A Game Semantics for Generic Polymorphism

Samson Abramsky'* and Radha Jagadeesan?**

1 Oxford University Computing Laboratory
samson@comlab.ox.ac.uk
2 DePaul University
rjagadeesan@cs.depaul.edu

Abstract. Genericity is the idea that the same program can work at
many different data types. Longo, Milsted and Soloviev proposed to cap-
ture the inability of generic programs to probe the structure of their
instances by the following equational principle: if two generic programs,
viewed as terms of type VX. A[X], are equal at any given instance A[T],
then they are equal at all instances. They proved that this rule is ad-
missible in a certain extension of System F, but finding a semantically
motivated model satisfying this principle remained an open problem.
In the present paper, we construct a categorical model of polymorphism,
based on game semantics, which contains a large collection of generic
types. This model builds on two novel constructions:

— A direct interpretation of variable types as games, with a natural
notion of substitution of games. This allows moves in games A[T] to
be decomposed into the generic part from A, and the part pertaining
to the instance 7". This leads to a simple and natural notion of generic
strategy.

— A “relative polymorphic product” IT;(A, B) which expresses quantifi-
cation over the type variable X; in the variable type A with respect
to a “universe” which is explicitly given as an additional parameter
B. We then solve a recursive equation involving this relative product
to obtain a universe in a suitably “absolute” sense.

Full Completeness for ML types (universal closures of quantifier-free
types) can be proved for this model.

1 Introduction

We begin with an illuminating quotation from Gérard Berry [9]:

Although it is not always made explicit, the Write Things Once or
WTO principle is clearly the basis for loops, procedures, higher-order
functions, object-oriented programming and inheritance, concurrency vs.
choice between interleavings, etc.

* Samson Abramsky was supported in part by UK EPSRC.
** Radha Jagadeesan was supported in part by NSF CCR-020244901.

A.D. Gordon (Ed.): FOSSACS 2003, LNCS 2620, pp. 1-22] 2003.
© Springer-Verlag Berlin Heidelberg 2003

2 Samson Abramsky and Radha Jagadeesan

In short, much of the search for high-level structure in programming can be
seen as the search for concepts which allow commonality to be expressed. An
important facet of this quest concerns genericity: the idea that the same program
can work at many different data types.

For illustration, consider the abstraction step involved in passing from list-
processing programs which work on data types List[T] for specific types T, to
programs which work generically on List[X]. Since lists can be so clearly visual-
ized, it is easy to see what this should mean (see Figure 1). A generic program
cannot probe the internal structure of the list elements. Thus e.g. list concate-
nation and reversal are generic, while summing a list is not. However, when we
go beyond lists and other concrete data structures, to higher-order types and
beyond, what genericity or type-independence should mean becomes much less
clear.

Fig. 1. ‘Generic’ list structure

One very influential proposal for a general understanding of the uniformity
which generic programs should exhibit with respect to the type instances has
been John Reynolds’ notion of relational parametricity [21], which requires that
relations between instances be preserved in a suitable sense by generic programs.
This has led to numerous further developments, e.g. [T7UTITY)].

Relational parametricity is a beautiful and important notion. However, in
our view it is not the whole story. In particular:

— It is a “pointwise” notion, which gets at genericity indirectly, via a notion
of uniformity applied to the family of instantiations of the program, rather
than directly capturing the idea of a program written at the generic level,
which necessarily cannot probe the structure of an instance.

— It is closely linked to strong extensionality principles, as shown e.g. in [TIT9],
whereas the intuition of generic programs not probing the structure of in-
stances is prima facie an intensional notion—a constraint on the behaviour
of processes.

An interestingly different analysis of genericity with different formal consequences
was proposed by Giuseppe Longo, Kathleen Milsted and Sergei Soloviev [I5/16].
Their idea was to capture the inability of generic programs to probe the structure
of their instances by the following equational principle: if two generic programs,

A Game Semantics for Generic Polymorphism 3

viewed as terms ¢, u of type A[X], are equal at any given instance T, then they
are equal at all instances:

ITH{T} = w{T}: A[T] = YU.t{U} = u{U} : A[U].

This principle can be stated even more strongly when second-order polymorphic
quantification over type variables is used. For t,u : V.X. A:
t{T} =u{T}: A[T]
t=u:VX. A

We call this the Genericity Rule. In one of the most striking syntactic results
obtained for System F (i.e. the polymorphic second-order A-calculus [10]20]),
Longo, Milsted and Soloviev proved in [15] that the Genericity Rule is admissible
in the system obtained by extending System F with the following axiom scheme:

(©) HBY=t{C}:A (t:VX.A, X ¢ FV(A)).

While many of the known semantic models of System F satisfy axiom (C), there
is no known naturally occurring model which satisfies the Genericity principle
(i.e. in which the rule of Genericity is valid). In fact, in the strong form given
above, the Genericity rule is actually incompatible with well-pointedness and
parametricity, as observed by Longo. Thus if we take the standard polymorphic
terms representing the Boolean values

AX e X y: Xz, A X e X y:Xy : VWX X—->X—->X

then if the type VX. X — X has only one inhabitant — as will be the case
in a parametric model — then by well-pointedness the Boolean values will be
equated at this instance, while they cannot be equated in general on pain of
inconsistency.

However, we can state a more refined version. Say that a type T is a generic
instance if for all types A[X]:

HT}=u{T} A[T] = t=u:VX. A

This leads to the following problem posed by Longo in [16], and still, to the best
of our knowledge, open:

Open Problem 2. Construct, at least, some (categorical) models that
contain a collection of “generic” types. ... If our intuition about construc-
tivity is correct, infinite objects in categories of (effective) sets should
satisfy this property.

In the present paper, we present a solution to this problem by constructing a
categorical model of polymorphism which contains a large collection of generic
types. The model is based on game semantics; more precisely, it extends the
“AJM games” of [5] to provide a model for generic polymorphism. Moreover,
Longo’s intuition as expressed above is confirmed in the following sense: our main

4 Samson Abramsky and Radha Jagadeesan

sufficient condition for games (as denotations of types) to be generic instances
is that they have plays of arbitrary length. This can be seen as an intensional
version of Longo’s intuition about infinite objects.

In addition to providing a solution to this problem, the present paper also
makes the following contributions.

— We interpret variable types in a simple and direct way, with a natural notion
of substitution of games into variable games. The crucial aspect of this idea
is that it allows moves in games A[T] to be decomposed into the generic part
from A, and the part pertaining to the instance 7. This in turn allows the
evident content of genericity in the case of concrete data structures such as
lists to be carried over to arbitrary higher-order and polymorphic types. In
particular, we obtain a simple and natural notion of generic strategy. This
extends the notion of history-free strategy from [5], which is determined by
a function on moves, to that of a generic strategy, which is determined by a
function on the generic part of the move only, and simply acts as the identity
on the part pertaining to the instance. This captures the intuitive idea of
a generic program, existing “in advance” of its instances, in a rather direct
way.

— We solve the size problem inherent in modelling System F in a somewhat
novel way. We define a “relative polymorphic product” II;(A, B) which ex-
presses quantification over the type variable X; in the variable type A with
respect to a “universe” which is explicitly given as an additional parameter
B. We then solve a recursive equation involving this relative product to ob-
tain a universe in a suitably “absolute” sense: a game U with the requisite
closure properties to provide a model for System F.

It is also possible to prove a Full Completeness theorem for the ML types
(i.e. the universal closures of quantifier-free types). For this, further technical
details, and proofs of the results, we refer to the full version of this paper [4].

2 Background

2.1 Syntax of System F

We briefly review the syntax of System F. For further background information
we refer to [T1].

Types (Formulas)

A ;3= X | A—-B|VX.A

Typing Judgements Terms in context have the form

1AL, ApE A

A Game Semantics for Generic Polymorphism 5

Assumption
Nx:tkx:T
Implication
Lx:UFt:T . .
vz Ut (=—1) r-t:U—T FI—u.U(_)_E)
I'cXe:Ut:U—-T I'Htu:T
Second-order Quantification

I'FAX.t:VX. A I'=t{B}: A[B/X]

The (V — I) rule is subject to the usual eigenvariable condition, that X does not
occur free in I

The following isomorphism is definable in System F:

VX.A—-B =~ A—-VX.B (X €FV(4)).
This allows us to use the following normal form for types:
vX.T), — - =Ty, —> X (k>0)

where each T; is inductively of the same form.

2.2 Notation

We write w for the set of natural numbers.

We shall use vector notation, writing A for a list Aq,..., Ag.

If X is a set, X* is the set of finite sequences (words, strings) over X. We
use s, t, u, v to denote sequences, and a, b, ¢, d, m, n to denote elements of
these sequences. Concatenation of sequences is indicated by juxtaposition, and
we don’t distinguish notationally between an element and the corresponding unit
sequence. Thus as denotes the sequence with first element a and tail s. However,
we will sometimes write a- s or s-a to give the name a to the first or last element
of a sequence.

If f: X — Y then f*: X* — Y™ is the unique monoid homomorphism
extending f. We write |s| for the length of a finite sequence, and s; for the ith
element of s, 1 < i <|s|. We write numoccs(a, s) for the number of occurrences
of a in the sequence s.

We write s C t if s is a prefix of ¢, i.e. t = su for some u. We write s £V ¢

if s is an even-length prefix of ¢. Pref(S) is the set of prefixes of elements of
S C X*. S is prefiz-closed if S = Pref(S).

6 Samson Abramsky and Radha Jagadeesan
3 Variable Games and Substitution

3.1 A Universe of Moves

We fix an algebraic signature consisting of the following set of unary operations:

P, q {li|i€w} r.

We take M to be the algebra over this signature freely generated by w. Explicitly,
M has the following “concrete syntax”:

m u= iicw) | plm) | am) | L(m) (icw) | x(m).

For any algebra (A,p?,q4, {18 | i € w},r?) and map f : w — A, there is a
unique homomorphism ff: M — A extending f, defined by:

1@ = 1@, fH(em)) = ¢2(fT(m)) (¢ € {p.qrtu{li|icw}).
We now define a number of maps on M by this means.

— The labelling map A : M — {P,0O}. The polarity algebra on the carrier
{P,O} interprets p, q, r as the identity, and each 1; as the involution (_),
where P = O, O = P. The map on the generators is the constant map
sending each i to O.

— The map p : M — w sends each move to the unique generator occurring
in it. All the unary operations are interpreted as the identity, and the map
on generators is the identity.

— The substitution map. For each move m’ € M, there is a map
hm/ M— M

induced by the constant map on w which sends each i to m’. We write m[m/]
for hp,s (m).

— An alternative form of substitution is written m[m’/i]. This is induced by
the map which send i to m’, and is the identity on all j # i.

Proposition 1. Substitution interacts with A and p as follows.

) Am) if A(m) =P
L A(m{m]) = {A(m’) if A(m) = O
2. p(m[m]) = p(m”).

We extend the notions of substitution pointwise to sequences and sets of se-
quences of moves in the evident fashion.

We say that mi,mg € M are unifiable if for some ms,mgy € M, my[ms] =
ma[ma]. A set S C M is unambiguous if whenever myi,mg € S are unifiable,
mip = mao.

A Game Semantics for Generic Polymorphism 7

Given a subset S C M and i € w, we write
S'={meS|pm)=i}.

We define a notion of projection of a sequence of moves s onto a move m induc-
tively as follows:

elm =c
m[m/']-sm=m'-(sm)
m'-slm =s[m, Ym”.m' £ m[m"].

Dually, given an unambiguous set of moves S, and a sequence of moves s in
which every move has the form m[m/] for some m € S (necessarily unique since
S is unambiguous), we define a projection s[S inductively as follows:

elsS =
m[m']-s[S=m-(s]9) (meS A p(m)>0)
m[m'] - s 1S =m[m']- (s]S) (m € S%)

3.2 Variable Games

A wvariable game is a structure
A= (04, Pa,~4)
where:

— 04 € M is an unambiguous set of moves: the occurrences of A. We then
define:
e Ay = A[O4.
® pa=plOa. ,
o My={m[m']|meOy Anm'eM} U ;.04
— P, is a non-empty prefix-closed subset of M} satisfying the following form
of alternation condition: the odd-numbered moves in a play are moves by O,
while the even-numbered moves are by P. Here we regard the first, third,
fifth, ...occurrences of a move m in a sequence as being by Aa(m), while
the second, fourth, sixth ...occurrences are by the other player.
— =24 is an equivalence relation on P4 such that:

el)s~pt =— s+«—t

(

(€2) ss' matt! A |s|=1t] = smat
(e3) smat N sa € Py = Jb.sa=4 td.

Here s «—— t holds if
s=(my,...,myg), t=(m},...,my)

and the correspondence m; «— m} is bijective and preserves Ag and pa.
We write
T:s«—1

to give the name 7 to the bijective correspondence m; «— m.

Samson Abramsky and Radha Jagadeesan

A move m € 0%, i > 0, is an occurrence of the type variable X;, while m € 0%
is a bound occurrence.

The set of variable games is denoted by G(w). The set of those games A for

which the range of p4 is included in {0,...,k} is denoted by G(k). Note that if
k <, then

G(k) € G() CG(w).

G(0) is the set of closed games.

Comparison with AJM games The above definition of game differs from that in
[6] in several minor respects.

1.

The notion of bracketing condition, requiring a classification of moves as
questions or answers, has been omitted. This is because we are dealing here
with pure type theories, with no notion of “ground data types”.

. The alternation condition has been modified: we still have strict O P-alterna-

tion of moves, but now successive occurrences of moves within a sequence
are regarded as themselves having alternating polarities. Since in the PCF
games in [b] moves in fact only occur once in any play, they do fall within the
present formulation. The reason for the revised formulation is that moves in
variable games are to be seen as occurrences of type variables, which can be
expanded into plays at an instance.

. We have replaced the condition (el) from [5] with a slightly stronger condi-

tion, which is in fact satisfied by the games in [5].

3.3 Constructions on Games

Since variable games are essentially just AJM games with some additional struc-
ture on moves, the cartesian closed structure on AJM games can be lifted straigh-
forwardly to variable games.

Unit Type The unit type 1 is the empty game.

1 = (2,{e},{(59)}).

Product The product A& B is the disjoint union of games.

Oaes ={p(m) | me Ox}U{q(m) | me Op}

Pagp =1{p*(s) | s € Pa}U{q*(t) | t € P}

P (s) Maep P (t) = s~at qQ'(s)=aen q'(t) = s=pt.

A Game Semantics for Generic Polymorphism 9
Function Space The function space A = B is defined as follows.
Ousp = {Lilm)]|i€ew A me O} U {xr(m)|me Op}.

Pa— p is defined to be the set of all sequences in M _, 5 satisfying the alternation
condition, and such that:

— Vi €w.s]L;i(1) € Pa.
— sr(1l) € Pp.

Let S = {1;(1) | i € w} U {x(1)}. Note that S is unambiguous. Given a permu-
tation o on w, we define

The equivalence relation s ~4_. g t is defined by the condition
Ja € S(w).a*(s[S) =t[S A slr(l) =p tlr(l) A Viecw.s[1;(1) =a t[lam(1)).

This is essentially identical to the definition in [4]. The only difference is that
we use the revised version of the alternation condition in defining the positions,
and that we define A = B directly, rather than via the linear connectives —o
and !.

3.4 Substitution

Given A € G(k), and B = By,..., By, € G(1), we define A[B] € G(I) as follows.

k
O = 0% U U {mm'] | me Oy A m €0y}
i=1

Pag) = {s € Mig) | sIA€ Pa A Vi:1<i<kVme Oy sime Pg}

s~y t = s[A=atlA
/\ .
mis|[Ae—t|[A = Vi:1<i<kVmeOYy. sim=p, tim(m).

Here by convenient abuse of notation we write s[A for s[O4.
Note that the above definitions would still make sense if we took & = w
and/or [= w, so that, for example, there is a well-defined operation

G(w) x G(w)* — G(w).

In practice, the finitary versions will be more useful for our purposes here, as
they correspond to the finitary syntax of System F.

10 Samson Abramsky and Radha Jagadeesan

3.5 Properties of Substitution

Proposition 2. If A € G(k), By,...,Br € G(), and C1,...,C; € G(m), then:
A[B[C],...,B[C]] = (A[Bu,...,B:])C].

For each ¢ > 0 we define the variable game X; as follows.

OXi = {Z}
Py, = My,
smx, t=s=t

Proposition 3. 1. For all By,... By, € G(w), i < k: X;[B1,...Bi] = B;.
2. For all Ae G(k): A[Xq,...,Xx] = A.
We can define a useful variant of substitution by:
AB/X;) = AlX1,...,Xi—1, B, Xit1,- -, Xk
for Ae G(k), 1 <i<k.
Proposition 4. The cartesian closed structure commutes with substitution:

1. (A = B)[C] = A[C] = B[C]
2. (A& B)[C] = A[C]& B[C).

Combining Propositions 3] and @] we obtain:

Proposition 5. The cartesian closed constructions can be obtained by substitu-
tion from their generic forms:

1A=>B=X1 :>X2[A,B]
2. A&B = X; & XA, B].

4 Constructing a Universe for Polymorphism

4.1 The Inclusion Order
We define A < B by:

- 04CO0p
— Py CPp
—sxat < sE€ Py N s=pt

The inclusion order is useful in the following context. Suppose we fix a “big
game” U to serve as a “universe”. Define a sub-game of U to be a game of the
form

A= (OLHPA;%M mple)a

A Game Semantics for Generic Polymorphism 11

where P4 C Py, and
se€Py N syt = tePy.

Thus sub-games of U are completely determined by their sets of positions. We
write Sub(U) for the set of sub-games of U. Note that, for A, B € Sub(i):

A<dB < PyCPg.

Proposition 6. 1. Sub(lf) is a complete lattice, with meets and joins given by

intersections and unions respectively.
2. If S C Py, then the least sub-game A € Sub(U) such that S C Py is defined

by
Py={u|3se€S.TttCs A urmyt}.

It is straightforward to verify that function space and product are monotonic
with respect to the inclusion order. This leads to the following point, which will
be important for our model construction.

Proposition 7. Suppose that U is such that
U=U U, U&LU AU, 1QU.

Then Sub(U) is closed under these constructions.

Adjoints of substitution Let A be a variable game, and s € P4y, x,)- We can use
the substitution structure to compute the least instance B (with respect to <)
such that s € Pyp/x,)- We define

Af(s)={t|Fu.Imec O4. t~u A uL sim}

Proposition 8. With notation as in the preceding paragraph, let B = A%(s).
1. SEPA[B/Xi]-

2. SEPA[C/Xi] = B J C.

4.2 The Relative Polymorphic Product

Given A,B € G(w) and ¢ > 0, we define the relative polymorphic product
II;(A, B) (the “second-order quantification over X; in the variable type A relative
to the universe B”) as follows.

Onyia) = Oal0/i) = {ml0/il | m € O,
PHi(A,B) = {S c PA[B/Xi] ‘ Vt-a CV" s, A;k(t . a) = A;k(t)}

S X 1,(A,B) t <= s N A[B/X;] t.

12 Samson Abramsky and Radha Jagadeesan

To understand the definition of P, (4, p), it is helpful to consider the following
alternative, inductive definition (cf. [2]):

Prap = {€
U{sa|s € Py gy A 3C € Sub(B). sa € Pajcr}

U {sab | sa € PJ%??A,B) A VC € Sub(B). sa € Pajc) = sab € Pajcp}

The first clause in the definition of Py is the basis of the induction. The second
clause refers to positions in which it is Opponent’s turn to move. It says that
Opponent may play in any way which is valid in some instance. The final clause
refers to positions in which it is Player’s turn to move. It says that Player can
only move in a fashion which is valid in every possible instance. The equivalence
of this definition to the one given above follows easily from Proposition [8

Intuitively, this definition says that initially, nothing is known about which
instance we are playing in. Opponent progressively reveals the “game board” ;
at each stage, Player is constrained to play within the instance thus far revealed
by Opponent.

The advantage of the definition we have given above is that it avoids quan-
tification over subgames of B in favour of purely local conditions on the plays.

Proposition 9. The relative polymorphic product commutes with substitution.

1. II;(A, B)|[C/X;] = II;(A, B).
2. IfAcG(k+1) and Cy,...,Cx € G(n), then:

Hk+1(A7 B)[C] = Hn+1(A[C’ XTL+1]’ B)

4.3 A Domain Equation for System F

We define a variable game U € G(w) of System F types by the following recursive
equation:

U = &2X;: &1 & (U&U) & (U:>U) & &Z‘>0Hi(u,U).

Explicitly, U is being defined as the least fixed point of a function F : G(w) —
G(w). The theory developed in [8] can be used to guarantee the existence of this
least fixpoint.

We can then define second-order quantification by:

VX A 2 IL(AU).
Although it is not literally the case that
X; AU, U=U U, etc.

for trivial reasons of how disjoint union is defined, with a little adjustment of
definitions we can arrange things so that we indeed have

° X, U

° 14U

e A B LU= A&B QU&U QU

e ABJdU= A=B dU=UU

e AU =VX,.A=IL(AU) < ILU,U) < U.

A Game Semantics for Generic Polymorphism 13

Thus we get a direct inductive definition of the types of System F as sub-games
of U.

Moreover, if A and B are (the variable games corresponding to) System F
types, then a simple induction on the structure of A using Propositions [3,
and [shows that

A[B/Xi] 4 U,

and similarly for simultaneous substitution.

5 Strategies

Fix a variable game A. Let
g: OA — OA

be a partial function. We can extend ¢ to a partial function
G Mapy — Mapy
by

g

o glm)m’], g(m) defined
(mm’]) = { undefined otherwise

Now we can define a set of plays o4 C MZ[u] inductively as follows:
o = {e} U {sab|scoy, N sac Py N gla) =0}
For all B < U, we can define the restriction of o, to B by:
o = {e} U {sab € g, | sa € Pyp}.

(Note that o, = oy, in this notation.) We say that o, is a generic strategy for
A, and write g4 : A, if the following restriction condition is satisfied:

— o C Py for all B 9 U, so that the restrictions are well-defined.
Note that o = o4 has the following properties.

— 0 is a non-empty set of even-length sequences, closed under even-length
prefixes.
o is deterministic, meaning that

sabeo N saceo = b=c.

o is history-free, meaning that
sabe o Nteo N ta€ Pay = tabeo.
— o is generic:

s-mi[my]-ma[ms] € o At € o At-mi[ml] € Pagyy = t-myi[my]-ma[mf] € o.

14 Samson Abramsky and Radha Jagadeesan

These conditions imply that
s-my[mi]-ma[mb] € o = mi =m)).

Moreover, for any set o C P44 satisfying the above conditions, there is a least
partial function g : O4 — O4 such that 0 = o,. This function can be defined
explicitly by

g(m1) =me <= 3Is.s-myla]-mala] € o.

The equivalence =4 on plays can be lifted to a partial equivalence (i.e. a
symmetric and transitive relation) on strategies on A, which we also write as
~2. This is defined most conveniently in terms of a partial pre-order (transitive
relation) <, which is defined as follows.

oST = sabeog ANtET A samatd = I .tdb €T A sabma ta'l.

We can then define

oxT = o STATSO.
~ =~

A basic well-formedness condition on strategies o is that they satisfy this re-
lation, meaning o ~ o. Note that for a generic strategy ¢ = oy, using the
equivalence on plays in A[U]:

o0 — op=xopg forall B <U.

A cartesian closed category of games is constructed by taking partial equivalence
classes of strategies, i.e. strategies modulo =, as morphisms. See [5] for details.

5.1 Copy-Cat Strategies

One additional property of strategies will be important for our purposes. A
partial function f : X — X is said to be a partial involution if it is symmetric,
i.e. if
fl@)=y <= fly ==

It is fized-point free if we never have f(x) = z. Note that fixed-point free par-
tial involutions on a set X are in bijective correspondence with pairwise disjoint
families {z;,y; }icr of two-element subsets of X (i.e. the set of pairs {z,y} such
that f(z) =y, and hence also f(y) =). Thus they can thought of as “abstract
systems of axiom links”. See [6/7] where a combinatory algebra of partial invo-
lutions is introduced, and an extensive study is made of realizability over this
combinatory algebra.

For us, the important correspondence is with copy-cat strategies, first iden-
tified in [3] as central to the game-semantical analysis of proofs (and so-named
there). We say that o is a copy-cat strategy if o = o, where g is a fixed-point
free partial involution.

Lemma 1 (The Copy-Cat Lemma). Let o4 : A be a generic copy-cat strat-
egy. If g(m) = m/, then for all s € o:

A Game Semantics for Generic Polymorphism 15
6 The Model

We shall use the hyperdoctrine formulation of model of System F, as originally
proposed by Seeley [22] based on Lawvere’s notion of hyperdoctrines [14], and
simplified by Pitts [18].
We begin by defining:
Gu(k) = Sub(d) N G(k),

where U is the universe of System F types constructed in Section 6.

6.1 The Base Category

We firstly define a base category B. The objects are natural numbers. A mor-
phism n — m is an m-tuple

<A1,...,Am>, Aiegu(n), 1<i<m.

Composition of (A1,...,An) : n — m with (By,...,4,) : k — n is by
substitution:

(A1,...,An)oB = (A4]B],...,An[B]) : k — m.
The identities are given by:
id, = (Xi1,...,X5).
Note that variables act as projections:
X;:n—1
and we can define pairing by
(A,B) = (Ay,...,A,,B1,...,Bp):k—m+n

where
(A1,...,An) k —n, (Bi,...,Bm) : k — m.

Thus this category has finite products, and is generated by the object 1, in the
sense that all objects are finite powers of 1.

6.2 The Indexed CCC

Nest, we define a functor
C:B°* — CCC

where CCC is the category of cartesian closed categories with specified products
and exponentials, and functors preserving this specified structure.

16 Samson Abramsky and Radha Jagadeesan

The cartesian closed category C(k) has as objects Gy (k). Note that the objects
of C(k) are the morphisms B(k, 1); this is part of the Seeley-Pitts definition.

The cartesian closed structure at the object level is given by the constructions
on variable games which we have already defined: A = B, A& B, 1. Note that
Gu (k) is closed under these constructions by Proposition [7

A morphism A — B in C(k) is a generic copy-cat strategy o : A = B.
Recall that this is actually defined at the “global instance” U:

o=ou: (A= B)U] = AlU]= B[U].

More precisely, morphisms are partial equivalence classes of strategies modulo

~
~.

The cartesian closed structure at the level of morphisms is defined exactly
as in [9].

Reindexing It remains to describe the functorial action of morphisms in B. For
each C : n — m, we must define a cartesian closed functor

C*:C(m) — C(n).

We define:

Ifo: A= B,
C*(0) =0c: (A= B)[C] = A[C]= B[C].
For functoriality, note that
C*(0)oC*(t) =0cotc=(0c0oT)c =C*(goT).

By Proposition @l C* preserves the cartesian closed structure.

6.3 Quantifiers as Adjoints

The second-order quantifiers are interpreted as right adjoints to projections. For
each n, we have the projection morphism

(X1,...,Xpn):n+1—mn
in B. This yields a functor
X*:C(n) — C(n+1).
We must specify a right adjoint

II,:C(n+1) — C(n)

A Game Semantics for Generic Polymorphism 17

to this functor. For A € Gy (n + 1), we define
I,(A) = VX, 11. A
To verify the universal property, for each C' € Gys(n) we must establish a bijection
A:C()(C,VXpi1. A) — C(n+1)(X*(0), A).
Concretely, note firstly that
X*(C) = C[X] = C.

Next, note that in both hom-sets the strategies are subsets of Popg— A,/ x,11]-
In the case of generic strategies o into A, these are subject to the constraint of
the restriction condition: that is, for each instance B, B,

oB,B C Po[B|=A[B,B]-

In the case of strategies o into V.X,,41. A, these are subject to the constraint that
for each instance B,

0B C PoB|=vX, 1. A[B,X41]-

The equivalence of these conditions follows straightforwardly from Proposition Rl
This shows that the required correspondence between these hom-sets is simply
the identity (which also disposes of the naturality requirements)!

Naturality (Beck-Chevalley) Finally, we must show that the family of right ad-
joints IT,, form an indexed (or fibred) adjunction. This amounts to the following:
for each @ : m — n in B, we must show that

a*olIl, = I, o (a xidy)*.
Concretely, if « = C, we must show that for each A € Gy(n + 1),
(VXpnt1-A)[C] = VXpt1. AIC, Xpta].

This is Proposition [J

Remark We are now in a position to understand the logical significance of the
relative polymorphic product II;(A, B). We could define

Gs(k) = Sub(B) N G(k),

and obtain an indexed category Cp(k) based on Gp(k) instead of Gy (k). We
would still have an adjunction

G(n)(C,II,+1(A,B)) = Cp(n+1)(X*(C),A).

18 Samson Abramsky and Radha Jagadeesan

However, in general B would not have sufficiently strong closure properties to
give rise to a model of System F. Obviously, Sub(B) must be closed under the
cartesian closed operations of product and function space. More subtly, Sub(B)
must be closed under the polymorphic product I7;(—, B). (This is, essentially,
the “small completeness” issue [13], although our ambient category of games
does not have the requisite exactness properties to allow our construction to be
internalised in the style of realizability modelsEI) This circularity, which directly
reflects the impredicativity of System F, is resolved by the recursive definition
of U.

7 Homomorphisms

We shall now view games as structures, and introduce a natural notion of homo-
morphism between games. These will serve as a useful auxiliary tool in obtaining
our results on genericity.

A homomorphism h : A — B is a function

h: PA — PB
which is

— length-preserving: |h(s)| = |s|
— prefiz-preserving: s Tt = h(s) C h(t)
— equivalence-preserving: s =t = h(s) = h(t).

There is an evident category Games with variable games as objects, and
homomorphisms as arrows.

Lemma 2 (Play Reconstruction Lemma). Let A, B be variable games. If
we are given s € Pa, and for each m € OY, a play t,, € P with |t,,| =
numoccs(m, s), then there is a unique u € Pa[p/x,) such that:

ulA = s, ulm =ty (m e Oy).

This Lemma makes it easy to define a functorial action of variable games on
homomorphisms. Let A be a variable game, and h : B — C' a homomorphism.
We define

A(h) : A[B/X;] — A[C/X]]
by A(h)(s) = t, where

t]|A = s|A, tim = h(sIm), (m € OY).

! However, by the result of Pitts [I8], any hyperdoctrine model can be fully and
faithfully embedded in an (intuitionistic) set-theoretic model.

A Game Semantics for Generic Polymorphism 19

Lemma 3 (Functoriality Lemma). A(h) is a well-defined homomorphism,
and moreover this action is functorial:

A(g o h) = A(g) o A(h), A(IdB) = idA[B/Xi]~

The second important property is that homomorphisms preserve plays of generic
strategies.

Lemma 4 (Homomorphism Lemma). Let A be a variable game, o : A a
generic strategy, and h : C' — D a homomorphism. Then

s €oac/x,) = h(s) €oapyx,)-

8 Genericity

Our aim in this section is to show that there are generic types in our model, and
indeed that, in a sense to be made precise, most types are generic.

We fix a variable game A € G(1). Out aim is to find conditions on variable
games B which imply that, for generic strategies o, 7 : A:

oprTg = Alo)= A1) : VX. A

Since, as explained in Section 8.3,

this reduces to proving the implication
opRTp — Oy "TY-
Our basic result is the following.

Lemma 5 (Genericity Lemma). If there is a homomorphism h : U — B,
then B is generic.

Remark The Genericity Lemma applies to any variable type A; in particular,
it is not required that A be a sub-game of &. Thus our analysis of genericity is
quite robust, and in particular is not limited to System F.

We define the infinite plays over a game A as follows: s € PY° if every finite
prefix of s is in P4. We can use this notion to give a simple sufficient condition
for the hypothesis of the Genericity Lemma to hold.

Lemma 6. If P5° # &, then B is generic.

We now apply these ideas to the denotations of System F types, the objective
being to show that “most” System F types denote generic instances in the model.
Firstly, we define a notion of length for games, which we then transfer to types
via their denotations as games.

20 Samson Abramsky and Radha Jagadeesan

We define
|A| = sup{|s||s€ Pa}.

Note that |A4] < w.
We now show that any System F type whose denotation admits plays of
length greater than 2 is in fact generic!

Lemma 7 (One, Two, Infinity Lemma). If |T| > 2, then T is generic.

We now give explicit syntactic conditions on System F types which imply
that they are generic.

Proposition 10. Let T =VX. Ty — --- - T — X.

1. If for somei:1<i<k,T; =VY.Uy — -+ — U — X, then T is generic.

2. If for somei: 1 <i <k, T, =VY.U — --- — U — Y, and for some
j:1<j<L,U; =VZ. Vi — -+ =V, = W, where W is either some
Zy€ Z,orY, or some X, € X, then T is generic.

We apply this to the simple and familiar case of “ML types”.

Corollary 1. Let T =VX.U, where U is built from the type variable X and —.
If U is non-trivial (i.e. it is not just X), then T is generic.

Ezxamples The following are all examples of generic types.

- VX. X - X
—VX(X—>X)—>X
-VX.(WY -Y —>Y)—- X.

Non-examples The following illustrate the (rather pathological) types which do
not fall under the scope of the above results. Note that the first two both have
length 1; while the third has length 2.

- VX.X
- VXVY. X =Y.
- VX. X - VX. X

Remark An interesting point illustrated by these examples is that our conditions
on types are orthogonal to the issue of whether the types are inhabited in System
F. Thus the type VX. (X — X) — X is not inhabited in System F, but is generic
in the games model, while the type VX. X — VX.X is inhabited in System F,
but does not satisfy our conditions for genericity.

A Game Semantics for Generic Polymorphism 21
9 Related Work

A game semantics for System F was developed by Dominic Hughes in his D.Phil.
thesis [I2]. A common feature of his approach with ours’ is that both give a direct
interpretation of open types as certain games, and of type substitution as an
operation on games. However, his approach is in a sense rather closer to syntax;
it involves carrying type information in the moves, and the resulting model is
much more complex. For example, showing that strategies in the model are closed
under composition is a major undertaking. Moreover, the main result in [12] is
a full completeness theorem essentially stating that the model is isomorphic to
the term model of System F (with Sn-equivalence), modulo types being reduced
to their normal forms. As observed by Longo [16], the term model of System F
does not satisfy Genericity; in fact, it does not satisfy Axiom (C). It seems that
the presence of explicit type information in the moves will preclude the model in
[12] from having genericity properties comparable to those we have established
for our model.

References

1. M. Abadi, L. Cardelli and P.-L. Curien. Formal Parametric Polymorphism. In Proc.
20th ACM Symposium on Principles of Programming Languages, 1993.

2. S. Abramsky. Semantics of Interaction. In Semantics and Logics of Computation,
edited by A. Pitts and P. Dybjer, Cambridge University Press 1997, 1-32.

3. S. Abramsky, R. Jagadeesan. Games and Full Completeness for Multiplicative Lin-
ear Logic, J. of Symbolic Logic 59(2), 1994, 543-574.

4. S. Abramsky, R. Jagadeesan. A Game Semantics for Generic Poly-
morphism. Oxford University Computing Laboratory Programming Re-
search Group, Research Report RR-03-02, 2003. Available on-line at
http://web.comlab.ox.ac.uk/oucl/publications/tr/rr-03-02.

5. S. Abramsky, R. Jagadeesan, P. Malacaria. Full Abstraction for PCF, Inf. and
Comp. 163, 2000, 409-470.

6. S. Abramsky, M. Lenisa. A Fully-complete PER Model for ML, Polymorphic Types,
CSL’00 Conf. Proc., P. Clote, H.Schwichtenberg eds., LNCS 1862, 2000, 140-155.

7. S. Abramsky, M. Lenisa. A Fully Complete Minimal PER Model for the Simply
Typed A-calculus, CSL’01 Conf. Proc., LNCS 2001.

8. S. Abramsky and G. McCusker. Games for Recursive Types. In C. Hankin, I.
Mackie and R. Nagarajan, eds. Theory and Formal Methods of Computing 199/.
Imperial College Press, 1995.

9. G. Berry. The Foundations of Esterel. In Proof, Language and Interaction: Essays
in honour of Robin Milner, eds. G. Plotkin, C. Stirling and M. Tofte. MIT Press
2000, 425-454.

10. J.Y. Girard. Interprétation functionelle et élimunation des coupures de
larithmetique d’ordre supérieur, These d’Etat, Université Paris VII, 1972.

11. J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and Types. Cambridge University
Press 1989.

12. D. J. D. Hughes. Hypergame Semantics: Full Completeness for System F. D.Phil.
thesis, University of Oxford, 1999.

22

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

Samson Abramsky and Radha Jagadeesan

J. M. E. Hyland. A small complete category. Annals of Pure and Applied Logic,
40, 1988.

F. W. Lawvere. Equality in hyperdoctrines and the comprehension schema as an
adjoint functor, Proc. Symp. on Applications of Categorical Logic, 1970.

G. Longo, K. Milsted, S. Soloviev. The Genericity Theorem and Parametricity in
the Polymorphic A-Calculus, TCS 121(1&2):323-349, 1993.

G. Longo. Parametric and Type-Dependent Polymorphism. Fundamenta Informat-
icae 22(1/2):69-92.

Q.-Q. Ma and J. C. Reynolds. Types, Abstraction and Parametric Polymorphism,
Part 2. In S. Brookes et al. editors, Mathematical Foundations of Programming
Language Semantics. LNCS 598, 1992.

A. Pitts. Polymorphism is set-theoretic constructively, CTCS’88 Conf. Proc.,
D.Pitt ed., LNCS 283, 1988.

G. Plotkin, M. Abadi. A Logic for Parametric Polymorphism, TLCA’93 Conf.
Proc., LNCS, 1993.

J. C. Reynolds. Towards a Theory of Type Structure. Programming Symposium,
Proceedings, Paris 1974. LNCS 19, 1974.

J. C. Reynolds. Types, Abstraction and Parametric Polymorphism. Information
Processing 83, pp. 513-523, Elsevier (North-Holland), 1983.

R. A. G. Seeley. Categorical semantics for higher-order polymorphic lambda cal-
culus. Journal of Symbolic Logic, 52(4):969-989, 1987.

	A Game Semantics for Generic Polymorphism
	Introduction
	Background
	Syntax of System F
	Notation

	Variable Games and Substitution
	A Universe of Moves
	Variable Games
	Constructions on Games
	Substitution
	Properties of Substitution

	Constructing a Universe for Polymorphism
	The Inclusion Order
	The Relative Polymorphic Product
	A Domain Equation for System F

	Strategies
	Copy-Cat Strategies

	The Model
	The Base Category
	The Indexed CCC
	Quantifiers as Adjoints

	Homomorphisms
	Genericity
	Related Work

