
Counting and Equality Constraints

for Multitree Automata

Denis Lugiez

Lab. d’Informatique Fondamentale, UMR 6166
CNRS & Université de Provence.

CMI 39 av. Joliot Curie, 13453 Marseille Cedex, France.
lugiez@cmi.univ-mrs.fr

Abstract. Multitree are unranked, unordered trees and occur in many
Computer Science applications like rewriting and logic, knowledge rep-
resentation, XML queries, typing for concurrent systems, cryptographic
protocols.... We define constrained multitree automata which accept sets
of multitrees where the constraints are expressed in a first-order theory
of multisets with counting formulae which is very expressive and decid-
able. The resulting class of multitree automata is closed under boolean
combination, has a decidable emptiness problem and we show that this
class strictly embeds all previous classes of similar devices which have
been defined for a whole variety of applications.

Introduction

Tree automata and regular tree languages have been used successfully in many
areas of Computer Science like type systems, rewriting, program analysis, proto-
col verification... However the expressive power of regular languages is often too
weak and many extensions of regular languages have been proposed for solving
some specific problems. One trend is to add constraints to the transition rules
such that a rule is used only when the constraint is satisfied. The most natu-
ral extension is to add equality constraints which state that some subterms at
some positions must be equal or different. The resulting class has good closure
properties but the emptiness problem (decide if the language L(A) accepted
by an automaton A is empty or not?) is undecidable. Therefore equality con-
straints have been restricted to get classes with a decidable emptiness problem:
automata with equality/disequality constraints between brothers [BT92], reduc-
tion automata [CCC+94], and automata with a bounded number of equality
test along an accepting run [CJ94]. These automata are used in automated the-
orem proving and rewriting. Another direction for extending the expressivity
of regular languages is to use axioms, especially associativity and associativity-
commutativity axioms. Hedge automata [PQ68, Mur01] which are used in query
languages for XML have rules where the left-hand side is a regular expression on
the set of states. Automata where the left-hand side is a Presburger formula or
a rational expression of vectors of integers have be proposed for applications in

A.D. Gordon (Ed.): FOSSACS 2003, LNCS 2620, pp. 328–342, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Counting and Equality Constraints for Multitree Automata 329

type system used in verification of infinite-state systems [Col02], inductive the-
orem proving [LM94] or knowledge representation [NP93] for which feature tree
automata are introduced. In [Ohs01], one adds equality steps involving axioms
during the acceptance process.

The next step is to combine both constraints and axioms which gives two
possible reasons for getting into trouble. Since the most frequently used axiom
is associativity-commutativity and the most frequently needed constraints are
equality constraints, it is natural to look for tree automata combining these
features. The underlying data structure is now the multitree structure where
some operators have unbounded arity and the subterms are unordered. Therefore
the first point is to define a theory of constraints which extends equality to
multitrees and possibly adds some new constraints. The second point is to define
a class of multitree automata which uses the constraints and still has the good
properties required by applications (basically closure under boolean combination
and decision of emptiness). We present a new class of multitree automata with
a simple and natural definition, where the constraints are formulae of the first-
order theory of equality for multisets enriched by Presburger constraints on the
cardinality of multisets. For instance, one may constraint a rule f(q, q, q) → q′

by a formula saying that the first subterm reaching q has twice as elements as the
second subterm reaching q and that the first subterm is the union of the second
subterm and of the third one. We show that these constraints are decidable
(section 2), then we prove that the multitree automata class is closed under
boolean combinations (section 4), and has an elementary emptiness problem
in section 5. Then we prove that this class contains all known classes of tree
automata which use AC axioms or/and equality constraints, are closed under
boolean combinations and have a decidable emptiness problem (in section 6).
Missing proofs will appear in the long version of the paper.

In this paper we focus on the definition of the new class and its basic prop-
erties. Since this class contains many classes previously known which have been
extensively used in Computer Science, we can hint at many applications already
known in knowledge representation (feature tree automata and feature logic),
typing for infinite state systems (rational tree automata), inductive theorem
proving (automata with Presburger constraint), logic and rewriting(automata
with equality constraint between brothers)... Applications to cryptographic pro-
tocols in the spirit of [GLV02] which uses two-way automata with associativity-
commutativity is also relevant.

1 Notations

Terms and Multitrees. Multisets on a (finite or infinite) set of elements e1, e2, . . .
are sets where elements can be repeated. The empty multiset is denoted by ∅.
The multiset composed of ei1 , . . . , eip (where one may have eil

= eij) is denoted
by {ei1 , . . . , eip}. The number of repetition of an element is its multiplicity. The
number of elements of a multiset #E(M) is the number of elements counted

330 Denis Lugiez

with their multiplicities and #D(M) denotes the number of distinct elements.
For instance #D({e1, e1, e2}) = 2 and #E({e1, e1, e2}) = 3.

We consider terms on a finite set of free function symbols F and a finite
set of binary function symbols ⊕1,⊕2, . . . which are supposed to be associative-
commutative (AC in short). For simplicity we use only one ⊕ operator, but our
results are extended easily to the case of several AC symbols. The set of terms is
TF for F = F ∪ {⊕}. Terms can be flattened using the rules (x⊕ y)⊕ z) → and
writting a term ((. . . (t1⊕t2)⊕. . .)⊕tn) as t1⊕t2 . . .⊕tn. Multitrees corresponds to
flattened terms but where the ⊕ operator is considered as a multiset constructor
and are described by the grammar:

MT ::= S | T
S ::= T1 ⊕ . . .⊕ Tn n ≥ 1 (sum−like multitrees)
T ::= f(MT1, . . . ,MTn) arity(f) = n (term−like multitrees)

For instance f(a⊕ g(b), a⊕ a) ∈ T , a⊕ a⊕ f(a, a) ∈ S. In the following we
may say terms as well as multitrees for elements of MT . A multitree t1⊕ . . .⊕ tn
is often denoted by Σi=1,...,nti. Multitrees are equal up to permutation of argu-
ments of ⊕. For instance, f(a⊕ g(b), a⊕ b) = f(g(b) ⊕ a, b⊕ a).

This paper deals with automata recognizing sets of multitrees.

Presburger Arithmetic. Let N be the set of natural numbers and let + denote
addition of natural numbers. Then the first-order theory of equality on this struc-
ture is called Presburger arithmetic and is decidable 1. Diophantine equations,
inequations are example of Presburger arithmetic formula (with a lower com-
plexity since they are in NP). The models of Presburger arithmetic formulae are
the semilinear sets.

2 First-Order Theory of Multisets with Cardinality
Constraints

We define FO#(M) the first-order theory of multisets with cardinality con-
straints.

The syntax of formula. Let X = {X,Y, . . .} be a set of multiset variables, the
set of terms is defined by the grammar:

T ::= X | T ⊕ T

where the ⊕ operator is a binary associative-commutative symbol. We use also
two unary symbols #D and #E . The predicate is the equality predicate =. We
also assume that N1, N2, . . . is a denumerable set of integer variables. Formula
are given according to the grammar:

φ ::= (T = T) | ψ(#(X1), . . . ,#(Xn), N1, . . . , Np) | ¬φ | φ∧φ | ∃X φ | ∃N φ

where ψ is a Presburger arithmetic formula, # denotes #D or #E .
1 it is ATIME(double-expo,poly)-complete [Ber77]

Counting and Equality Constraints for Multitree Automata 331

Semantics. Let M be the set of finite multisets built on a denumerable set of
distinct elements e1, e2, An interpretation I associates to each variable X
a multiset I(X) ∈ M, and to each integer variable N some natural number
I(N) ∈ N. The function ⊕ is interpreted as the union of multisets, equality is
equality of multisets, and #D(X) (resp. #E) is interpreted as the number of dis-
tinct elements (resp. number of elements) of X . The interpretation is extended
to formula as in first-order logic, and similarly we define satisfiability, mod-
els,. . . The values of the ei’s are not relevant for the satisfiability of a formula
and satisfiability is preserved by one-to-one mapping of the ei’s.

Expressivity. This logic can express many natural properties.

– any Presburger formula related to the number of elements of multisets (count-
ing formula). For instance X has as many elements as Y : #E(X) = #E(Y).

– X is empty: #E(X) = 0, X is a singleton: #E(X) = 1
– Y is a subset of X : ∃Z : X = Y ⊕ Z
– the intersection X ∩ Y is empty: ∀Z : Z ⊆ X ∧Z ⊆ Y ⇒ empty(Z)
– X is a multiset containing only copies of some element: #D(X) = 1
– X is a multiset s.t. the multiplicity ne of each element e satisfies the Pres-

burger formula ψ(ne):

∀Xe Y X = Xe ⊕ Y ∧#D(Xe) = 1∧Xe ∩ Y = ∅ ⇒ ψ(#E(Xe))

This formula is called Mult(ψ,X). This is extended for a tuple X1, . . . , Xn

and a variable ψ with n free variables, yielding a formulaMult(ψ,X1,. . ., Xn).
– N is the maximal multiplicity of an element of X :

∀Xe, Y X = Xe ⊕ Y ∧#D(Xe) = 1∧Xe ∩ Y = ∅ ⇒ #E(Xe) ≤ N
∧∃Xe, Y X = Xe ⊕ Y ∧#D(Xe) = 1∧Xe ∩ Y = ∅∧#E(Xe) = N

We shall abbreviate this formula into N = #M (X).
– Y is the set of distinct elements of X :

Y ⊆ X ∧ ∀Xe, X
′ (X = Xe ⊕X ′ ∧Xe �= ∅ ⇒ Y ∩Xe �= ∅)

∧∀Ye, Y
′ (Y = Ye ⊕ Y ′ ⇒ Ye ∩ Y ′ = ∅)

then #D(X) = #E(Y) which shows that #D is definable within the logic.

The extension of FO#(M) with variables x, y, . . . for elements and the mem-
bership predicate x ∈ X is achieved by introducing a multiset variable Xx for
each variable x together with the condition that Xx is a singleton, and replacing
x ∈ X by Xx ⊆ X .

Theorem 2.1. The first-order theory of multisets with cardinality constraints
is decidable.

When there is no #(X) occurrence, the result can be obtained by encoding
the multiset theory in Skolem arithmetic (private communication from Achim
Blumensath). The extended version of the paper gives an alternative proof based
on semilinear sets which provides an explicit representation of the model of a
formula. When no multiset variable occur free, we get:

332 Denis Lugiez

Proposition 2.1. The model of a formula φ(N1, . . . , Np) of FO#(M) is a semi-
linear set constructible in elementary time.

3 Multitree Automata with Constraints

Equality of multitrees up to permutation of elements of ⊕ defines an equivalence
relation. Let e1, e2, . . . be a enumeration of the equivalence classes corresponding
to the elements of T . For simplicity we identify an element of T and its equiv-
alence class. We interpret each multitree t in MT = S ∪ T as a multiset [[t]] of
ei’s as follows: - if t ∈ T then t is in some ei and we set [[t]] = {ei}

- if t ∈ S then t = ei1 ⊕ . . .⊕ eip and [[t]] = {ei1 , . . . , eip}
For instance [[f(a⊕ b)]] = {f(a⊕ b)} and [[a⊕ b]] = {a, b}.

Definition 3.1. A multitree automaton is composed of a finite set of states
Q = {q1, . . . , qm}, a set of final states QFinal ⊆ Q and a set of rules R of the
form: (type 1) φ(X1, . . . , Xn) ⇒ f(q1, . . . , qn) → q for f of arity n

(type 2) φ(Xq1 , . . . , Xqm) ⇒ q
where in each case, φ denotes a formula of FO#(M).

The transition relation →A is defined by t→A q iff

t = f(t1, . . . , tn)→A q if φ(X1, . . . , Xn) ⇒ f(q1, . . . , qn) → q ∈ R
ti →A qi for i = 1, . . . , n
|= φ([[t1]], . . . , [[tn]])

t = e1 ⊕ . . .⊕ ep →A q if φ(Xq1 , . . . , Xqm) ⇒ q ∈ R
t = t1 ⊕ . . .⊕ tm where, for i = 1, . . . ,m,
ti = ei,1 ⊕ . . .⊕ ei,ni and ei,j →A qi for j = 1, . . . , ni

|= φ([[t1]], . . . , [[tm]])

A multitree is accepted iff t→A q with q ∈ QFinal. The language L(A) accepted
by A is the set of multitrees accepted by A.

Example 3.1. Given a signature consisting of two constants a, b, one binary
symbol f , an automaton accepting only multisets with two constants a and
b such that the number of b’s is greater than the number of a’s can be A =
({qa, qb, qS}, {qS}, R) with R = {True ⇒ a → qa, T rue ⇒ b → qb,#E(Xqa) <
#E(Xqb

) ⇒ qS }.

Then a⊕ b⊕ b→ qS since
{
a→ qa, b→ qb, [[a]] = {a} and [[b⊕ b]] = {b, b}
|= #E([[a]]) < #E([[b⊕ b]])

To accept also the multitrees s.t. that each subterm f(t1, t2) satisfies t1 �= t2
and t1, t2 ∈ L(A), we simply add the rule: X1 �= X2 ⇒ f(qS , qS) → qS �

Two automata are equivalent if they have the same language. The class of
multitree languages accepted by multitree automata with constraints is denoted
by CMTL. For simplicity, it is easier to consider automata such that

Counting and Equality Constraints for Multitree Automata 333

(i) Q = QT ∪QS with QT ∩ QS = ∅,
(ii) for all type 1 rules φ(X1, . . . , Xn) ⇒ f(q1, . . . , qn) → q, we have q ∈ QT
(iii) for all type 2 rules φ(Xq1 , . . . , Xqm) ⇒ q, we have q ∈ QS

and φ(Xq1 , . . . , Xqm) ≡ φ′(Xq1 , . . . , Xqm′) where {q1, . . . , qm′} = QT .

This can be achieved by splitting each state q into qM and qF , replacing type
1 rules . . . → q by . . . → qF and type 2 rules . . . ⇒ q by . . . ⇒ qM and any
occurrence of q elsewhere by qM and qF .

Example 3.2. In the second automaton of the previous example, the state qS
can be reached by multitrees of S as well as multitrees of T . Therefore we
split it into qSS and qTS and replace the rule X1 �= X2 ⇒ f(qS , qS) → qS by
the rules X1 �= X2 ⇒ f(,) → qTS where is any of qTS , q

T
S , and the rule

#E(Xqa) < #E(Xqb
) ⇒ qS by #E(Xqa) < #E(Xqb

) ⇒ qSS . �

4 Properties of Multitree Automata with Constraints

Membership. Given an automaton A, its size |A| is the number of symbols
of its presentation, C(t) is a bound on the time for checking the satisfiability
of constraints of A on the subterms of t. If the constraints are quantifier-free
formulas, this amounts to solving equality of terms modulo AC which can be
solved in polynomial time in |t|, see [BKN85].

Proposition 4.1. t ∈ L(A) is decidable in time O(|A||t||C(t)|)
Proof. Consider all |A||t| possible labelling of nodes in t where the root is labelled
by a final state, and check the applicability of rules. �

Completion. An automaton is complete if each multitree reaches at least one
state. To get a complete automaton equivalent to a given automaton, we add a
sink state qS , the rules True⇒ f(. . . , qS , . . .) → qS and the rules True⇒ qS .

Determinization. An automaton is deterministic iff for each multitree t, there
exists at most one state q such that t→A q. We show how to build a de-
terministic automaton AD equivalent to a non-deterministic automaton A =
(QA,QFinal, R). The deterministic automaton AD has a set of states QD = 2QA ,
the final states are the states containing a final state of A.

Determinization of conditions. First we replace rules by rules such that con-
straints are pairwise incompatible. For a symbol f of arity n, let φi(X1, . . . , Xn)
for i = 1, . . . ,m be the conditions of corresponding type 1 rules. For each
I ⊆ {1, . . . ,m}, let ψI(X1, . . . , Xn) be defined by∧

i∈I

φi(X1, . . . , Xn)∧
∧
i�∈I

¬φi(X1, . . . , Xn)

By construction ψI(X1, . . . , Xn)∧ψJ (X1, . . . , Xn) is unsatisfiable if I �= J and
φi(X1, . . . , Xn) ⇔

∨
i∈I ψI(X1, . . . , Xn). Then each rule φi(X1, . . . , Xn) ⇒

f(q1, . . . , qn) → q is replaced by the rules ψI(X1, . . . , Xn) ⇒ f(q1, . . . , qn) → q
for i ∈ I.

334 Denis Lugiez

The subset construction: type 1 rules. Type 1 rules of AD are

ψI(X1, . . . , Xn) : f(Q1, . . . , Qn) → Q

with Q = {q | ∃q1 ∈ Q1, . . . , qn ∈ Qn, ψI(X1, . . . , Xn) ⇒ f(q1, . . . , qn) → q ∈ R}

The subset construction: type 2 rules. For J ⊆ {1, . . . , |QA|}, let QJ denote
{qj | j ∈ J} and let XJ the variable associated to QJ in type 2 rules of AD. Let
the type 2 rules of A be φ1(X1, . . . , X|QA|) ⇒ q1, . . . , φp(X1, . . . , X|QA|) ⇒ qp
For each k = 1, . . . , p, we define ψk(X∅, . . . , XJ , . . . , X{1,...,|QA|}) by:

∧
J⊆{1,..,|QA|}

(∃XJ
j XJ = Σj∈JX

J
j ∧φk(ΣJ⊆{1,..,|QA|}X

J
1 , .., ΣJ⊆{1,..,|QA|}X

J
|QA|)

The idea underlying the construction of ψk is the following one:XJ represents
a sum of ei’s s.t. each ei reaches exactly all the states qj for j ∈ J . In a derivation
of A, each ei reaches only one of the possible qj which is represented by the
decomposition of XJ into the sum Σj∈JX

J
j . Finally, we sum all terms that

reach the same state qi ∈ QA for i = 1, . . . , |QA|, and we check whether the
condition φk is satisfiable, which means that the state qk can be reached.

The last point is to eliminate the remaining ambiguities (since the same term
can satisfy several ψk formulas) yielding the following type 2 rules of AD:

∧
i∈I

ψi(X∅, . . . , X{1,...,QA})∧
∧
i�∈I

¬ψi(X∅, . . . , X{1,...,QA}) ⇒ QI

Proposition 4.2. |AD| = O(22|A|) and t→AD Q iff Q = {q | t→A q}.

Proof. We show that t→AD Q iff Q = {q | t→A q} by structural induction on t.

Case t = f(t1, . . . , tn). Since the conditions of rules are either identical or
pairwise incompatible, the proof is similar to the correctness proof for the de-
terminization of tree automata.

Case t = t1 ⊕ . . .⊕ tn. Assume that the property holds for the ti’s. We denote
by t→A I the property that I = {i | t→A qi} for any multitree t. We can write

t = ΣJ⊆{1,...,|QA|}Σtj →A J tj = ΣJ⊆{1,...,|QA|}TJ with TJ = Σtj →A J tj

where the decomposition is unique by induction hypothesis.

– Assume that t→AD QI using∧
i∈I ψi(X∅, . . . , X{1,...,|QA|})∧

∧
i�∈I ¬ψi(X∅, . . . , X{1,...,|QA|}) ⇒ QI .

Let i ∈ I. By definition |= ψi(T∅, . . . , T{1,...,|QA|}) Therefore, for all
J ⊆ {1, . . . , |QA|} we find a decomposition2 TJ = Σj∈JT

J
j such that

|= φi(ΣJ⊆{1,...QA}T
J
1 , . . . , ΣJ⊆{1,...,|QA|}T

J
|QA|)

2 this decomposition depends on i but we don’t write this explicitely for simplicity

Counting and Equality Constraints for Multitree Automata 335

This proves that t = Σ
j=|QA|
j=1 ΣJ⊆{1,...,|QA|}T

J
j →A qi.

For i �∈ I, we can’t find any such decomposition by definition of ¬ψi (other-
wise t |= ψi for i �∈ I and t � →AD QI), which proves that t � →A qi.
Combining the two previous results, we get QI = {qi | t→A qi}.

– Conversely, let Q = {q | t→A q} = QI for some I. According to our notation,

t = ΣJ⊆{1,...,|QA|}TJ where TJ = Σtj →A J tj

By definition of QI , for i ∈ I, there is a decomposition3 TJ = Σj∈J t
J
j s.t.

φi(ΣJ⊆{1,...,|QA|}t
J
1 , . . . , ΣJ⊆{1,...,|QA|}t

J
|QA|)

This proves that |= ψi(T∅, . . . , T{1,...,|QA|}).

For i �∈ I there is no such decomposition (otherwise t→A qi), therefore
�|= ψi(T∅, . . . , T{1,...,|QA|}).
Combining the two properties we get that t→AD QI �

Compositional properties: Product, union, intersection. Given A =
(Q = {q1, . . . , qn},QFinal, R), A′ = (Q′{q′1, . . . , q′n′},Q′

Final, R
′) two automata,

the set of states of the product A×A′ is Q× = Q×Q′, the set of final states is
empty, and the rules are given by:

(type 1) φ(X1, . . . , Xn)∧φ′(X1, . . . , Xn) ⇒ f((q1, q′1), . . . , (qn, q
′
n)) → (q, q′)

iff
{
φ(X1, . . . , Xn) ⇒ f(q1, . . . , qn) → q ∈ R,
φ′(X1, . . . , Xn) ⇒ f(q′1, . . . , q′n) → q′ ∈ R′

(type 2) φ(Σj∈{1,...,n′}X(q1,q′
j)
, . . . , Σj∈{1,...,n′}X(qn,q′

j)) ⇒ (q, q′)
∧ φ′(Σi∈{1,...,n}X(qi,q′

1), . . . , Σi∈{1,...,n}X(qi,q′
n′))

iff
{
φ(Xq1 , . . . , Xqn) ⇒ q ∈ R
φ′(Xq′

1
, . . . , Xq′

n′) ⇒ q′ ∈ R′

Proposition 4.3. The construction of A × A′ is done in time O(|A||A′|) and
t→A×A′(q, q′) iff t→A q and t→A′ q′

From this proposition we get closure under intersection and union (simply
adjust the set of final states accordingly).

Complementation Complementation is straightforward for a complete determin-
istic automata: exchange final and non-final states. Since every automaton is
equivalent to a complete deterministic one, we are done.

3 again, we don’t mention explicitely that the decomposition depends on i

336 Denis Lugiez

5 Decision of Emptiness

Now we come to our most technical result. The principle of the algorithm for
deciding emptiness of L(A) is the same as for all classes of (finite) tree automata:
it is a marking algorithm which marks all reachable states until no new state can
be marked. As usual, constraints make life more difficult: given a ruleX1 �= X2 ⇒
f(q, q) → q′, we can’t mark the state q as soon as we know that some multitree
reach this state since the satisfiability of the constraint X1 �= X2 requires that
at least two different multitrees reach q. Actually this ensures that also two
multitrees reach q′, establishing an invariant property of the marking algorithm.
Since we deal with multitrees, we shall use two bounds: D on the number of
different multitrees reaching each state, and M on the maximal multiplicity of
an element in a multitree. These bounds are computed from the constraints of
the rules and they are effectively computable because FO#(M) is decidable.

Remark 5.1. Emptiness can be decided directly for a non-deterministic automa-
ton, but in this case the algorithm realizes an implicit determinization which
complicates the construction without adding significant improvments. Therefore
we shall give the algorithm for deciding the emptiness of the language accepted
by a deterministic automaton.

5.1 Formulae for States

Let A = (Q,QFinal, R) be a deterministic automaton. We assume that Q is the
disjoint union of QS and QT = {q1, . . . , qp} such that only multitrees of T can
reach a state of QT and only multitrees of S can reach a state of QS . We now
write formulae which ensure that a state q can be reached by some multitree X ,
when we have already computed Z1 a set of multitrees of T reaching q1,. . . , Zp

a set of multitrees of T reaching qp. Since the automaton is deterministic, we
have Zi ∩ Zj = ∅ if i �= j. We use the notation set(X) for the multiset equal to
the set of distinct elements of X (this can be defined in FO#(M), see section
2).

Case of a state q ∈ QS . Let φi(Xq1 , . . . , Xqp) ⇒ q for i = 1, . . . , l be the type
2 rules for q. The formula ψq(Z1, . . . , Zp, X) states that X reaches q when Z1

is a set of multitrees reaching q1,. . . ,Zp a set of multitrees reaching qp and it is
defined by:

∨i=l
i=1(∃X i

q1
, . . . , X i

qp
X = Σj=p

j=1X
i
qj
∧

∧j=p
j=1 set(X

i
qj

) ⊆ Zj ∧φi(X i
q1
, . . . , X i

qp
))

/ ∗ there is some rule reaching q that can be fired for X ∗ /

Case of a state q ∈ QT . First, we define the formula X ∈ Lq which expresses
that the multitree X is in the language accepted by q by:

– #(X) = 1∧X ⊆ Zi if q is some qi ∈ QT
– ψq(Z1, . . . , Zp, X) if q ∈ QS

Counting and Equality Constraints for Multitree Automata 337

Note that the definition is consistent since ψq is already defined for q ∈ QS .
For simplicity we assume that φi(Xqi

1
, . . . , Xqi

n
) ⇒ f(qi

1, . . . , q
i
n) → q for i =

1, . . . , l are the type 2 rules for q (this can be achieved easily modulo introducing
new states). The formula ψq((Z1, . . . , Zp, X1, . . . , Xn) for q ∈ QT is defined by:

∨i=l
i=1(

∧j=n
j=1 Xj ∈ L(qi

j)∧φi(X1, . . . , Xn))
/ ∗ there is some rule reaching q that can be fired for f(X1, . . . , Xn) ∗ /

5.2 Minimal Solutions of Formulae in FO#(M)

Let φ(N1, . . . , Np) be a formula of FO#(M) with no multiset free variables, a
p-uple (n1, . . . , np) ∈ N

p is minimal for φ iff (i) |= φ(n1, . . . , np) and (ii) there
is no (n′

1, . . . , n
′
p) s.t. |= φ(n′

1, . . . , n
′
p)∧

∧i=p
i=1 n

′
i < ni. Conditions (i) and (ii) are

expressible by a formula Minimalφ(N1, . . . , Np) of FO#(M). The set of p-uples
minimal for φ is a semilinear set computable in elementary time (by proposition
2.1). The minimum of φ(N1, . . . , Np), denoted by m = Min(φ) is the unique
m minimal for ψ(M) ≡ ∃N1, . . . , Np Minimalφ(N1, . . . , Np)∧

∧i=p
i=1M ≥ Ni.

When the formula is unsatisfiable we set m = +∞. By definition m is the
smallest natural number which is greater that any component of any minimal
solution of φ (if there exists one) and m is computable in elementary time.

5.3 Bounds for States

We define a bound D on the number of distinct elements and a bound M on the
multiplicities of elements in multitrees of MT that reach a state q. For a state
q ∈ QS we compute Dq as

Min(∃Z1, . . . , Zp, X ψq(Z1, . . . , Zp, X)∧
∧i=p

i=1 #(Zi) = Mi)

For a state q ∈ QT associated to f of arity n we compute Dq as

Min(∃Z1, . . . , Zp, X1, . . . , Xn ψq(Z1, . . . , Zp, X1, . . . , Xn)∧
i=p∧
i=1

#(Zi) = Mi)

and we set D as the maximum of the finite Dq’s. This value bounds the number
of multitrees that must reach q1,. . . ,qp to allow the construction of a multitree
reaching q (if such a multitree exists). Now we compute bounds on the multiplic-
ities of elements of Zi used in X or X1, . . . , Xn, with the additional constraints
that (i) Z1, . . . , Zp have less than D+1 elements and (ii) we can construct D+1
multitrees reaching q (instead of a single one). We recall that #M (X) is the
formula defining the maximal multiplicity of elements of X .

For a state q∈QS , for k = 1, . . . , D+1 the formula ρk
q (Z1, . . . , Zp, X1, . . . , Xk)

states that we can compute k distinct multitrees reaching q from Z1, . . . , Zp. It
is defined by

338 Denis Lugiez

j=k∧
j=1

ψq(Z1, . . . , Zp, Xj)∧
∧

1 ≤ i, j ≤ k
i �= j

Xi �= Xj

and we compute Mk
q as

Min(∃Z1, .., Zp, X1, .., Xk ρ
k
q (Z1, .., Zp, X)∧

i=p∧
i=1

#(Zi) ≤ D∧
i=k∧
i=1

#M (Xi) ≤M)

which gives the bound on the multiplicities of occurrences of elements of Zi’s
occurring in the Xj ’s for j = 1, . . . , k when we have the additionnal constraint
that the number of elements of each Zi is bounded by D.

Now, we must perform a similar computation for states of QT . The notation
(X i

1, . . . , X
i
n) �= (X i

1, . . . , X
i
n) denotes the formula

∨l=n
l=1 X

i
l �= Xj

l and states that
the two n-uples of multisets are distinct. For a state q ∈ QT associated to f of ar-
ity n, for k = 1, . . . , D+1, we define ρk

q (Z1, . . . , Zp, X
1
1 , . . . , X

1
n︸ ︷︷ ︸

first n−uple

, . . . , Xk
1 , . . . , X

k
n︸ ︷︷ ︸

kth n−uple

)

which states that we can compute k distinct multitrees f(X1
1 , . . . , X

1
n),. . . ,

f(Xk
1 , . . . , X

k
n) reaching q from Z1, . . . , Zp, by

j=k∧
j=1

ψq(Z1, . . . , Zp, X
j
1 , . . . , X

j
n)∧

∧
1 ≤ i, j ≤ k
i �= j

(X i
1, . . . , X

i
n) �= (Xj

1 , . . . , X
j
n)

and we compute Mk
q as

Min(∃Z1, .., Zp, X
1
1 , .., X

1
n, .., X

k
1 , .., X

k
n ρk

q (Z1, .., Zp, X
1
1 , .., X

1
n, .., X

k
1 , .., X

k
n)

∧
∧i=p

i=1 #(Zi) ≤ D∧
∧i=p

i=1 #M (Xi)≤M)

LetM be the maximum of the finiteMk
q for q ∈ QS∪QT and k = 1, . . . , D+1.

5.4 The Algorithm

Let D and M be as defined previously and let Q = {q1, . . . , qp} be the set of
states q of A. For each qi ∈ Q, the Reachability algorithm computes the set Lm

i

which is (an approximation of) the set of multitrees that reach the state qi in m
steps at most 4, where the approximation amounts to bounding the number of
multitrees in (Lm

i) by D and the multiplicity of elements in a sum by M .

4 One step doesn’t mean one application of rule, but label the root of a multitree by
some state when all the sons are labelled by a state

Counting and Equality Constraints for Multitree Automata 339

The Reachability algorithm
/*Initialize*/
m = 0, Lm

i = ∅, set qi unmarked for all i = 1, . . . , p
/*Loop*/
repeat /*Compute the increasing sequence (Lm

i)*/
for all i = 1, . . . , p do

if qi is marked then Lm+1
i = Lm

i

else Lm+1
i =Lm

i ∪ {t | t→ qi for t = f(t1, . . . , tn) with ti ∈ Lm
j

or t = Σjtj with tj ∈ Lm
j , #D(t) ≤ D

and #M (t) ≤M }
if |Lm+1

i | ≥ D + 1 then mark qi
until Lm

i = Lm+1
i for all i = 1, . . . , p.

for each i = 1, . . . , p do set Li = Lm
i

Proposition 5.1. The algorithm terminates and qi is reachable iff Li �= ∅.

Proof. (Idea). Termination is obvious. To prove correctness, we set L0
i = ∅ and

Lm+1
i = Lm

i ∪ {t | t→ qi for t = f(t1, . . . , tn) and ti ∈ Lm
i , i = 1, . . . , n

or
t = t1 ⊕ . . .⊕ tl and ti ∈ Lm

ji
, i = 1, . . . , l}

Then we prove that: ∀m, i,Lm
i ⊆ Lm

i and (Lm
i = Lm

i or |Lm
i | > D) �

An immediate consequence of the last proposition is:

Proposition 5.2. L(A) = ∅ is decidable.

The determinization process, the computations of bounds and the reachabil-
ity algorithm involve only a fixed number of exponential steps. Therefore the
decision procedure for emptiness is elementary.

6 Comparison with Other Classes of Tree Languages

Language with Equality/Disequality Constraints between Brothers.
Tree automata with equality/disequality constraint between brothers are the
most significant extension of tree automata which retains the good properties
of tree automata: closure under boolean properties and decision of emptiness.
This class, denoted by L(AWEDC), has been used to get or improve decision
results of many problems (mainly in rewriting, constraint solving and logic). No
AC symbols occur in the signature and the only constraints rules have the form∧

i,j Xi = Xj ∧
∧

k,l Xk �= Xl ⇒ f(q1, . . . , qn) → q (a variable Xm representing
the mth son of the term on which the rule is tested). Such rules are a subcase of
type 1 rules when no AC symbol occur, therefore these languages are particular
instances of constrained multitree languages.

Proposition 6.1. L(AWEDC) ⊆ CMTL

340 Denis Lugiez

The class Reg of regular languages is a subclass of L(AWEDC), therefore
Reg ⊂ CMTL. Unrestricted equality constraints leads to classes with an unde-
cidable emptiness problem, but special inequality/disequality constraints have
been studied leading to reduction automata [CCC+94] or automata allowing
only a bounded number of equality tests in a run [CJ94]. Such constraints are
different in nature to FO#(M) constraints and can’t be combined with them.

Closure of Regular Tree Languages. Regular tree languages are usually not
closed under associativity or associativity-commutativity but CMTL languages
are closed under associativity- commutativity. Therefore the relevant question
is whether the closure of a regular-tree language under AC is necessarily in
CMTL? Let Cl(Reg) denote the closure of regular languages under AC where
we assume that terms are flattened i.e. transformed into multitrees, see [BN98].
The expressivity of type 2 rules allows to get the following inclusion:

Proposition 6.2. Cl(Reg) ⊆ CMTL

Tree Language with Rational Constraints. Tree automata with rational
constraints, TARC in short, have usual tree automata rules as type 1 rule and
the constraints for type 2 rules are Presburger formula ψ(#(X1), . . . ,#(Xn)).
In [Col02], these constraints are rational expressions that the representation of
(#(X1), . . . ,#(Xn)) in some basis satisfies 5. Therefore we get:

Proposition 6.3. L(TARC) ⊆ CMTL

Since equational tree automata defined in [Ohs01] coincide with TARC (un-
published result) we get another inclusion for free.

Multitree Automata with Arithmetic Constraints. Tree automata with
arithmetic constraints [LM94] work on normalized multitrees where all occur-
rences of the same element e are replaced by a pair (multiplicity of e, e).
A normalized multitree can be denoted by n1.e1 ⊕ . . . ⊕ np.ep. This normal-
ization process is costly and can’t be reversed. The states of these automata
are divided in several sorts that we simplify into unprimed, primed, double
primed states. The relevant rules of the automata are φ(N) : N.q → q′ and
ψ(#(q′1), . . . ,#(q′m)) → q′′ where ψ and φ are Presburger formula, and #(q) de-
notes the number of occurrences of q. Furthermore, there is no constrained rules
similar to type 1 rule. Normalized multisets accepted by these automata have
the form {n1

1.e
1
1, . . . , n

1
k1
.e1kp︸ ︷︷ ︸

|=φ1(n1
i)

, . . . , nm
1 .e

m
1 , . . . , n

m
km
.em

km︸ ︷︷ ︸
|=φm(nm

i)

} where |= ψ(k1, . . . , km)

for some Presburger formula ψ. The expressivity of FO#(M) allows to express
that some (not normalized) multiset has the above form after normalization.
The constraint is

X = Xq′
1
⊕ . . .⊕Xq′

m
∧

∧
i=1,...,m

Mult(φi, Xq′
i
)∧ψ(#D(Xq′

1
), . . . ,#D(Xq′

m
))

5 in this paper, all but operators but ⊕ have arity 0 or 1

Counting and Equality Constraints for Multitree Automata 341

where Mult(φ,X) is the FO#(M) formula stating that the multiplicity of each
element of X satisfies φ (cf section 2). Therefore denoting by L(TAC) the set of
languages accepted by tree automata with arithmetic constraints, we get:

Proposition 6.4. L(TAC) ⊆ CMTL

[Lug98] defines a class of multitree automata which is stricly included in
CMTL. The constraints of type 1 rules are only boolean combinations of equa-
tions where one side is a variable (e.g. Xi = Σj ∈ {1, . . . , n}Xj) and the rules for
terms of S can be replaced by type 2 rules where the constraint is a Presburger
arithmetic formula. For instance, it is impossible to express normalization in this
class, therefore it is disjoint from TAC. But due to the high expressive power
of FO#(M), both classes are included in CMTL. Moreover the algorithm to
decide emptiness of L(A) used Dickson’s lemma which prevented from stating
that the complexity of the problem was elementary.

Feature Tree Automata. Feature tree automata have been introduced by
Podelski and Niehren [NP93] to provide a notion of recognizable languages for
feature trees. Feature trees can be seen as multisets constructed from a finite set
of multiset constructors {, }A{, }B . . . and free unary symbols f1, f2, . . . (feature
constructors)6. Recognizable sets are the multisets satisfying boolean combina-
tion of counting constraints of the form φ(#(fi)). This kind of constraints is a
very special case of FO#(M) formula. In some sense, there are local constraints,
since they don’t relate the number of occurrences of some feature f and the
number of occurrences of some other feature g. If we denote by L(FTA) the set
of multitree languages accepted by feature tree automata, we get:

Proposition 6.5. L(FTA) ⊆ CMTL.

Conclusion

One possible extension of this work is to look also at the associativity axiom.
It is straightforward to add rules like hedge automata rules in this framework
without losing properties, but a more interesting idea is to combine regularity
constraints (like in hedge automata) and FO#(M) formula. However we have
found out that the resulting class is not closed under complement and doesn’t
enjoy determinization even when we allows only Presburger formulae [DL02].
Another possible question is to look for extensions allowing a bounded number
of equality test along the acceptance process, but there is probably no satisfac-
tory result to hope for in this direction since the relevant classes of automata
are not closed under all the boolean operations, even when no associativity-
commutativity axiom is used. Another direction of research is to use two-way
tree automata (one can go up and down in the multitree). Some work has been

6 In the original presentation of [NP93], the A’s are constructors labelling nodes and
the features f ’s label edges

342 Denis Lugiez

done in this direction [GLV02], but undecidability quickly shows up and the
counting/equality constraints that we use are probably too expressive to work
well in that extension. Designing efficient implementations of our algorithms is
also an issue: the main point is to balance the expressivity of constraints and a
reasonable algorithmic efficiency using good data structures for multisets.

References

[Ber77] L. Berman. Precise bounds for Presburger arithmetic and the reals with
addition: Preliminary report. In Proc. of Symp. on Foundation Of Computer
Science, pages 95–99, 1977.

[BKN85] Dan Benanav, Deepak Kapur, and Paliath Narendran. Complexity of
matching problems. In Proc. of 1st Int. Conf. on Rewriting techniques and
Applications, vol. 202 of Lect. Notes in Comp. Sci., pages 417–429, 1985.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[BT92] B. Bogaert and S. Tison. Equality and disequality constraints on direct
subterms in tree automata. In Proc. of the 9th STACS, vol. 577 of Lect.
Notes in Comp. Sci., pp. 161–172, 1992.

[CCC+94] A.C. Caron, H. Comon, J.L. Coquidé, M. Dauchet, and F. Jacquemard.
Pumping, cleaning and symbolic constraints solving. In Proc. 21st ICALP,
Jerusalem (Israel), pages 436–449, 1994.

[CJ94] H. Comon and F. Jacquemard. Ground reducibility and automata with
disequality constraints. In Springer-Verlag, editor, Proc. of 11th STACS,
vol. 820 of Lect. Notes in Comp. Sci., pages 151–162, 1994.

[Col02] Th. Colcombet. Rewriting in partial algebra of typed terms modulo aci.
presented at the Infinity workshop, August 2002.

[DL02] S. DalZilio and D. Lugiez. Multitrees automata, Presburger’s constraints
and tree logics. Tech. Report 4631, INRIA, 2002.

[GLV02] J. Goubault-Larrecq and K.N. Verma. Alternating two-way AC-tree au-
tomata. Technical report, LSV, ENS Cachan, 2002.

[LM94] D. Lugiez and J.L. Moysset. Tree automata help one to solve equational
formulae in AC-theories. Journal of Symbolic Computation, 18(4):297–318,
1994.

[Lug98] D. Lugiez. A good class of tree automata. In K. Larsen, S. Skyum, and
G. Winskel, editors, Proc. of 15th ICALP, vol. 1443 of Lect. Notes in Comp.
Sci., pages 409–420. Springer-Verlag, 1998.

[Mur01] Makoto Murata. Extended path expression for XML. In ACM, editor,
Proc. of the 20th Symp. on Principles of Database Systems (PODS), Santa
Barbara, USA, 2001. ACM.

[NP93] Joachim Niehren and Andreas Podelski. Feature automata and recognizable
sets of feature trees. In Proc. TAPSOFT’93, vol. 668 of Lect. Notes in Comp.
Sci., pages 356–375, 1993.

[Ohs01] Hitoshi Ohsaki. Beyond the regularity: Equational tree automata for asso-
ciative and commutative theories. In CSL 2001, vol. 2142 of Lect. Notes in
Comp. Sci.. Springer-Verlag, 2001.

[PQ68] C. Pair and A. Quéré. Définition et étude des bilangages réguliers. Infor-
mation and Control, 13(6):565–593, 1968.

	Counting and Equality Constraintsfor Multitree Automata
	Notations
	First-Order Theory of Multisets with Cardinality Constraints
	Multitree Automata with Constraints
	Properties of Multitree Automata with Constraints
	Decision of Emptiness
	Formulae for States
	Minimal Solutions of Formulae in $FO_{#}({cal M})$
	Bounds for States
	The Algorithm

	Comparison with Other Classes of Tree Languages

