
A Simple Language for Real-Time Cryptographic
Protocol Analysis�

Roberto Gorrieri1, Enrico Locatelli1, and Fabio Martinelli2

1 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy.
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Abstract. A real-time process algebra, enhanced with specific constructs for han-
dling cryptographic primitives, is proposed to model cryptographic protocols in
a simple way. We show that some security properties, such as authentication and
secrecy, can be re-formulated in this timed setting. Moreover, we show that they
can be seen as suitable instances of a general information flow-like scheme, called
tGNDC, parametric w.r.t. the observational semantics of interest. We show that,
when considering timed trace semantics, there exists a most powerful hostile en-
vironment (or enemy) that can try to compromise the protocol. Moreover, we hint
some compositionality results.

1 Introduction

In the last years there has been an increasing interest in the formal analysis of crypto-
graphic protocols, as they have become the basic building blocks for many distributed
services, such as home banking or electronic commerce. These analyzes have been
very successful in many cases, uncovering subtle inaccuracies in many specifications
of cryptographic protocols. However, such analyzes are usually restricted to very high
abstractions of the real protocols, where concrete information about the timing of events
are usually omitted (with the relevant exceptions of [2,16]).

Our starting point is the work on CryptoSPA [7,9], which is an extension of SPA
[4] (a CCS-like process algebra with actions belonging to two different levels of confi-
dentiality), with some new constructs for handling cryptographic primitives. On such a
language a general schema for the definition of security properties, called GNDC, has
been proposed [9]. It is based on the idea of checking the system against all the possible
hostile environments. The general schema has the following form:

P satisfies Sα� iff ∀X ∈ Env : P ||X � α(P )

where the general property Sα� requires that the system P satisfies (via the behavioral
pre-order �) a specification α(P ) when composed in parallel with any possible hostile
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environment (or enemy) X . The problem of the universal quantification is overcome
when it is possible to show that there exists the "most powerful" enemy; hence, one
check against the most powerful enemy is as discriminating as an infinity of different
checks against all the possible enemies. This lucky case occurs when the behavioral
pre-order � is a pre-congruence, e.g., for trace semantics.

The main goal of this paper is to show that the real-time information flow theory
developed for tSPA (a real-time extension of SPA reported in [8]), can be extended to
CryptoSPA, yielding timedCryptoSPA (tCryptoSPA for short). The main results
from such an effort are the following:

– A language for describing cryptographic protocols, where information about the
concrete timing of events is necessary, e.g., because of the presence of timeouts or
time-stamps.

– A general scheme, called tGNDC, for describing uniformly the many security
properties in a real-time setting; we will present three instances of such a general
scheme, namely timed authentication, timed integrity and timed secrecy.

– Some specific results for the security properties based on semantics that are pre-
congruences, such as the existence of a (real-time) most general enemy.

Moreover, we will hint some initial compositionality results, i.e., we will show some
conditions under which secure real-time protocols can be safely composed.

The paper is organized as follows: in Section 2 we define the tCryptoSPA syn-
tax, operational and behavioral semantics. In Section 3 we define the general schema
tGNDC, hence the notion of hostile environment (or enemy) and we present some
general results, such as the existence of a real-time most general enemy. In Section 4 we
present some security properties, namely tNDC, timed authentication, timed integrity
and timed secrecy. Section 5 reports some initial results about conditions for safe com-
position of real-time security protocols. Finally in Section 6 we give some concluding
remarks and comparison with related literature.

2 The Model

In this section we present the model we will use for the specification of cryptographic
protocols and security properties. It is a real-time extension of the Cryptographic Security
Process Algebra (CryptoSPA for short) proposed in [9,7], which is in turn an extension
of Security ProcessAlgebra (SPA for short) proposed in [4] where processes are explicitly
given the possibility of manipulating messages. InCryptoSPA it is possible to express
qualitative ordering among events, while quantitative timing aspects cannot be expressed.
Thus, we extendCryptoSPAwith operators that permit to express the elapsing of time.

2.1 The Language Syntax

We call the language Timed Cryptographic Security Process Algebra (tCryptoSPA for
short). Its syntax is based on the following elements:

– A set Ch of channels, partitioned into a set I of input channels (ranged over by c)
and a set O of output channels (ranged over by c, the output corresponding to the
input c);
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– A setM of messages;
– A set V ar of variables, raged over by x;
– A set Const of constants, ranged over by A.

The set L of tCryptoSPA terms (or processes) is defined as follows:

P ::= 0| c(x).P | ce.P | τ.P | tick.P | P + P | P ||P | P\L |

A(e1, . . . , en) | [〈e1, . . . , er〉 �rule x]P | ι(P )

where e, e′, e1, . . . , er are messages or variables and L is a set of channels. Both the
operators c(x).P and [〈e1 . . . er〉 �rule x]P bind the variable x in P .

Besides the standard (value-passing) CCS operators [15], we have an additional
prefix action tick, used to model time elapsing, a delay operator ι(P ), used to make lazy
the initial actions of P , and the operator [〈m1 . . .mr〉 �rule x]P introduced in order to
model message handling and cryptography. Informally, process [〈m1 . . .mr〉 �rule x]P
tries to deduce a piece of information z from the tuple of messages 〈m1 . . .mr〉 through
one application of rule �rule; if it succeeds, then it behaves like P [z/x], otherwise it is
stuck. See the next subsection for a more detailed explanation of derivation rules.

The time model we use is known as the fictitious clock approach of, e.g., [17]. A
global clock is supposed to be updated whenever all the processes agree on this, by
globally synchronizing on action tick. All the other actions are assumed to take no time.
This is reasonable if we choose a time unit such that the actual time of an action is
negligible w.r.t. the time unit. Hence, the computation proceeds in lock-steps: between
the two global synchronizations on action tick (that represent the elapsing of one time
unit), all the processes proceed asynchronously by performing durationless actions.

Let Def : Const −→ L be a set of defining equations of the form

A(x1, . . . , xn)
def
= P , where P may contain no free variables except x1, . . . , xn, which

must be distinct. Constants permit us to define recursive processes, but we have to be a
bit careful in using them. A term P is closed w.r.t. Def if all the constants occurring in
P are defined in Def (and, recursively, for their defining terms). A term P is guarded
w.r.t. Def if all the constants occurring in P (and, recursively, for their defining terms)
occur in a prefix context [15].

The set Act = {c(m) | c ∈ I} ∪ {cm | c ∈ O} ∪ {τ} ∪ {tick} of actions (τ is the
internal, invisible action, tick is the special action used to model time elapsing), ranged
over by a (with abuse of notation); we let l range overAct\{tick}. We callP the set of all
the tCryptoSPA closed terms (i.e., with no free variables), that are closed and guarded
w.r.t. Def . We define sort(P ) to be the set of all the channels syntactically occurring
in the term P . Moreover, for the sake of readability, we always omit the termination 0
at the end of process specifications, e.g., we write a in place of a.0.

We give an informal overview of tCryptoSPA operators:

– 0 is a process that does nothing;
– c(x).P represents the process that can get an input m on channel c behaving like P

where all the occurrences of x are replaced by m (written P [m/x]);
– cm.P is the process that can send m on channel c, then behaving like P ;
– τ.P is the process that executes the invisible action τ and then behaves like P ;
– tick.P is a process willing to let one time unit pass and then behaving as P ;
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– P1 +P2 (choice) represents the nondeterministic choice between the two processes
P1 and P2; time passes when both P1 and P2 are able to perform a tick action – and
in such a case by performing tick a configuration where both the derivatives of the
summands can still be chosen is reached – or when only one of the two can perform
tick – and in such a case the other summand is discarded; moreover, τ prefixed
summands have priority over tick prefixed summands.

– P1||P2 (parallel) is the parallel composition of processes that can proceed in an
asynchronous way but they must synchronize on complementary actions to make a
communication, represented by a τ . Both components must agree on performing a
tick action, and this can be done even if a communication is possible;

– P\L is the process that cannot send and receive messages on channels in L, for all
the other channels it behaves exactly like P ;

– A(m1, . . . ,mn) behaves like the respective defining term P where all the variables
x1, . . . , xn are replaced by the messages m1, . . . ,mn;

– [〈m1, . . . ,mr〉 �rule x]P is the process used to model message handling and
cryptography. The process [〈m1, . . . ,mr〉 �rule x]P tries to deduce an information
z from the tuple of messages 〈m1, . . . ,mr〉 through the application of rule �rule;
if it succeeds then it behaves like P [z/x], otherwise it is stuck. The set of rules that
can be applied is defined through an inference system (e.g., see Figure 1);

– ι(P ) (idling) allows processP to wait indefinitely.At every instant of time, if process
P performs an action l, then the whole system proceeds in this state, while dropping
the idling operator.

2.2 The Operational Semantics of tCryptoSPA

In order to model message handling and cryptography we use a set of inference rules.
Note that tCryptoSPA syntax, its semantics and the results obtained are completely
parametric with respect to the inference system used. We present in Figure 1 the same
inference system of [9]. This inference system can combine two messages obtaining a
pair (rule �pair); it can extract one message from a pair (rules �fst and �snd); it can
encrypt a message m with a key k obtaining {m}k and finally decrypt a message of
the form {m}k only if it has the same key k (rules �enc and �dec). In this framework,
cryptography is completely reliable, i.e., that a crypted message can be deciphered only
by knowing the suitable decryption key.

In a similar way, the inference system can contain rules for handling the basic arith-
metic operations and boolean relations among numbers, so that the value-passing CCS
if-then-else construct can be obtained via the �rule operator.

Example 1. We do not explictly define equality check among messages in the syntax.
However, this can be implemented through the usage of the inference construct. E.g.,

consider rule equal
def
= x x

Equal(x, x) . Then [m = m′]A (with the expected semantics)

may be equivalently expressed as [m m′ �equal y]A where y does not occur in A.
Similarly, we can define inequalities, e.g., ≤, among natural numbers.

We consider a function D, from finite sets of messages to sets of messages, such that
D(φ) is the set of messages that can be deduced from φ by using the inference rules. We
assume that D is decidable.
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m m′

(m,m′)
(�pair) (m,m′)

m
(�fst) (m,m′)

m′
(�snd)

m k

{m}k (�enc) {m}k k

m
(�dec)

Fig. 1. An example inference system for shared key cryptography.

The operational semantics of a tCryptoSPA term is described by means of the
labelled transition system (lts, for short) 〈P, Act, { a−→}a∈Act〉, where { a−→}a∈Act is
the least relation between tCryptoSPA processes induced by the axioms and inference
rules of Figure 2. Such a relation is well-defined even if negative premises occur in a rule
for the idling operator and in one rule for +, because the relation is strictly stratifiable
[12].
Note that tCryptoSPA is tick-deterministic i.e., the time elapsing never moves a pro-
cess to two different states. The proof of the following proposition can be easily given
by inspecting the operational rules. In particular, the first two rules of the idling operator
and the rules for nondeterministic choice are the key rules enforcing time determinacy.
Proposition 1. For every tCryptoSPA process P we have:

If P
tick−→ P ′ and P

tick−→ P ′′ then P ′ = P ′′.

Example 2. In tCryptoSPA there are processes, such as 0, that do not allow time to
proceed; hence, as rule ||3 for parallel composition forces a global synchronisation on
tick actions, the effect of composing a processP with 0 is to preventP from letting time
pass. In other words, 0 acts as a time annihilator for its parallel context. On the contrary,
ι(0) is process that, even if functionally terminated, let time to proceed indefinitely.
Hence, ι(0) acts as a neutral element for parallel composition.

Example 3. Consider a process P = ι(a)||ι(a) that can perform any sequence (possibly
empty) of tick actions followed by a τ . It is worth-observing that, contrary to tSPA
[8], we do not assume maximal communication progress, i.e., τ ’s do not have priority
over tick actions or, equivalently, a process cannot idle if it can perform a τ . Hence in
tSPA process P can perform only the sequence τ .

Example 4. We can easily model timeout constructs in tCryptoSPA.
Assume n1 ≤ n2 and define a process

Time out(n1, n2, A,B) = tickn1 .ι(A) + tickn2 .τ.B

By looking at the rules for choice and idling, we see that Time out(n1, n2, A,B) first
performs a sequence of n1 tick actions; then, the system may perform other n2−n1 tick
actions, unlessA resolves the choice by performing an action; instead ifA does nothing,
after n2 units of time, through the execution of action τ , the process is forced to act as
B. Note that rule +3 is responsible for preventing the selection of process A at timeout
expiration. This semantics for the + operator is different from the one in tSPA (a tick
action can be performed only if both summands can do so) and is motivated by the need
of a more flexible way of programming the choice between different components.
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(input)
m ∈M

c(x).P
c(m)−→ P [m/x]

(output)
cm.P

cm−→ P

(internal)
τ.P

τ−→ P
(tick)

tick.P
tick−→ P

(||1)
P1

l−→ P ′1

P1||P2
l−→ P ′1||P2

(||2)
P1

c(x)−→ P ′1 P2
cm−→ P ′2

P1||P2
τ−→ P ′1||P ′2

(||3)
P1

tick−→ P ′1 P2
tick−→ P ′2

P1||P2
tick−→ P ′1||P ′2

(\L)
P
c(m)−→ P ′ c �∈ L
P\L c(m)−→ P ′\L

(+1)
P1

l−→ P ′1

P1 + P2
l−→ P ′1

(+2)
P1

tick−→ P ′1 P2
tick−→ P ′2

P1 + P2
tick−→ P ′1 + P ′2

(+3)
P1

tick−→ P ′1 P2 � tick−→ P2 � τ−→
P1 + P2

tick−→ P ′1

(Def)
P [m1/x1, . . . ,mn/xn] a−→ P ′ A(x1, . . . , xn)

def
= P

A(m1, . . . ,mn) a−→ P ′

(D)
〈m1, . . . ,mr〉 �rule m P [m/x] a−→ P ′

[〈m1, . . . ,mr〉 �rule x]P a−→ P ′

(I1)
P � tick−→

ι(P ) tick−→ ι(P )
(I2)

P
tick−→ P ′

ι(P ) tick−→ ι(P ′)
(I3)

P
l−→ P ′

ι(P ) l−→ P ′

Fig. 2. Structured Operational Semantics for tCryptoSPA (symmetric rules for +1,+3, ||1, ||2 and
\L are omitted)

3 A General Schema for the Definition of Timed Security
Properties

In this section we propose a general schema for the definition of timed security prop-
erties. We call it Timed Generalized NDC (tGNDC for short), since it is a real-time
generalization of Generalized NDC (GNDC for short) [9], which is in turn a general-
ization of Non Deducibility on Compositions (NDC for short) [4]. The main idea is the
following: a system P is tGNDCα� iff for every hostile environment (or enemy) X the
composition of the system P with X satisfies the timed specification α(P ). Essentially
tGNDCα� guarantees that the timed property α is satisfied, with respect to the � timed
behavioral relation, even when the system is composed with any possible enemy.

This section is organized as follows. We first define timed trace semantics as the
behavioral semantics of interest. Then, we discuss the issue of hostile environments,
showing that it is necessary to restrict their initial knowledge. Finally, we present the
tGNDC schema and some general results on it, some of which are independent of the
chosen behavioral notion.
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3.1 Behavioural Semantics

Here we define the semantic pre-order and equivalence we will use to formalize secu-
rity properties, timed trace pre-order and equivalence, the timed version of the classic
untimed semantics.
The expression P

a⇒ P ′ is a shorthand for P ( τ−→)∗P1
a−→ P2( τ−→)∗P ′ where ( τ−→)∗

denotes a (possibly empty) sequence of transitions labeled τ . Let γ = a1, . . . , an ∈
(Act\{τ})∗ be a sequence of actions; then P

γ⇒ P ′ iff there exist P1, . . . , Pn−1 ∈ P
such that P

a1⇒ P1
a2⇒, . . . , Pn−1

an⇒ P ′.
Definition 1. For any P ∈ P the set T (P ) of timed traces associated with P is defined
as follows T (P ) = {γ ∈ (Act\{τ})∗ | ∃P ′.P γ⇒ P ′ }. The timed trace pre-order,
denoted by≤ttrace, is defined as follows: P ≤ttrace Q iff T (P ) ⊆ T (Q). P andQ are
timed trace equivalent, denoted by P =ttrace Q, if T (P ) = T (Q).

As an example, it is easy to see that T (P (Kab)) = {ε, tick, tick tick, tick tick tick},
where ε denotes the empty sequence.

3.2 Hostile Environments

Here we characterize the notion of admissible hostile environments similarly to what
done in [9] for the untimed setting. Such a characterization is necessary to analyze
protocols where some information is assumed to be secret, as in cryptographic protocols.
A hostile environment, or enemy, is a process which tries to attack a protocol by stealing
and faking information which is transmitted on public channels, say C. Such an agent
is modeled as a generic process X which can communicate only through channels
in C, imposing some constraints on the initial data that are known by the enemy and
requiring that such a protocol is weakly time alive, i.e., the agent may always perform tick
eventually. Otherwise X could prevent time from elapsing when composed in parallel
with some system, since in a compound system time can pass iff all components let it
pass. So the enemy could block the time flow and we want to avoid this unrealistic case.
Let Der(P ) be the set of all derivatives of P , i.e., all the P ′s reachable from P through
a sequence of actions in Act.

Definition 2. A process P is directly weakly time alive iff P
tick=⇒ P ′. P is weakly time

alive iff for all P ′ ∈ Der(P ), we have P ′ is directly weakly time alive.

Now, let ID(P ) be the set of messages that appear in P (see [5] for a formal definition)
and φ ⊆M be the initial knowledge we would like to give to the enemies, i.e., the public
information such as the names of the entities and the public keys, plus some possible
private data of the enemies (e.g., their private key or nonces). For some enemy X , we
want that all the messages in ID(X) are deducible from φ. We thus define the set tEφIC
of timed hostile processes as:

tEφC = {X ∈ P | sort(X) ⊆ C and ID(X) ⊆ D(φ) and X is weakly time alive}

3.3 The tGNDC Schema

In this section we formally define the tGNDCα� family of properties. We will useA||CB
as a shortcut for (A||B)\C. The proposed family of security properties is as follows.



A Simple Language for Real-Time Cryptographic Protocol Analysis 121

Definition 3. P is tGNDCα� iff ∀X ∈ tEφIC : (P ||CX) � α(P ) where � ∈ P × P
is a pre-order, C is a set of channels and α : P �→ P is a function between processes
defining the property specification for P as the process α(P ).
We propose a sufficient criterion for a static characterization (i.e., not involving the uni-
versal quantification ∀) of tGNDCα� properties. We will say that � is a pre-congruence
w.r.t. ||C if it is a pre-order and for every P,Q,Q′ ∈ P ifQ�Q′ then P ||CQ�P ||CQ′.
Thus it is easy to prove the following:
Proposition 2. If � is a pre-congruence w.r.t. ||C and if there exist a processTop ∈ tEφIC
such that for every process X ∈ tEφIC we have X � Top, then ∀α:

P ∈ tGNDCα� iff (P ||CTop) � α(P )

In particular if the hypotheses of the proposition above hold it is sufficient to check
that α(P ) is satisfied when P is composed with the most general hostile environment
Top. This permits to make only one single check, in order to prove that a property holds
whatever attacker we choose. We also have the following corollary for the congruence
induced by �:
Corollary 1. Let � be a pre-congruence w.r.t. ||C and let ≡ = � ∩ �−1. If there
exist two processes Bot, Top ∈ tEφIC such that for every process X ∈ tEφIC we have
Bot�X � Top then

P ∈ tGNDCα≡ iff (P ||CBot) ≡ (P ||CTop) ≡ α(P )

Given these very general results, we show that they are instanciable in the model we
presented so far. Indeed, this is the case, at least for the trace pre-order ≤ttrace, which
is a pre-congruence.
Proposition 3. Timed trace pre-order is a pre-congruence w.r.t. ||C .
Note that in the tSPA model, timed trace pre-order is not a pre-congruence, since
the semantic rules enforce the so called maximal communication progress, i.e., when a
communication is possible it must start immediately, and it is not possible to perform a
tick [8].

Now we single out the minimal element Bot and the maximum element Top in
tEφIC w.r.t. ≤ttrace. As for Bot it is clear that the minimum set of traces is generated
by the weakly time alive process that does nothing, that is generated by process ι(0).
As a matter of fact, (P ||ι(0)) =ttrace P for timed trace equivalence and most other
equivalences. We thus define the Top element using a family of processes TopC,φttrace

each representing an instance of the enemy with knowledge φ:

TopC,φttrace =
∑

c∈C
ι(c(x).T opC,φ∪{x}ttrace ) +

∑

c∈C,m∈D(φ)∩M
ι(cm.TopC,φttrace)

The initial element of the family is TopC,φIttrace as φI is the initial knowledge of the enemy.
This may accept any input message to be bound to the variable x which is then added
to the knowledge set that becomes φI ∪ {x}, and may output only messages that can
pass on the channel c and that are deducible from the current knowledge set φ via the
deduction function D. Furthermore it can let time pass. Note that τ summands are not
considered, as inessential for trace pre-order. As done in [9] we prove the following:
Proposition 4. If X ∈ tEφC then X ≤ttrace TopC,φttrace.
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4 Some Timed Security Properties

In this section we show how to redefine four timed security properties as suitable in-
stances of the tGNDCα� schema, by suitably defining function α. As for the behavioral
semantics �, we will always consider the timed trace semantics. The four properties we
consider are:

– The timed version of Non Deducibility on Compositions [4], which has been pro-
posed to study information flow security; we will show that tNDC is the strongest
property in the tGNDCα�family, under some mild assumptions.

– A timed notion of authentication, called timed agreement (see also [14]), according to
which agreement must be reached within a certain deadline, otherwise authentication
does not hold.

– A timed notion of secrecy, we call timed secrecy, according to which a message is
secret only within a time interval and after the deadline it can become a public piece
of information.

– A timed notion of integrity, called timed integrity, which simply requires a correct
delivery of messages within a certain amount of time.

4.1 Timed Non Deducibility on Compositions

We start with tNDC since tGNDCα�is a generalization of such a property. Its underlying
idea is that the system behavior must be invariant w.r.t. the composition with every hostile
environment. Indeed, there is no possibility of establishing a communication (i.e. sending
information). In the CryptoSPA untimed setting the NDC 1 idea can thus be defined
as follows:

Definition 4. P ∈ NDC if and only if ∀X ∈ EφIC , we have (P ||CX) =trace P\C.

where =trace is trace pre-order and the only difference with the definition given in SPA
is that the knowledge of process X is bounded by φI . Now we present timed NDC
(tNDC, for short) ([8]) which is the natural extension of NDC to a timed setting.

Definition 5. P ∈ tNDC if and only if ∀X ∈ tEφIC we have (P ||CX) =ttrace P\C.

where the difference is that we use the timed hostile environment and timed trace pre-
order. Note that tNDC corresponds to tGNDCP\C=ttrace . It is also possible to apply
Corollary 1 obtaining the following static characterization.

Proposition 5. P ∈ tNDC if and only if (P ||CTopC,φIttrace) =ttrace P\C.

Now we suggest that tNDC is the most restrictive α(P ) hence inducing the strongest
property for timed trace semantics. The most restrictive α(P ) should return an en-
capsulation of protocol P , i.e., a version of P which is completely isolated from the
environment, corresponding to the execution of P in a perfectly secure network where
only the honest parties are present. In our process algebra setting, this corresponds to
the restriction of all public channels in C along which protocol messages are sent.

Note that for every process P we have (P ||ι(0)) \ C =ttrace P \ C. This means
that P restricted on C is equivalent to the protocol in composition with the enemy that

1 As for tGNDCα�, also NDC and tNDC are implicitly parametric w.r.t. the set C of public
channels and the set φI of initial knowledge. We usually omit these parameters when clear from
the context.
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does nothing. Note also that, by definition, ι(0) ∈ tEφC for every φ. So it is very natural
to consider α functions and processes P such that P \ C ≤ttrace α(P ). This simply
means that the protocol P is correct (as it satisfies its specification α(P )) at least when
it is not under attack. This condition can be somehow seen as a reasonable criterion for
any good protocol: it must be correct at least when it is not under attack! Under this mild
assumption, it is clear that P ∈ tNDC implies P ∈ tGNDCα≤ttrace .

Another way to avoid universal quantification over all the admissible enemies is
to show the equivalence between tNDC and Timed Strong Nondeterministic Non-
Interference (tSNNI , for short); such equivalence result holds in the untimed case [4],
but that does not hold for tSPA [8] because of the maximal communication assumption
of that language.

A CryptoSPA process is SNNIφC if P\C, where all actions in C are forbidden,
behaves like the system P where all the actions in C are hidden (i.e., transformed into
internal τ actions). To express this second system we need to introduce first the hiding
operator P/φC:

P
a−→ P ′

P/φC
a−→ P ′/φC

(a �∈ C ∪ C)
P

cm−→ P ′ c ∈ C ∪ C
P/φC

τ−→ P ′/φ∪{m}C

P
c(m)−→ P ′ c ∈ C ∪ C m ∈ D(φ)

P/φC
τ−→ P ′/φC

Now we are ready to define the property timed SNNIφC as follows.

Definition 6. A process is tSNNIφC if P\C =ttrace P/
φC.

It is rather intuitive that P/φC can be seen as P ||CTop, where Top is the top element of
the trace pre-order for CryptoSPA. Hence, such a static characterization can be seen
as a corollary of the existence of a top element in the trace pre-order (together with the
fact that trace pre-order is a pre-congruence).

Proposition 6. For every P ∈ P we have that (P ||CTopC,φttrace) =ttrace P/
φC.

Proposition 7. P ∈ tNDCφC iff P ∈ tSNNIφC .

4.2 Timed Agreement

We now present the Timed Agreement Property [14]:

"A protocol guarantees Timed Agreement between a responderB and an initiator
A on a set of data items ds if, wheneverB (acting as responder) completes a run
of the protocol, apparently with initiatorA, thenA has previously been running
the protocol, apparently with B, in the last n ticks (where n is a prefixed
timeout value) and the two agents agreed on the data values corresponding to
all the variables in ds, and each such a run of B corresponds to a unique run of
A."

As done in [9] for the non real-time version of Agreement, what we do is to have for
each party an action representing the running of a protocol and another one representing
the completion of it. We consider an action commit res(B,A, d) representing a correct
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termination of B as a responder, convinced to communicate with A that agrees on data
d. On the other hand we have an action running ini(A,B, d) that represents the fact
that A is running the protocol as initiator, apparently with B, with data d. If we specify
these two actions in the protocol, the Timed Agreement property requires that when B
executes commit res(B,A, d) then A has previously executed running ini(A,B, d)
and at most n tick actions, where n is the prefixed timeout value, occurred between
these actions. We assume that the actions representing the running and the commit are
correctly specified in the protocol. We can see them as output actions over two particular
channels running ini and commit res. We assume that d can assume values in a setD.
LetNotObs(P ) = sort(P )\(C∪{running ini, commit res}) be the set of channels
in P that are not public and are different from running ini and commit res, i.e., that
will not be observed. Function αt(n)

tAgree can be thus defined as follows:

P ′(x, y) =
∑
d∈D,i∈0..n ι(running ini(x, y, d).tick1..ticki.commit res(y, x, d).ι(0))

P ′′ =
∑
c∈NotObs(P ) ι(c(x).P ′′) +

∑
c∈NotObs(P ),m∈M ι(cm.P ′′)

α
t(n)
tAgree(P ) = P ′′||P ′(A,B)

Note that P ′′ is essentially the process that executes every possible action over channels
in sort(P ) which are not in C and are different from running ini and commit res, or
let time pass. Given P , αt(n)

tAgree(P ) represents the most general system which satisfies

the Timed Agreement property and has the same sort of P . In fact in αt(n)
tAgree(P ) action

running ini(x, y, d) always precedes commit res(y, x, d) for every datum d, and ev-
ery combination of the other actions of P can be executed. Finally the number of tick
actions is at most n. In order to analyze more than one session, it suffices to consider an
extended α which has several processes P ′ in parallel.
We want that even in the presence of a hostile process, P does not execute traces that
are not in αt(n)

tAgree(P ). So we can give the following definition:

Definition 7. P satisfies Timed Agreement iff P is tGNDC
α
t(n)
tAgree(P )
≤ttrace , i.e.,

∀ X ∈ tEφIC : (P ||CX) ≤ttrace αt(n)
tAgree(P )

4.3 Timed Secrecy

We now present the Timed Secrecy Property:

"A protocol guarantees to an initiator A the property of Timed Secrecy on a set
of data items ds within a time n if, whenever a data item in ds becomes public,
at least n ticks passed since A started the protocol"

As done for Timed Agreement, what we do is to have an action representing the running
of a protocol and another one representing that a secret is revealed. We consider an
action running ini(A, d) that represents the fact that A is running the protocol as
initiator, with data d. On the other hand we have an action public(d) representing that
data item d is made public. If we specify these two actions in the protocol, the Timed
Secrecy property requires that when someone executes public(d) then A has executed
running ini(A, d) and at least n tick actions, where n is the prefixed timeout value,
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occurred between them. We assume that the actions representing the running and the
publication are correctly specified in the protocol. We can see the first as an output action
over a particular channel running ini. The second action, following the approach of
[6] is performed by a particular process called Key Expired Notifier (KEN , for short)
that reads from a public channel c not used in the protocol and performs the output of
what it has read on the channel public, i.e. KEN = c(x).public(x).

LetNotObs(P ) = sort(P )\(C ∪{c, running ini, public}) be the set of channels
in P that are not public and are different from running ini and public, i.e., that will
not be observed. We assume that d can take values in a set of secret values D. Function
α
t(n)
tSec can be thus defined as follows:

P ′(x) =
∑
d∈D ι(running ini(x, d).tick1 . . . tickn.(ι(public(d).ι(0)) + ι(τ.ι(0))))

P ′′ =
∑
c∈NotObs(P ) ι(c(x).P ′′) +

∑
c∈NotObs(P ),m∈M ι(cm.P ′′)

α
t(n)
tSec(P ) = P ′′||P ′(A)

GivenP ,αt(n)
tSec(P ) represents the most general system which satisfies the Timed Secrecy

property and has the same sort of P . In fact in αt(n)
tSec(P ) action public(d) is always exe-

cuted at least n ticks after running ini(x, d) for every datum d, and every combination
of the other actions of P can be executed. In order to analyze more than one session, it
suffices to consider an extended α which has several processes P ′ in parallel.
We want that, even in the presence of a hostile process, P does not execute traces that
are not in αt(n)

tSec(P ). So we can give the following definition:

Definition 8. P satisfies Timed Secrecy iff P is tGNDC
α
t(n)
tSec(P )
≤ttrace , i.e.,

∀ X ∈ tEφIC : (P ||CX) ≤ttrace αt(n)
tSec(P )

4.4 Timed Integrity

We now present the Timed Integrity Property:

"A protocol guarantees to the user B the property of Timed Integrity on a set of
data items ds within a time n if B only accepts data items in ds and this may
only happen in at most n ticks since the beginning of the protocol"

For instance, imagine that you would like to receive your favorite newspaper each day
before noon. This may be expressed as an integrity property rather than an authenticity
one, since you are not actually interested in the sender but simply on the data (the
newspaper). Consider a channel out used for expressing the reception of a message and
let NotObs(P ) = sort(P )\(C ∪ {out}) be the set of channels in P that are not public
and d ranging over a set of data D. Then, Timed Integrity may be formally specified as
follows:

P ′(y, n) = ||d∈Dtick1. . . . .tickn.τ.ι(0) + ι(out(y, d).ι(0))
P ′′ =

∑
c∈NotObs(P ) ι(c(x).P ′′) +

∑
c∈NotObs(P ),m∈M ι(cm.P ′′)

α
t(n)
tInt(P ) = P ′′||P ′(B,n)
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5 Compositionality Results

In this section we illustrate some compositional proof rules for establishing that a system
enjoys a tGNDC property, in particular tSNNIφC . However, remember that, as it is
equivalent to tNDC, this property implies all the other ones based on trace semantics,
that are the most frequently used in security analysis.

Within the SPA theory, SNNI is compositional, i.e. if P,Q ∈ SNNI then
(P ||Q) ∈ SNNI . Unfortunately, the same does not hold when considering enemies
with limited knowledge, as for tSNNIφC . For instance, consider the processes:

P = c1m1.c2(x)[x = m2].c3m2 Q = c1m2.c2(x)[x = m1].c3m1

Now, assuming C = {c1, c2} and φ = ∅, we have that P,Q ∈ tSNNIφC . However,
P ||Q /∈ tSNNIφ. As a matter of fact, (P ||Q)\C is equivalent to 0, while (P ||Q)/φC
may perform both c3m1 and c3m2.

However, if we strengthen the assumptions we can get a compositional rule for
establishing that a process belongs to tSNNIφC . The stability assumption we make is
that the process cannot increment its knowledge.

Definition 9. We say that a process P is stable w.r.t. φ, whenever if P/φC =⇒ P ′/φ
′
C

then D(φ) = D(φ′).

Thus, the following proposition holds.

Proposition 8. Assume that P,Q ∈ tSNNIφC and that P,Q are stable w.r.t. φ. Then
(P ||Q) ∈ tSNNIφC and P ||Q is stable w.r.t. φ.

We have another compositionality principle for the tGNDCα≤ttrace schema, again
under the assumption that the involved processes are stable.

Proposition 9. Given the set of initial knowledge φ and the set of public channels C,
assume Pi ∈ tGNDCαi(Pi)≤ttrace , with i = 1, 2, and P1, P2 are stable w.r.t. φ. It follows

that (P1||P2) ∈ tGNDCα1(P1)||α2(P2)
≤ttrace and P1||P2 is stable w.r.t. φ.

One may wonder if the stability condition is too restrictive. As a matter of fact (see
[11]), the above compositional proof principles can be successfully applied for checking
integrity in stream signature protocols, as the ones in [10,3].

6 Conclusions

We have shown how to extend theGNDC schema to a real time setting while preserving
the properties of the untimed schema. In particular, we have shown the existence of a
"most powerful" timed enemy, at least for the timed trace semantics. We have also shown
how to express uniformly in this general schema some timed security properties, such
as timed Non Deducibility on Compositions, (one definition of) timed authentication,
timed secrecy and also timed integrity. We have also introduced a compositional proof
principle that allows us to compose safely two real-time security protocols, preserving
the security properties they enjoy.

Related literature on real-time security include the prominent papers [16,2]. The
former paper presents tock-CSP – a real-time language similar to tSPA – that is used
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to specify real-time crytpographic protocols. The main differences consists of a differ-
ent treatment of timed operators, in the absence of a mechanism for handling crypto-
primitives, in the lack of a uniform schema, and in the absence of compositionality
results. The latter paper [2] is mainly concerned with the model checking of the interest-
ing case study of TESLA, a protocol for stream broadcasting over the internet. The main
focus is on showing that it is possible to give a finite model for the unbounded supply
of fresh cryptographic keys used during the protocol. The so-called security condition
of the protocol is similar to timed agreement.

Compositional proof techniques for reasoning about cryptographic protocols in an
untimed setting may be found in [1,13]. In [1], a compositional proof system for an
environment-sensitive bisimulation has been developed. One main difference from ours,
is that we consider a weak notion of observation where the internal actions are not visible.
This permits us to have more abstract specifications. (As a matter of fact, the authors
of [1] leave as future work the treatment of such a form of weak equivalence.) In [13],
the authors develop the concept of disjoint encryption and, under this hypothesis, are
able to perform compositional reasoning both for secrecy and authentication properties.
While on the one hand, their approach seems to deal better with authentication properties
than ours, on the other one it seems that there are situations where stability holds while
disjoint encryption does not. (A deeper comparison deserves more time and space and
is left as future work.)

Future work will be also devoted to study other security properties in a timed setting,
such as non repudiation, for which apparently there is the need for using semantics more
discriminating than timed trace semantics.

Acknowledgments. We would like to thank the anonymous referees for their helpful
comments for the preparation of the final version of this paper.
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