicates
are represented by nodes of a special kind, called consumer nodes. Each node is
represented in the form of a Prolog rule, where the head carries the substitutions
performed on the variables of the subgoal, and the body represents the current
continuation as a list of goals to be resolved.

p(X) := q(X)

pd) :-

r(X) :- r(X)

r(X) :- r(V),
r(a) :-

r(X) :z e(a,X).

AN

) i (o) -

r(X) :- e(b,X).

N
r(d):-

) - A

qX) - r(X), s(X).

q(®) - s(b). q(@ :- s(d

a(@ - s@. @ - o). |
a@ :-

Fig. 1. Snapshot of an SLG evaluation

72 L.F. Castro and D.S. Warren

Figure 1 represents a possible state of the system during evaluation of the
query :- p(X). against the program of Listing 1. Each tree is represented by
a triangle inclosing a derivation tree. Edges between trees represent the depen-
dence relation between consumer nodes and trees. In the remainder of the paper,
we will abstract away the details of derivation trees, and concentrate on the trees
in the system and the dependence relation among them, depicted in the form of
edges.

:- table p/1, q/1, r/1. e(a,b).
p(X) :- q(X). e(a,c).
qX) - r(X), sX. e(b,d).
r(a). e(c,d).
r(X) :- r(Y), e(Y,X).

s(d).

Listing 1: Reachability

In fact, the dependence relation defines a multi-graph, where nodes are the
trees in the system, and there is an edge for each consumer node, connecting the
consuming tree to its supplier. We call this graph the Demand Graph, since it
denotes a relation of demand and supply between tables. A demand graph is a
weak approximation of the notion of Relevance defined in [11].

Definition 1 (Demand Graph) Given a snapshot of an SLG system, a De-
mand Graph Dg(N, E,Qy) is a directed multi-graph where N is a set of nodes,
each representing a tree in the SLG system, and E is the set of edges, represent-
ing the dependencies between trees. Qn is the node representing the tree for the
query being evaluated.

This multi-graph expands as evaluation progresses and new trees and consumer
nodes are created. In fact, in the absence of pruning operators, the graph only
grows monotonically, until evaluation of the query is completed. Pruning intro-
duces a non-monotonic component to the evaluation when undemanded trees
are deleted.

The desired semantics of once(P) states that P should succeed at most once.
In other words, as soon as the first successful derivation for P is found, the
associated consumer node should be marked such that the goal once(P) does
not succeed again. If P contains variables, only one possible binding for each
variable is returned. Assuming that P is a tabled predicate, applying the once
operator on P essentially amounts to removing an edge from the demand graph
of the system when P succeeds. Clearly, this removal may affect the connectivity
of the graph, rendering some trees unreachable from the query tree. This state
is captured by the concept of Demand on trees.

Definition 2 (Demand on Trees) Given a demand graph Dg(N,E,Qn), a
node Ty is said to be demanded if there is a path in Dg, from the query node
QN to Ty. Similarly, if no such path exists, we say that T1 is undemanded.

Approximate Pruning in Tabled Logic Programming 73

For performance reasons, undemanded trees should not be scheduled for fur-
ther evaluation, since there is no indication that other answers for them will be
needed to evaluate the current query. Therefore, our algorithm eagerly detects
undemanded trees when pruning occurs, and removes them from the set of active
trees.

Listing 2 shows pseudo-Prolog code for a demand-based once opera-
tor. We assume that nodes are created in a stack-like structure, so that
get_next node_ref returns a reference to the next node to be created. A meta-
call starts evaluation of the subgoal P, creating a new node, which is referred to
by R. After the meta-call returns, remove_demand disconnects the consumer node
referred to by R from the tree that supplies it. A reference to the query table
is then obtained, and reachability from the query is computed. undemand _trees
removes all trees in the system that are not demanded from the scheduling set.

once(P) :- undemand_trees(G) :-
get_next_node_ref (R), table(T),
call(P), (not member(G,T)
remove_demand (R) , -> undemand_table(T)
query(Q), ; true
reachable(Q,Reach),),
undemand_trees (Reach) . fail.

undemand_trees(_).

Listing 2: once implementation in Prolog

While it represents our desired semantics, an actual implementation of the
algorithm in Listing 2 would present a few drawbacks. First, an expensive traver-
sal of the demanded trees has to be performed each time pruning takes place.
Also, a resumption mechanism is necessary, in order to re-impose demand on
previously undemanded trees for which new consumers are created.

Another point to notice is that it may be advantageous, from the point of
view of memory management, to actually remove undemanded trees. In that
case, if new calls to undemanded trees are created, these trees will have to be
recomputed. On the other hand, if trees are never collected, memory usage may
be problematic.

We next define a safe approximation of a demand-based once operator, which
attempts to delete trees when demand on them is released.

3 Approximate Pruning

We have argued, in the previous section, that implementing a pruning operation
based on exact demand is hard, requiring a full reachability analysis over the
evaluation graph. In this section we present an approximation of this operation
aimed at preserving our desired semantics, while decreasing the implementa-
tion costs of pruning. In the following, we describe the intuitions behind our
approximation, before presenting the pruning algorithm.

74 L.F. Castro and D.S. Warren

One issue related to pruning in Tabled Prolog systems is whether unde-
manded trees should be frozen, or completely deleted. Freezing trees allows for
possible future calls to benefit from results already computed, and restart eval-
uation from that point on, if necessary. On the other hand, if these trees are
never called again, deleting them is a more memory-efficient solution. The prob-
lem constitutes a tradeoff between evaluation time, which is minimized if trees
are frozen, and memory usage, minimized when trees are deleted.

The pruning operator presented here deletes trees whenever possible. When
undemanded trees are deleted, recomputation may become an issue, possibly
altering termination characteristics of programs. Even so, we believe there are
many applications where keeping undemanded trees may turn out to consume
excessive amounts of resources and adversely affect system performance. Another
advantage of this approach is its simplicity. Supporting resumption of trees,
besides requiring extra bookkeeping, impacts the scheduling mechanism in a
non-trivial way. On the other hand, it may improve long-running computations
significantly, when trees are reused, and thus recomputations avoided.

A full demand-based pruning operation, as presented in the previous section,
is able to select individual trees which become undemanded when a given edge is
removed due to pruning. The algorithm we describe next uses an approximation
to decide which trees to delete. The application of a pruning operation induces
a scope. Intuitively, the scope consists of all those trees that have been created
during the evaluation of the goal being pruned.

The notion of scope captures all those trees which could potentially be deleted
from the system as a result of this application of pruning. The fact that a table
is in the scope of a pruning operation does not directly mean that it can be
deleted, since it can still be demanded. Instead of selecting which trees continue
to be demanded, and which do not, our approximation decides whether to delete
in the level of a scope. When all trees in a scope are undemanded, then they
are all deleted. Otherwise, all trees in the scope are maintained in the system.
However, instead of freezing these trees, they are maintained as active, and new
(possibly unnecessary) answers for these trees may be computed. While this may
cause superfluous work to be done, the semantics is guaranteed by removing the
connection between the specific subgoal being pruned and the table that supplies
answers to it.

In order to support this approximate pruning algorithm based on this notion
of scope, we augment our evaluation model with timestamps that impose an
ordering in events. Based on this extended model, the notion of scope is defined
in terms of reachability over generator edges. Finally, the approximate pruning
algorithm is presented and discussed.

3.1 Timestamped Forest of Trees

First we augment the concept of demand graph by introducing timestamps on
its edges and trees. We assume a global counter of events is available, which
is incremented each time a new edge is created. When an edge is created, it is
tagged with the current value of the event counter. Also, trees are timestamped

Approximate Pruning in Tabled Logic Programming 75

with the value of the event counter at the time they are created. When no
pruning takes place, each tree has the same timestamp as its oldest incoming
edge. In fact, this edge has a special significance, and is called the Generator
edge for that tree.

Definition 3 (Generator edge) An edge is said to be the Generator edge of
a tree T; if its destination is T;, and its timestamp coincides with that of T;.

We denote the timestamp of an edge e (tree t) as timestamp(e)
(timestamp(t)). The source (destination) of an edge is defined in terms of the
timestamp of the tree it points from (to).

Definition 4 (Edge properties) Given an edge e, from tree Ts to tree Ty, we
define:
source(e) = timestamp(Ts)
dest(e) = timestamp(T})

Figure 2 shows the timestamps in the system depicted in Figure 1. Notice
that the query tree has always a timestamp of 0.
The main characteristic of approximate

1 2 e pruning is that trees are only considered for

3 removal when their corresponding generator

0 1 2 edges are also removed. Removal of a non-
generator edge never causes a tree to be re-

Fig. 2. Timestamps moved. Therefore, in order to decide which

trees can be removed, we have to consider
only those trees which are reachable via generator edges.

The scope of a given application of once on a subgoal is, intuitively, the set
of trees that may potentially be undemanded after the generator edge for the
subgoal is removed. The scope is defined in terms of reachability over generator
edges. We first define the Generator-Restricted Demand Graph as a restriction
on the edges of a demand graph, such that only generator edges are included.

Definition 5 (Generator-Restricted Demand Graph) Given a demand
multi-graph Da(N, E,Qn), we define its induced generator-restricted demand
graph as the graph Dg(]\LE’,QN), where E' is defined by E' = {e €
E | e timestamp(e) = dest(e)}.

Generator-reachability is defined as reachability over the generator-restricted
graph entailed by a given demand graph.

Definition 6 (Generator-reachability) Given a demand graph Dg(N, E,
Qn), and an edge e € E, we define Generator-reachability as the set of edges
reachable from e in the Generator-restricted graph induced by Dg.

reachg(e, Da(N, E,Qn)) = {¢ € E | € € reach(e,Dg,)}

76 L.F. Castro and D.S. Warren

Finally, we define the scope of a pruning operation as the set of trees that
are Generator-reachable from the edge being removed.

Definition 7 (Scope) Given a demand graph Dg(N,E,Qn) and an edge e €
E that is the direct subject of a once operation, we define the scope of the once
operation as

scope(e, Dg) = {€' € reachg(e, D)}

Our algorithm is based on the principle that a pruning operation can only remove
trees which appear in its scope. But the fact that a given tree ¢t appears in a
scope does not imply that it is not demanded. It may happen that there are
other edges, in the demand graph, connecting nodes outside the scope to ¢, thus
creating an alternate path from the query tree to ¢, which does not use the edge
being removed. This alternative source of demand is called external demand.
For example, consider the situation if Figure 3, where edge number 2 is being
pruned.

The scope, in this case, consists of trees
with timestamps 2, 3 and 4. But edge num-
ber 6 imposes an external demand on tree 4,
so that this tree cannot be deleted. In this
case, approximate pruning removes edge 2,
but does not delete any trees, since there is
external demand on the scope.

In order to detect whether a given scope
has external demand, we need to inspect all edges coming into trees in the scope.
If the source of any of these edges is a tree that is not in this scope, then there
is external demand. Otherwise, the scope is undemanded.

Fig. 3. External Demand

Definition 8 (External demand on a scope) Given a demand graph
Da(N, E,Qn) and an edge e € E that is the direct subject of a once operation,
we define that the scope of this pruning operation is externally demanded as:

external _demand(e, Dg(N, E,Qn)) < Je’ € E | source(e’) ¢ scope(e, Dg)A
dest(e’) € scope(e, Dg)

3.2 Approximate Pruning Algorithm

The algorithm for approximate pruning implementing the once operator is pre-
sented in Listing 3. It performs a meta-call on the subgoal being pruned, and
releases demand on it after the meta-call succeeds. The algorithm is presented in
a high-level Prolog form, and assumes the existence of the following builtin pred-
icates, which form an interface for inspecting and manipulating the internally
represented current demand graph.

edge (Source,Dest,Timestamp). A set of facts that describe the edges of the
demand graph;

Approximate Pruning in Tabled Logic Programming 7

timestamp(Timestamp). A builtin predicate that returns the current value of
the timestamp counter;

delete_edge(Timestamp). Removes the edge given by Timestamp from the
graph;

delete_tree(Timestamp). Removes the tree with timestamp Timestamp, and
all edges outgoing from it.

once (SubGoal) :- :- table gen_reach/2.

timestamp (Timestamp) , gen_reach(Timestamp,Tree) :-
call(SubGoal), edge(Timestamp, Tree, Tree).
delete_edge(Timestamp), gen_reach(Timestamp,Tree) :-
(generator (Timestamp) gen_reach(Timestamp,Treel),
-> (demanded_scope(Timestamp) edge (Treel,Tree,Tree) .

-> true

; delete_scope(Timestamp) delete_scope(Timestamp) :-—

) gen_reach(Timestamp,Tree),
; true delete_tree(Tree),
). fail.

delete_scope().
generator (Timestamp) :-
edge(_,Timestamp,Timestamp) .

demanded_scope (Timestamp) :-
edge (Source, Dest, Time),
Time > Timestamp,
not gen_reach(Source),
gen_reach(Dest) .

Listing 3: Pseudo-code for optimized version of once

The predicate once receives as argument a subgoal to be resolved. It starts
by recording the current timestamp, which is the timestamp of the next edge to
be created. The subgoal is called using Prolog’s meta-call builtin. Upon return
of the meta-call, the edge corresponding to the subgoal is deleted, thus enforcing
the desired semantics.

Further optimization is performed by deleting the tables created during com-
putation of the subgoal, whenever possible. The general algorithm presented in
Section 2 performs reachability from the query tree in order to select, indi-
vidually, which trees are undemanded and can be deleted. In this optimized
algorithm, tree removal is decided in terms of the scope of the once operation.
That is, if there is external demand on any tree in the scope, then no trees are
removed; otherwise, all trees in the scope are deleted.

This is performed by first checking whether the edge of the subgoal is a gener-
ator edge. In that case, demanded_scope checks whether any tree in the scope of
the subgoal has external demand. If so, nothing is done, otherwise delete_scope

78 L.F. Castro and D.S. Warren

removes all trees in the scope from the system. Both demanded_scope and
delete_scope are defined in terms of gen_reach, which implements generator-
reachability.

4 Implementation

We present an implementation of approximate pruning in the XSB Prolog[13]
system. XSB is based on the SLG-WAM]J8] abstract machine, a specialization
of the original WAM][16]. We first provide a basic description of how XSB im-
plements the SLG-WAM architecture, followed by a presentation of how the
demand graph model is represented in the implementation.

4.1 SLG-WAM Architecture

Data areas in XSB are organized into four main stacks. The Heap maintains long-
lived structures and variables. The Local stack maintains the environments for
clause-local variables, much like activation records in imperative languages. The
Control and Trail stacks store information required to perform backtracking.

Non-deterministic search in Prolog is implemented by backtracking. Each
time a choice is encountered during execution, a choice-point is laid down in
the Control stack. This stack works as a last-in-first-out source of alternatives.
That is, when backtracking is necessary, the topmost choice-point in the Control
stack is used. When a choicepoint is exhausted it can be discarded, and then its
predecessor is taken as the next source of alternatives.

SLG evaluation may require that a computation be suspended and other al-
ternatives be executed, before it may be resumed. Suspended computations are
represented by portions of the stacks in the system. It is left to the implemen-
tation to decide how these stack sections are to be maintained. Typically, these
are either protected and kept in the stacks, as in the original formulation of the
SLG-WAM][12], or copied to an outside area, as in CHAT [3]. In the remainder of
this paper we assume a shared stack management as in the original SLG-WAM.
Notice that, in order to recreate the context of a suspended computation, the
system may need to redo bindings undone by backtracking while this compu-
tation was suspended. Thus, the Trail is augmented to keep the values that
conditional variables are bound to [15], so that the engine can run the trail not
just backwards, but also forwards, rebinding variables needed to reconstruct an
earlier context.

The central data-structure for table management is the Subgoal Frame. Each
subgoal frame contains information about a variant call encountered during eval-
uation. Subgoal frames maintain references to the associated generator choice-
point for the call and for the answers already generated. Also, each subgoal frame
maintains a list of all consumer choicepoints which consume from its associated
table.

Approximate Pruning in Tabled Logic Programming 79
4.2 Mapping the Demand Graph onto XSB

Table management and scheduling are essentially controlled by two data-
structures in XSB. Subgoal frames centralize status information about trees in
the system, and maintain references to all answers already found for the tree.
Choicepoints represent internal nodes, and are classified into three main kinds.
Prolog choicepoints are used to maintain unexplored choices in non-tabled predi-
cate definitions. A generator choicepoint is created when the first call to a tabled
predicate is encountered, and consumer choicepoints are laid down for calls to
already-seen subgoals.

Control Stack

\l/ p(X)
Program Generator Subgoal
:- table_all. 9% Generator Frame
pX) - q(X),r(X),s(X). X
qé:; . i)Generator
q(b).
r(X) :- q(X). b q(X)Consumer'
s(X) :- r(X),q(X). <) .
Query Generator Subgoal
-7 q(X). RN =
k B r()Consumer r?Xm)e
r
q(X)Consumer
Fig. 4. XSB structures and their relationship
As noted in Section 2, we
! are interested in those tree nodes
which generate dependencies be-
tween trees. In XSB, these are rep-
resented by the consumer and gen-
0 1 4

erator choicepoints. Generator choi-
cepoints have a dual role in XSB.
P a® *® = Besides indicating that results from
a given table Ty are demanded from
the callee table T, they also serve
the purpose of performing clause resolution to generate answers for Ty.

Figure 4 shows an example of these structures during evaluation of a query,
and their relationship. The corresponding dependency graph is shown in Fig-
ure 5. Generator choicepoints are linked to their corresponding subgoal frames,

Fig. 5. Dependency Graph

80 L.F. Castro and D.S. Warren

and vice-versa. All consumers of a given table are chained together, and this
chain is anchored in the subgoal frame of the table. This chain is called the
consumer chain of the table.

Summarizing, edges are represented by the choicepoints in the stack. Gen-
erator edges correspond to generator choicepoints, which are distinguished in
the system. Trees are mapped to Subgoal frames, and their auxiliary structures,
which are not presented here. We now examine how the operations necessary to
implement our algorithm can be efficiently realized, and describe the changes to
the standard SLG-WAM data structures necessary to support these operations.

edge. The edge relation connects consuming trees to their suppliers. This re-
lation is realized by consumer and generator choicepoints, and the timestamps
for these edges are implicitly represented by the memory addresses of these
choicepoints. Choicepoints already maintain references to the tables they are
supplying, as shown in Figure 4 by the dashed arrows. Tables are connected to
the consumers it supplies (dotted arrows). In order to provide fast access to the
tree a given consumer is consuming from, we have augmented the SLG-WAM
structure by creating a new chain that effectively transforms dotted arrows in
Figure 4 into double arrows.

delete_edge. This function is responsible for ensuring that no more answers will
be returned to a given choicepoint representing a tabled call. If the choicepoint
is a consumer choicepoint, we simply delete it by removing it from the chain of
choicepoints considered for scheduling. Generator choicepoints, as observed ear-
lier, are responsible both for returning answers to a tabled call via its forward
continuation, and for generating answers to a table, through its backwards con-
tinuation. When delete_edge is applied to a generator choicepoint, it modifies
its forward continuation to a failure, so that no answers will be returned to the
tabled call, even though it remains able to generate answers to the table.

delete_tree. Given the timestamp of a table, which in SLG-WAM is repre-
sented by the address of its generator choicepoint, delete_tree deletes its data
structures and execution context. The Subgoal frame and all answers already
computed for the table are deleted, as well as its generator choicepoint, and all
consumers that supply this table. A precondition for delete_edge is that no
demand exists on the table it is applied to, so nothing is done with respect to
consumers of this table. If there are consumers, they should be deleted when the
tables they are supplying are deleted.

gen_reach. This predicate is used both to traverse all tables in the scope of the
operation (as in demanded_scope) and also as a simple check, as in demanded.
gen_reach is realized in the implementation by performing a reachability analysis
in the beginning of the algorithm, marking all choicepoints which are reachable,
and thus in the scope of pruning. This provides for an easy, constant-time check
for whether a given choicepoint is in the scope. Traversal of choicepoints in the
scope is performed, when necessary, by a linear scan of the top of the choicepoint
stack, skipping those choicepoints not marked.

Approximate Pruning in Tabled Logic Programming 81

demanded_scope. This predicate essentially collects all edges younger than the
timestamp at entry of once, whose source is not in its scope. The key to imple-
ment this function is to realize that, since timestamps are implicitly represented
by the address of choicepoints, a simple traversal of the top of the Control stack
(back to the point where once started evaluation), selecting unmarked choi-
cepoints, obtains all such edges. If any of these choicepoints consumes from a
table in the scope of once, it means that the scope has external demand, and
the predicate succeeds. This information is obtained by following the links from
consumers to tables they supply (dashed lines in Figure 4.)

5 Experimental Results

In this section, we present some quantitative data that suggests that approxi-
mate pruning, with table deletion, can significantly impact execution times of
programs.

In order to illustrate these

100 possible gains, we benchmark a

No Prunind ——
Pruning —— version of the classical Stale-
10 &] mate game depicted in Listing 4
- in the form of the predicate
£ win. Given a directed graph, this
£ game states that a node is a win-
o1 | ner if there is an edge connect-
ing this node to a non-winner
001 node. Nodes which have no possi-

10 15 20 25 30 35 ble moves are, by default, winner
Depth of binary tree nodes. The goal is to determine
if a given node is a winner node.
It is important, in general, that
the win predicate be tabled, so
that the evaluation terminates in the presence of cycles in the input graph.

Fig. 6. Performance comparison for the stale-
mate game

:- table win/O0. test (Depth) :-

win(X) :- create_bin_tree(Depth),
move (X,Y), cputime(T1),
tnot (win(Y)). win(0),

cputime(T2),
Time is T2 - T1,
write(time(win(Depth),Time)).

Listing 4: The Stalemate win/not-win game

It is clear that it is uninteresting to collect alternative proofs for the winning
status of a given node. This can be easily obtained by ensuring that negation
builtins like XSB’s tnot fail early when the first counter-proof is found. Cur-

82 L.F. Castro and D.S. Warren

rently, tnot does not perform pruning when it fails, so unnecessary computation
is performed.

We have adapted the tnot operator to take advantage of approximate prun-
ing, and compared execution times using the test predicate of Listing 4. The
test dynamically creates full binary trees with variable depth. Figure 6 shows
results obtained for tests run both with and without the modified tnot builtin.
It is clear that, even though pruning does not change the exponential nature of
this problem, it significantly lowers the slope of the curve!. Besides time, mem-
ory performance is important for this benchmark. In fact, we were unable to run
the non-pruning version of the benchmark for trees of depth larger than 23 on a
machine with 2Gb of memory.

Another important point when introducing new functionality is to measure
the impact the added machinery imposes when the functionality is not being
used. We have benchmarked a set of non-pruning benchmarks on XSB with and
without support for our pruning operator. The maximum overhead observed was
about 3%.

6 Summary

The backward chaining evaluation model of Prolog computes only those subgoals
that are needed in order to resolve a given query. Pruning allows for a finer
control of determinism, which can be used to further extend this concept of
performing only demanded computations. It can be used by the Prolog engine
itself, in order to improve its evaluation strategy, and also by the programmer,
so that she can annotate programs with control information.

Tabled Prolog builds on the concept of demand-driven evaluation by allow-
ing each relevant goal to be evaluated only once. But there are no satisfactory
pruning operators in Tabled Prolog, since it is hard to decide which tables are
demanded in the presence of suspension and resumption of subgoals.

We have presented an abstraction of SLG evaluation where the SLG forest
of trees is represented by a directed graph, and demand is defined in terms of
reachability from a query node. This allowed us to define a demand-based once
pruning operator.

Full demand-based pruning is costly, so we presented sound approximate
pruning in the form of a safe once operator. Approximate pruning uses a notion
of the scope of the once operation as the basic unit for which demand is deter-
mined and implemented. This allows for an efficient pruning mechanism, which
has been implemented in the XSB system.

One question when performing pruning on tabled systems is whether unde-
manded tables should be deleted, or whether they should be kept in a scratch
area, so that future calls could use their results, and re-impose demand on them.
Approximate pruning takes the approach of deleting undemanded tables, given
that their scope is currently undemanded. This has the advantage of early mem-
ory reclamation, but may have adverse effects on the termination characteristics

! Notice that the y axis of the graph is plotted in a logarithmic scale.

Approximate Pruning in Tabled Logic Programming 83

of a program. We intend to study the alternative of maintaining undemanded
trees, and supporting the re-imposition of demand on them. We believe each
approach will prove effective in different situations.

References

1.

2.

10.

11.
12.

13.

14.

15.

16.

K. A. M. Ali. A method for implementing cut in parallel execution of Prolog. In
ICSLP’87.

W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM, 43(1):20-74, January 1996.

. B. Demoen and K. Sagonas. CHAT: the Copy-Hybrid Approach to Tabling. In

PADL’99, 1999.

H.-F. Guo and G. Gupta. A simple scheme for implementing tabled logic pro-
gramming systems based on dynamic reordering of alternatives. In ICLP’01, pages
181-196, 2001.

H.-F. Guo and G. Gupta. Cuts in tabled logic programming. In B. Demoen, editor,
CICLOPS’02, 2002.

G. Gupta and V. Santos Costa. Cuts and side-effects in and-or parallel prolog.
Journal of Logic Programming, 27(1):45-71, 1996.

R. O’Keefe. The Craft of Prolog. MIT, 1990.

K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order
stratified logic programs. TOPLAS, 20(3):586-635, May 1998.

T. Swift. A new formulation of tabled resolution with delay. In Recent Advances
in Artificial Intelligence.

T. Swift. Efficient Evaluation of Normal Logic Programs. PhD thesis, SUNY at
Stony Brook, 1994.

T. Swift. A new formulation of tabled resolution with delay. In EPIA’99, 1999.
T. Swift and D. S. Warren. An abstract machine for SLG resolution: definite
programs. In SLP’9/, pages 633—-654, 1994.

The XSB Programmer’s Manual: version 2.5, vols. 1 and 2, 2002.
http://xsb.sourceforge.net/.

D. S. Warren. Programming in tabled prolog — DRAFT. Available from
http://www.cs.stonybrook.edu/ warren.

D. S. Warren. Efficient Prolog memory management for flexible control. In
ILPS’84, pages 198-202, 1984.

D.H.D. Warren. An abstract Prolog instruction set. Technical Report 309, SRI,
1983.

	Introduction
	Related Work

	Demand-Based Pruning
	Approximate Pruning
	Timestamped Forest of Trees
	Approximate Pruning Algorithm

	Implementation
	SLG-WAM Architecture
	Mapping the Demand Graph onto XSB

	Experimental Results
	Summary

