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Abstract. G-relative pushouts (GRPOs) have recently been proposed by the au-
thors as a new foundation for Leifer and Milner’s approach to deriving labelled
bisimulation congruences from reduction systems. This paper develops the theory
of GRPOs further, arguing that they provide a simple and powerful basis towards
a comprehensive solution. As an example, we construct GRPOs in a category of
‘bunches and wirings.’ We then examine the approach based on Milner’s precat-
egories and Leifer’s functorial reactive systems, and show that it can be recast in
a much simpler way into the 2-categorical theory of GRPOs.

Introduction

It is increasingly common for foundational calculi to be presented as reduction systems.
Starting from their common ancestor, the λ calculus, most recent calculi consist of a
reduction system together with a contextual equivalence (built out of basic observations,
viz. barbs). The strength of such an approach resides in its intuitiveness. In particular,
we need not invent labels to describe the interactions between systems and their possible
environments, a procedure that has a degree of arbitrariness (cf. early and late semantics
of the π calculus) and may prove quite complex (cf. [5, 4, 3, 1]).

By contrast, reduction semantics suffer at times by their lack of compositionality,
and have complex semantic theories because of their contextual equivalences. Labelled
bisimulation congruences based on labelled transition systems (LTS) may in such cases
provide fruitful proof techniques; in particular, bisimulations provide the power and
manageability of coinduction, while the closure properties of congruences provide for
compositional reasoning.

To associate an LTS with a reduction system involves synthesising a compositional
system of labels, so that silent moves (or τ-actions) reflect the original reductions, labels
describe potential external interactions, and all together they yield a LTS bisimulation
which is a congruence included in the original contextual reduction equivalence. Prov-
ing bisimulation is then enough to prove reduction equivalence.

Sewell [19] and Leifer and Milner [13, 11] set out to develop a theory to perform
such derivations using general criteria; a meta-theory of deriving bisimulation congru-
ences. The basic idea behind their construction is to use contexts as labels. To exemplify
the idea, in a CCS-like calculus one would for instance derive a transition
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a.P
−|ā.Q

� P |Q

because term a.P in context− | ā.Q reacts to become P |Q; in other words, the context
is a trigger for the reduction.

The first hot spot of the theory is the selection of the right triggers to use as labels.
The intuition is to take only the “smallest” contexts which allow a given reaction to
occur. As well as reducing the size of the LTS, this often makes the resulting bisimu-
lation equivalence finer. Sewell’s method is based on dissection lemmas which provide
a deep analysis of a term’s structure. A generalised, more scalable approach was later
developed in [13], where the notion of “smallest” is formalised in categorical terms as
a relative-pushout (RPOs). Both theories, however, do not seem to scale up to calculi
with non trivial structural congruences. Already in the case of the monoidal rules that
govern parallel composition things become rather involved.

The fundamental difficulty brought about by a structural congruence≡ is that work-
ing up to ≡ gives up too much information about terms for the RPO approach to work
as expected. RPOs do not usually exist in such cases, because the fundamental indica-
tion of exactly which occurrences of a term constructor belong to the redex becomes
blurred. A very simple, yet significant example of this is the category Bun of bunch
contexts [13], and the same problems arise in structures such as action graphs [14] and
bigraphs [15].

In [17] we therefore proposed a framework in which term structure is not explicitly
quotiented, but the commutation of diagrams (i.e. equality of terms) is taken up to ≡.
Precisely, to give a commuting diagram rp ≡ sq one exhibits a proof α of structural
congruence, which we represent as a 2-cell (constructed from the rules generating ≡
and closed under all contexts).

k
p

��

q
��

l
r

��
m

ααα

s
�� n

Since such proofs are naturally isomorphisms, we were led to consider G-categories,
i.e., 2-categories where all 2-cells are iso, and initiated the study of G-relative pushouts
(GRPOs), as a suitable generalisation of RPOs from categories to G-categories.

The purpose of this paper is to continue the development of the theory of GRPOs.
We aim to show that, while replacing RPOs at little further complication (cf. §1 and §2),
GRPOs significantly advance the field by providing a convenient solution to simple, yet
important problems (cf. §3 and §4). The theory of GRPOs promises indeed to be a
natural foundation for a meta-theory of ‘deriving bisimulation congruences.’

This paper presents two main technical results in support of our claims. Firstly, we
prove that the case of the already mentioned category Bun of bunch contexts, problem-
atic for RPOs, can be treated in a natural way using GRPOs. Secondly, we show that the
notions of precategory and functorial reactive system can be dispensed with in favour
of a simpler GRPO-based approach.

The notion of precategory is proposed in [11, 12] to handle the examples of Leifer
in [11], Milner in [15] and, most recently, of Jensen and Milner in [7]. It consists of a
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category appropriately decorated by so-called “support sets” which identifies syntactic
elements so as to keep track of them under arrow composition. Alas, such supported
structures are no longer categories – arrow composition is partial – which makes the
theory laborious, and bring us away from the well-known world of categories and their
theory. The intensional information recorded in precategories, however, allows one to
generate a category “above” where RPOs exist, as opposed to the category of interest
“below”, say C, where they do not. The category “above” is related to C via a well-
behaved functor, used to map RPOs diagrams from the category “above” to C, where
constructing them would be impossible. These structures take the name of functorial re-
active systems, and give rise to a theory to generate a labelled bisimulation congruences
developed in [11].

The paper presents a technique for mapping precategories to G-categories so that
the LTS generated using GRPOs is the same as the LTS generated using the above men-
tioned approach. The translation derives from the precategory’s support information a
notion of homomorphism, specific to the particular structure in hand, which constitutes
the 2-cells of the derived G-category. We claim that this yields an approach mathemat-
ically more elegant and considerably simpler than precategories; besides generalising
RPOs directly, GRPOs seem to also remove the need for further notions.

Structure of the paper. In §1 we review definitions and results presented in [17]; §2
shows that, analogously to the 1-dimensional case, trace and failures equivalence are
congruences provided that enough GRPOs exist. In §3, we show that the category of
bunch contexts is naturally a 2-category where GRPOs exist; §4 shows how precate-
gories are subsumed by our notion of GRPOs. Most proofs in this extended abstract are
either omitted or sketched. For these, the interested reader should consult [18].

1 Reactive Systems and GRPOs

Lawvere theories [10] provide a canonical way to recast term algebras as categories.
For Σ a signature, the (free) Lawvere theory on Σ, say CΣ, has the natural numbers for
objects and a morphism t : m→ n, for t a n-tuple of m-holed terms. Composition is
substitution of terms into holes.

Generalising from term rewriting systems on CΣ, Leifer and Milner formulated a
definition of reactive system [13], and defined a technique to extract labelled bisimula-
tion congruences from them. In order to accommodate calculi with non trivial structural
congruences, as explained in the Introduction, we refine their approach as follows.

Definition 1.1. A G-category is a 2-category where all 2-cells are isomorphisms.

A G-category is a thus a category enriched over G, the category of groupoids.

Definition 1.2. A G-reactive system C consists of a G-category C; a subcategory D

of reactive contexts, required to be closed under 2-cells and composition-reflecting;
a distinguished object I ∈ C; a set of pairs R ⊆ �C∈C C(I,C)×C(I,C), called the
reaction rules.
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The reactive contexts are those contexts inside which evaluation may occur. By
composition-reflecting we mean that dd′ ∈ D implies d and d′ ∈ D, while the closure
property means that given d ∈ D and ρ : d ⇒ d′ in C implies d′ ∈ D. The reaction
relation � is defined by taking

a � dr if there exists 〈l,r〉 ∈ R , d ∈ D and α : dl⇒ a in C

As illustrated by the diagram below, this represents the fact that, up to structural con-
gruence, a is the left-hand side l of a reduction rule in a reaction context d.

I
l

��

a

�����������

C
α

d
�� C′

The notion of GRPO formalises the idea of a context being the “smallest” that en-
ables a reaction in a G-reactive system, and is a conservative 2-categorical extension of
Leifer and Milner RPOs [13] (cf. [17] for a precise comparison).

For readers acquainted with 2-dimensional category theory (cf. [9] for a thorough
introduction), GRPOs are defined in Definition 1.3. This is followed by an elementary
presentation in Proposition 1.4 taken from [17]. We use • for vertical composition.

Definition 1.3 (GRPOs). Let ρ : ca⇒ db : W → Z be a 2-cell (see diagram below) in
a G-category C. A G-relative pushout (GRPO) for ρ is a bipushout (cf. [8]) of the pair
or arrows (a,1) : ca→ c and (b,ρ) : ca→ d in the pseudo-slice category C/Z.

Z

X ρ

c ������
Y

d������

W
b

������a

������
(1)

Proposition 1.4. Let C be a G-category. A candidate GRPO for ρ : ca ⇒ db as in
diagram (1) is a tuple 〈R,e, f ,g,β,γ,δ〉 such that δb •gβ •γa = ρ – cf. diagram (i).

Z

X

γ

e ��

β

c
��������
R

δg
��

Yf��

d
		������

W
b

��������a

		������

(i)

R′

X

ϕ

e
��

e′
���������
R

ψh

��

(ii)

Y
f

��

f ′
		�������

Z

R′
τg′

��

R

g
		�������

h
��

(iii)

A GRPO for ρ is a candidate which satisfies a universal property. Namely, for any other
candidate 〈R′,e′, f ′,g′,β′,γ′,δ′〉 there exists a quadruple 〈h,ϕ,ψ,τ〉 where h : R→ R′,
ϕ : e′ ⇒ he and ψ : h f ⇒ f ′ – cf. diagram (ii) – and τ : g′h⇒ g – diagram (iii) – which
makes the two candidates compatible in the obvious way, i.e.

τe•g′ϕ•γ′ = γ δ′ •g′ψ•τ−1 f = δ ψb •hβ •ϕa = β′.
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Such a quadruple, which we shall refer to as mediating morphism, must be essentially
unique. Namely, for any other mediating morphism 〈h′,ϕ′,ψ′,τ′〉 there must exist a
unique two cell ξ : h→ h′ which makes the two mediating morphisms compatible, i.e.

ξe•ϕ = ϕ′ ψ•ξ−1 f = ψ′ τ′ •g′ξ = τ.

Observe that whereas RPOs are defined up to isomorphism, GRPOs are defined up
to equivalence (since they are bicolimits).

The definition below plays an important role in the following development.

Definition 1.5 (GIPO). Diagram (1) of Definition 1.3 is said to be a G-idem-pushout
(GIPO) if 〈Z,c,d, idZ,ρ,1c,1d〉 is its GRPO.

We recall in §A the essential properties of GRPOs and GIPOs from [17].

Definition 1.6 (LTS). For C a G-reactive system whose underlying category C is a
G-category, define GTS(C) as follows:

– the states GTS(C) are iso-classes of arrows [a] : I→ X in C;

– there is a transition [a] [ f ] � [a′] if there exists a 2-cell ρ, a rule 〈l,r〉 ∈ R , and
d ∈ D with a′ ∼= dr and such that the diagram below is a GIPO.

Z

X

f 

			
ρ Y

d��




I
a

��




l



				

(2)

Henceforward we shall abuse notation and leave out the square brackets when writing

transitions; ie. we shall write simply a f � a′ instead of [a] [ f ] � [a′].

Categories can be seen as a discrete G-categories (the only 2-cells are identities).
Using this observation, each G-concepts introduced above reduces to the corresponding
1-categorical concept. For instance, a GRPO in a category is simply a RPO.

2 Congruence Results for GRPOs

The fundamental property that endows the LTS derived from a reduction system with a
bisimulation which is a congruence is the following notion.

Definition 2.1 (Redex GRPOs). A G-reactive system C is said to have redex GRPOs
if every square (2) in its underlying G-category C with l the left-hand side of a reaction
rule 〈l,r〉 ∈ R , and d ∈D has a GRPO.

In particular, the main theorem of [17] is as follows.

Theorem 2.2 (cf. [17]). Let C be a reactive system whose underlying G-category C has
redex GRPOs. The largest bisimulation∼ on GTS(C) is a congruence.

The next three subsections complement this result by proving the expected corre-
sponding theorems for trace and failure semantics, and by lifting them to the case of
weak equivalences. Theorems and proofs in this section follow closely [11], as they are
meant to show that GRPOs are as viable a tool as RPOs are.
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2.1 Traces Preorder

Trace semantics [16] is a simple notion of equivalence which equates processes if they
can engage in the same sequences of actions. Even though it lacks the fine discriminat-
ing power of branching time equivalences, viz. bisimulations, it is nevertheless interest-
ing because many safety properties can be expressed as conditions on sets of traces.

We say that a sequence f1 · · · fn of labels of GTS(C) is a trace of a if

a f1 � · · · fn � an+1

for some a1, . . . ,an. The trace preorder �tr is then defined as a �tr b if all traces of a are
also traces of b.

Theorem 2.3 (Trace Congruence). �tr is a congruence.

Proof. Assume a �tr b. We prove that ca �tr cb for all contexts c ∈ C. Suppose that

ca = ā1
f1 � ā2 · · · ān

fn � ān+1.

We first prove that there exist a sequence, for i = 1, . . . ,n,

·
αi

ai ��

li
��

·
βigi

��

ci �� ·
fi

��·
di

�� ·
d′i

�� ·

where a1 = a, c1 = c, ci+1 = d′i , āi = ciai, and each square is a GIPO.1 The ith induc-

tion step proceeds as follows. Since āi
fi � āi+1, there exists γi : ficiai⇒ d̄ili, for some

〈li,ri〉 ∈ R and d̄i ∈ D, with āi+1 = d̄iri. Since C has redex GIPOs (cf. Definition 2.1),
this can be split in two GIPOs: αi : giai⇒ dili and βi : fici⇒ d′igi (cf. diagram above).
Take ai+1 = diri, and the induction hypothesis is maintained. In particular, we obtained
a trace

a = a1
g1 � a2 · · ·an

gn � an+1

that, in force of the hypothesis a �tr b must be matched by a corresponding trace of b.
This means that, for i = 1, ..,n, there exist GIPOs α′i : gibi⇒ eil′i , for some 〈l′i ,r′i〉 ∈ R
and ei ∈D, once we take bi+1 to be eir′i . We can then paste each of such GIPOs together
with βi : fici ⇒ d′igi obtained above and, using Lemma A.3, conclude that there exist
GIPOs ficibi⇒ d′ieil′i , as in the diagram below.

·
α′i

bi ��

l′i
��

·
βigi

��

ci �� ·
fi

��· e1
�� ·

d′i
�� ·

which means cibi
fi � d′ieir′i.

1 Since the fact is not likely to cause confusion, we make no notational distinction between the
arrows of C (e.g. in GRPOs diagrams) and the states and labels of GTS(C), where the latter
are iso-classes of the former.
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As cb = c1b1, in order to construct a trace cb = b̄1
f1 � · · · fn � b̄n+1 and complete

the proof, we only need to verify that for i = 1, . . . ,n, we have that d′ieir′i = ci+1bi+1.
This follows at once, as ci+1 = d′i and bi+1 = eir′i.

2.2 Failures Preorder

Failure semantics [6] enhances trace semantics with limited branch-inspecting power.
More precisely, failure sets allow the testing of when processes renounce the capability
of engaging in certain actions.

Formally, for a a state of GTS(C), a failure of a is a pair ( f1 · · · fn,X), where f1 · · · fn

and X are respectively a sequence and a set of labels, such that:

– f1 · · · fn is a trace of a, a f1 � · · · fn � an+1;
– an+1, the final state of the trace, is stable, i.e. an+1 � � ;
– an+1 refuses X , i.e. an+1 � x � for all x ∈ X .

The failure preorder �f is defined as a �f b if all failures of a are also failures of b. The
proof of the following result can be found in [18].

Theorem 2.4 (Failures Congruence). �f is a congruence.

2.3 Weak Equivalences

Theorems 2.2, 2.3, and 2.4 can be extended to weak equivalences, as outlined below.

For f a label of GTS(C) define a weak transition a
f
� b to be a mixed sequence

of transitions and reductions a �∗ f � �∗ b. Observe that this definition essen-
tially identifies silent transitions in the LTS with reductions. As a consequence, care has

to be taken to avoid interference with transitions equi� synthesised from GRPOs and la-
belled by an equivalence. These transitions have essentially the same meaning as silent
transitions (i.e. no context involved in the reduction), and must therefore be omitted in
weak observations. This lead to consider the following definitions.

Definition 2.5 (Weak Traces and Failures). A sequence f1 · · · fn of non-equivalence
labels of GTS(C) is a weak trace of a if

a
f1� a1 · · ·an−1

fn� an

for some a1, . . . ,an. The weak trace preorder is then defined accordingly.
A weak failure of a is a pair ( f1 · · · fn,X), where f1 · · · fn and X are respectively a

sequence and a set of non-equivalence labels, such that f1 · · · fn is a weak trace of a
reaching a final state which is stable and refuses X . The weak trace preorder is defined
accordingly.

Definition 2.6 (Weak Bisimulation). A symmetric relation S on GTS(C) is a weak
bisimulation if for all a S b

a f � a′ f not an equivalence, implies b
f
� b′ with a′ S b′

a � a′ implies b �∗ b′ with a′ S b′
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Using the definitions above Theorems 2.2, 2.3, and 2.4 can be lifted, respectively,
to weak traces, failures and bisimulation.

It is worth remarking that the congruence results, however, only hold for contexts
c ∈D, as it is well known that non reactive contexts (i.e. those c where ca � cb does
not follow from a � b, as e.g. the CSS context c = c0 +−) do not preserve weak
equivalences. Alternative definitions of weak bisimulations are investigated in [11], and
they are applicable mutatis mutandis to GRPOs.

3 Bunches and Wires

The category of “bunches and wires” was introduced in [13] as a skeletal algebra of
shared wirings, abstracting over the notion of names in, e.g., the π calculus. Although
elementary, its structure is complex enough to lack RPOs.

A bunch context of type m0→ m1 consists of an ordered set of m1 trees of depth 1
containing exactly m0 holes. Leaves are labelled from an alphabet K .

Definition 3.1. The category of bunch contexts Bun0 has

– objects the finite ordinals, denoted m0,m1, . . .
– arrows are bunch contexts c = (X ,char, root) : m0→m1, where X is a finite carrier,

root: m0 + X → m1 is a surjective function linking leaves (X ) and holes (m0) to
their roots (m1), and char: X →K is a leaf labelling function.

Composing c0 : m0 → m1 and c1 : m1 → m2 means filling the m1 holes of c1 with the
m1 trees of c0. Formally, c1c0 is (X , root,char) where

X = X0 + X1, root = root1(root0 + idX1), char = [char0,char1],

where + and [ , ] are, resp., coproduct and copairing. Identities are ( /0, !, id) : m0→m0.
A homomorphism of bunch contexts ρ : c⇒ c′ : m0→ m1 is a function ρ : X → X ′

which respects root and char, i.e. root′ρ = root and char′ρ = char. An isomorphism is a
bijective homomorphism. Isomorphic bunch contexts are equated, making composition
associative and Bun0 a category.

A bunch context c : m0→ m1 can be depicted as a string of m1 nonempty multisets
on K +m0, with the proviso that elements m0 must appear exactly once in the string. In
the examples, we represent elements of m0 as numbered holes −i.

As we mentioned before, RPOs do not exist in Bun0. Indeed, consider (i) below
together with the two candidates (ii) and (iii). It is easy to show that these have no
common “lower bound” candidate.

1

1

{K,−1}
�����������

1

{K,−1}


���������

0

{K}

�����������
{K}



���������

(i)

1

1

{K,−1}
����������� {−1} �� 1

{K,−1}

��

1
{−1}��

{K,−1}


���������

0

{K}

�����������
{K}



���������

(ii)

1

1

{K,−1}
�����������{−1}{K}�� 2

{−1,−2}

��

1
{K}{−1}��

{K,−1}


���������

0

{K}

�����������
{K}



���������

(iii)
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The point here is that by taking the arrows of Bun0 up to isomorphism we lose infor-
mation about how bunch contexts equal each other. Diagram (i), for instance, can be
commutative in two different ways: the K in the bottom left part may corresponds ei-
ther to the one in the bottom right or to the one in the top right, according to whether we
read {K,−1} or {−1,K} for the top rightmost arrow. In order to track this information
we endow Bun0 with its natural 2-categorical structure.

Definition 3.2. The 2-category of bunch contexts Bun has:

– objects the finite ordinals, denoted m0,m1, . . . ; we use Ord to denote the category
of finite ordinals, and⊕ for ordinal addition.

– arrows c = (x,char, root) : m0→ m1 consist of a finite ordinal x, a surjective func-
tion root: m0⊕ x→ m1 and a labelling function char: x→ K .

– 2-cells ρ are isomorphisms between bunches’ carriers.

Composition of arrows and 2-cells is defined in the obvious way. Notice that since ⊕ is
associative, composition in Bun is associative. Therefore Bun is a G-category.

Replacing the carrier set X with a finite ordinal x allows us to avoid the unnecessary
burden of working in a bicategory, which would arise because sum on sets is only
associative up to isomorphism. Observe that this simplification is harmless since the set
theoretical identity of the elements of the carrier is irrelevant. We remark, however, that
GRPOs are naturally a bicategorical notion and would pose no particular challenge in
bicategories.

Theorem 3.3. Bun has GRPOs.

Proof. Here we give a basic account of the construction of a GRPO, but omit the proof
of universality. In the following, we use only the fact that Bun is an extensive(cf. [2])
category with pushouts.

Suppose that we have
m3

m1 ρ

c ��




m2

d������

m0
l

��



a

������

In the following diagram all the rectangles are pullbacks in Ord and all the outside
arrows are coproduct injections.

xc1

c1 ��

l1 �� xl

��

xa1
l2��

a1��
xc �� xa⊕ xc

ρ
�� xl⊕ xd xc⊕ xa

ρ
�� xa��

xc2

c2
��

d1

�� xd

��

xa2
d2

��

a2
��

Using the morphisms from the diagram above as building blocks, we can construct
bijections γ : xc→ xc1 ⊕ xc2 , δ : xa2⊕ xc2 → xd and β : xa⊕ xc1 → xl⊕ xa2 such that

xl⊕ δ.β⊕ xc2.xa⊕ γ = ρ. (3)
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Let rootc1 and roota2 be the morphisms making (i) below

m0⊕ xa⊕ xc1

roota⊕xc1

��

m0⊕β
�� m0⊕ xl⊕ xa2

�

rootl⊕xa2�� m2⊕ xa2

roota2

��
m1⊕ xc1 rootc1

�� m4

(i)

m3

m1

γ

c1 ��

β

c
���������
m4

δc2

��

m2a2��

d
		�������

m0

l

���������a

		�������

(ii)

into a pushout diagram. We can define charc1 , chara2 and charc2 in the obvious way.
Now consider the diagram below:

m0⊕ xa⊕ xc1

roota⊕xc1

��

m0⊕xa⊕i
��������������

m0⊕β
�� m0⊕ xl⊕ xa2

(†)
m0⊕xl⊕i

��������������

rootl⊕xa2 �� m2⊕ xa2

m2⊕i

��

m0⊕ xa⊕ xc

(‡)roota⊕xc

��

m0⊕ρ
�� m0⊕ xl⊕ xdrootl⊕xd

�� m2⊕ xd

rootd
��

m1⊕ xc1 m1⊕i
�� m1⊕ xc rootc

�� m3.

Region (†) can be verified to be commutative using (3) while region (‡) commutes
since ρ is a homomorphism. Using the pushout property, we get a unique function
h : m4 → m3. Thus we define rootc2 : m4⊕ xc2 → m3 as [h, rootc i]. It is easy to verify
that this function is surjective.

Example 3.4. Let γ : 2→ 2 be the function taking 1 �→ 2 and 2 �→ 1. We give below on
the right the GRPOs for the squares on the left.

1

1 γ

{K,−1}
������������

1

{K,−1}
������������

0
{K}

������������
{K}

������������

1

1

{K,−1}
������������ {−1}{K}
�� 2

{−1,−2}
��

1
{K}{−1}
��

{K,−1}
������������

0

γ
{K}

������������
{K}

������������

1

1

{K,−1}
������������

1

{K,−1}
������������

0
{K}

������������
{K}

������������

1

1

{K,−1}
������������ {−1} �� 1

{K,−1}
��

1
{−1}��

{K,−1}
������������

0
{K}

������������
{K}

������������
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4 2-Categories Vs Precategories

Other categories which, besides Bun0, lack RPOs include the closed shallow action
contexts [11, 12] and bigraph contexts [15, 7]. The solution adopted by Leifer [12] and
later by Milner [15] is to introduce a notion of a well-supported precategory, where
the algebraic structures at hand are decorated by finite “support sets.” The result is no
longer a category – since composition of arrows is defined only if their supports are
disjoint – but from any such precategory one can generate two categories which jointly
allow the derivation of a bisimulation congruence via a functorial reactive system. These
categories are the so-called track category, where support information is built into the
objects, and the support quotient category, where arrows are quotiented by the support
structure. The track category has enough RPOs and is mapped to the support quotient
category via a well-behaved functor, so as to transport RPOs adequately.

In this section we present a translation from precategories to G-categories. The main
result shows that the LTS derived using precategories and functorial reactive systems is
identical to the LTS derived using GRPOs. We begin with a brief recapitulation of the
definitions from [12].

Definition 4.1. A precategory A consists of the same data as a category. The composi-
tion operator ◦ is, however, a partial function which satisfies

1. for any arrow f : A→ B, idB ◦ f and f ◦ idA are defined and idB ◦ f = f = f ◦ idA;
2. for any f : A→ B, g : B→C, h : C→D, (h◦g)◦ f is defined iff h◦(g◦ f ) is defined

and then (h ◦ g)◦ f = h◦ (g◦ f ).

Definition 4.2. Let Set f be the category of finite sets. A well supported precategory
is a pair 〈A, |− |〉, where A is a precategory and | − | : ArrA→ Set f is the so-called
support function, satisfying:

1. g ◦ f is defined iff |g| ∩ | f |= /0, and if g◦ f is defined then |g◦ f |= |g| ∪ | f |;
2. | idA |= /0.

For any f : A→B and any injective function ρ in Set f the domain of which contains
| f | there exists an arrow ρ · f : A→ B called the support translation of f by ρ. The
following axioms are to be satisfied.

1. ρ · idA = idA; 4. ρ · (g◦ f ) = ρ ·g◦ρ · f ;
2. id| f | · f = f ; 5. (ρ1 ◦ρ0) · f = ρ1 · (ρ0 · f );
3. ρ0| f |= ρ1| f | implies ρ0 · f = ρ1 · f ; 6. |ρ · f |= ρ| f |.

We illustrate these definitions giving a precategorical definition of bunches and
wiring (viz. §3).

Example 4.3 (Bunches). The precategory of bunch contexts A-Bun has objects and ar-
rows as in Bun0. However, differently from Bun0, they are not taken up to isomorphism
here. The support of c = (X ,char, root) is X . Composition c1c0 = (X ,char, root) : m0→
m2 of c0 : m0 → m1 and c1 : m1 → m2 is defined if X0 ∩ X1 = /0 and, if so, we have
X = X0 ∪ X1. Functions char and root are defined in the obvious way. The identity
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arrows are the same as in Bun0. Given an injective function ρ : X → Y , the support
translation ρ · c is (ρX ,char ρ−1, root(idm0 +ρ−1)). It is easy to verify that this satisfies
the axioms of precategories.

The definitions below recall the construction of the track and the support quotient
categories from a well-supported precategory.

Definition 4.4. The track of A is a category Ĉ with

– objects: pairs 〈A,M〉 where A ∈A and M ∈ Set f ;

– arrows: 〈A,M〉 f−→ 〈B,N〉 where f : A→ B is in A, M ⊆ N and | f |= N\M.

Composition of arrows is as in A. Observe that the definition of | f | ensures that com-
position is total. We leave it to the reader to check that this defines a category (cf. [12]).

Definition 4.5. The support quotient of A is a category C with

– objects: as in A;
– arrows: equivalence classes of arrows of A, where f and g are equated if there exist

a bijective ρ such that ρ · f = g.

The support quotient is the category of interest, and it is the underlying category of
the reactive system under scrutiny.

Example 4.6 (Bunches). The support quotient of A-Bun is Bun0.

There is an obvious functor F : Ĉ→ C, the support-quotienting functor. Hencefor-
ward we suppose that the precategory A has a distinguished object I. In the following
we use the typewriter font for objects and arrows of Ĉ. We make the notational conven-
tion that any A and f in Ĉ are such that F(A) = A and F(f) = f .

Definition 4.7 (The LTS). The LTS FLTSc(C) has

– States: arrows a : 0→ n in C;
– Transitions: a c � dr if and only if there exist a,l,c,d in Ĉ with 〈F(l),r〉 ∈ R ,

F(d) ∈ D, and such that

Z

X

c �����
Y

d

���

I
a



���
l

�����

is an IPO.

It is proved in [12] that the support-quotienting functor F satisfies the properties
required for the theory of functorial reactive systems [11, 12]. Thus, for instance, if the
category Ĉ has enough RPOs, then the bisimulation on FLTSc(C) is a congruence.

All the theory presented so far can be elegantly assimilated into the theory of
GRPOs. In [12], Leifer predicted instead of precategories, one could consider a bicate-
gorical notion of RPO in a bicategory of supports. This is indeed the case, with GRPOs
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being the bicategorical notion of RPO. However, working with ordinals for support sets
we can avoid the extra complications bicategories as in the case of Bun. It is worth
noticing, however, that a bicategory of supports as above and the G-category define
below would be biequivalent (cf. [20]).

In the following, we make use of a chosen isomorphism tx : x→ ord(x), where for
any finite set x, ord(x) denotes the finite ordinal of the same cardinality. There is an
equivalence of categories F : Set f →Ord which sends x to ord(x) and, on morphisms,
f : x→ y to ty f t−1

x : ord(x)→ ord(y).

Definition 4.8 (G-category of Supports). Given a well-supported precategory A, the
G-category of supports B has

– objects: as in A;
– arrows: f : A→ B where f : A→ B is an arrow of A and | f | is an ordinal;
– 2-cells: ρ : f ⇒ g, where ρ is a “structure preserving” support bijection, that is

ρ · f = g in A.

Composition is defined as follows. Given f : A→ B and g : B→C,

g◦B f = i2 ·g◦A i1 · f

where | f | i1−→ | f |⊕ |g| i2←− |g| is the chosen coproduct diagram in Ord.

The following theorem guarantees that the LTS generated is the same as the one
generated with the more involved theory of functorial reactive systems.

Theorem 4.9. FLTSc(A) = GTS(B).

Proof. It is enough to present translations between GIPOs in B and IPOs in Ĉ which
preserve the resulting label in the derived LTS. We present the translations, but omit the
straightforward proofs. Suppose that (i) below

Z

X

c


						

ρ Y

d
��







I
a

��






 l



							

(i)

〈Z, |a|⊕ |c|〉

〈X , i1|a|〉

i2·c
����������� 〈

Y,ρ−1i1|l|
〉

(ρ−1i2)·d������������

〈I, /0〉
i1·a

������������ (ρ−1i1)·l

������������

(ii)

is a GIPO in B. Then we claim that (ii) is an IPO in C. Note that (ii) is commutative
since ρ is a structure-preserving support bijection. Going the other way, suppose that (i)
below
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〈Z,N〉

〈X ,L〉

c
���������

〈Y,M〉

d
���������

〈I,K〉
l

���������a

���������

(i)

Z

X ρ

tc·c


						

Y

td ·d
��







I
ta·a

��






 tl ·l



							

(ii)

is an IPO in C. Then (ii) is a GIPO in B where ρ is

|ta ·a|⊕ |tc · c| t
−1
a ⊕t−1

c−→ |a| ∪ |c|= |l| ∪ |d| tl∪td−→ |tl · l|⊕ |td ·d|.

Example 4.10 (Bunches). The 2-category of supports of the precategory A-Bun is
Bun. Note that a “structure preserving” support bijection is a bunch homomorphism.
Indeed, ρ : (X ,char, root)→ (X ′,char′, root′) if X ′ = ρX , char′ = char ρ−1 and root′ =
root(id⊕ρ−1) which is the same as saying char = char′ ρ and root = root′(id⊕ρ).

5 Conclusion

We have extended our theory of GRPOs initiated in previous work in order to strengthen
existing techniques for deriving operational congruences for reduction systems in the
presence of non trivial structural congruences. In particular, this paper has shown that
previous theories can be recast using G-reactive systems and GRPOs at no substantial
additional complexity. Also, we proved that the theory is powerful enough to handle the
examples considered so far in the literature. Therefore, we believe that it constitutes a
natural starting point for future investigations towards a fully comprehensive theory.

It follows from Theorem 4.9 that G-categories are at least as expressive as well-
supported precategories. A natural consideration is whether a reverse translation may
exist. We believe that this is not the case, as general G-categories appear to carry more
information than precategories.
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A Basic Properties of GRPOs

The next two lemmas explain the relationships between GRPOs and GIPOs.

Lemma A.1 (GIPOs from GRPOs). If 〈Z,c,d,u,α,η,µ〉 is a GRPO for (i) below, as
illustrated in (ii), then (iii) is a GIPO.

Z′

X α′

c′ ������
Y

d′������

W
a

������
b

������

(i)

Z′

X

c′ ������
c �� Z

η µ
u
��

Yd��

d′������

W
α

a

������
b

������

(ii)

Z

X α

c ������
Y

d������

W
a

������
b

������

(iii)
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Lemma A.2 (GRPOs from GIPOs). If square (iii) above is a GIPO, (i) has a GRPO,
and 〈Z,c,d,u,α,η,µ〉 is a candidate for it as shown in (ii), then 〈Z,c,d,u,α,η,µ〉 is a
GRPO for (i).

The following lemmas from [17] state the basic properties of GRPOs.

Lemma A.3. Suppose that diagram (ii) below has a GRPO.

U
a ��

b

��

V

d

��

e �� W

g

��

X

α

c
�� Y

β

f
�� Z

(i)

U
a ��

b

��

V

ge

��

X
f c

��

βa• f α

Z

(ii)

1. If both squares in (i) are GIPOs then the rectangle of (i) is a GIPO
2. If the left square and the rectangle of (i) are GIPOs then so is the right square.

Lemma A.4. Suppose that diagram (i) below is a GIPO.

Z

X α

c ������
Y

d������

W
a

������
b

������

(i)

Z

X α

c ������
Y

d������

W

a������
a′

��

ε b

������

(ii)

Z

X α

c ������
Y

d

������

d′��

ε������

W
a

������
b

������

(iii)

Then the regions obtained by pasting the 2-cells in (ii) and (iii) are GIPOs.
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