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Abstract. Every parity game is a combinatorial representation of a
closed Boolean µ-term. When interpreted in a distributive lattice every
Boolean µ-term is equivalent to a fixed-point free term. The alternation-
depth hierarchy is therefore trivial in this case. This is not the case
for non distributive lattices, as the second author has shown that the
alternation-depth hierarchy is infinite.
In this paper we show that the alternation-depth hierarchy of the games
µ-calculus, with its interpretation in the class of all complete lattices, has
a nice characterization of ambiguous classes: every parity game which
is equivalent both to a game in Σn+1 and to a game in Πn+1 is also
equivalent to a game obtained by composing games in Σn and Πn.

Introduction

Parity games have shown to be a fundamental tool in the theory of automata
recognizing infinite objects and of the logics by which these objects are usu-
ally defined [23]. Among these logics we list monadic second order logic, the
propositional modal µ-calculus, and the collection of their fragments, i.e. logics
of computation such as PDL, LTL, CTL, etc. The use of the games is not re-
stricted to the theory but carries over to applications such as model-checking [9]
or the synthesis of controllers [4].

In the monograph [3] parity games are used to establish strong relationships
between µ-calculi and classes of automata (on words, on trees, on Kripke struc-
tures, etc.) A class of automata is given the structure of a µ-calculus by defining
a composition operation A[B/x] on automata and two fixed-point operations
µx.A and νx.A. Recall that a µ-calculus is a set of syntactical entities with an
intended functional interpretation on a complete lattice L, each term t of arity
ar(t) being interpreted as a monotonic mapping from Lar(t) to L. The terms θx.t
of a µ-calculus, for θ ∈ {µ, ν}, are interpreted as extremal fixed-points of t, so
that θx.t and t[θx.t/x] denote the same object. In the µ-calculus of automata, the
complete lattice L is a powerset of a set of objects (words, trees, etc.); the inter-
pretation of an automaton, as a term of empty arity of the µ-calculus, coincides
with the language of objects it accepts.
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Fig. 1. The alternation-depth hierarchy

Parity games are syntactically similar to automata, thus the composition and
fixed-point operations can be defined on games as well. In the monograph [3] this
was not done, as, by analogy with the case of automata, the interpretation of a
game is whether some distinguished position is winning or not. Since there are
only two objects in the interpretation domain, such a µ-calculus of games is not
very interesting.1 On the other hand, for a given µ-calculus, it is also possible to
consider as the intended interpretation a given class of complete lattices. It turns
out that considering the class of distributive (complete) lattices is not enough
to make the µ-calculus of games nontrivial. In this case, every term is equivalent
to a term with no applications of the fixed-point operations. In order to have
a µ-calculus of games with a nontrivial interpretation one needs to consider
the class of all complete lattices. In [20] a µ-calculus with such interpretation
is considered. It is defined a preorder ≤ on the collection G of games, in a
constructive way. The quotient of this collection of games under the equivalence
relation ∼ on G induced by ≤ is a lattice (although not a complete one) where
the interpretation of θx.G is indeed an extremal fixed-point. This is moreover
the universal µ-lattice, that is the universal lattice in which every µ-term has
an interpretation. By saying that this algebraic object is universal we mean that
two terms s, t satisfy s ≤ t in the quotient G/∼ if and only if this relation holds
in every lattice where all µ-terms are interpretable. Moreover the relation s ≤ t
holds in G/∼ if and only if it holds in every complete lattice.

The extremal fixed-point operations of µ-calculi are syntactic operators anal-
ogous to quantifiers. There have been few proposals to classify µ-terms into
classes according to the number of nested applications of fixed-point operations;
most of these classifications happen to be equivalent [14, 15, 16]. We recall here
the hierarchy of µ-terms into classes proposed in [15]. The class Σ0 = Π0 is the
class of µ-terms with no application of the fixed-point operations; Σn+1 (resp.
Πn+1) is the closure of Σn andΠn under the composition operation and the least
fixed-point operation (resp. the greatest fixed-point operation). Also, the class
Comp(Σn, Πn) is defined as the closure of Σn and Πn under the composition
operation. These classes are ordered by the inclusions as shown in figure 1. As far
as we are dealing with the syntax, these inclusions are obviously strict. However,

1 It is also possible to say that the interpretation of a game is the set of winning
strategies for a given player. This idea was pursued in [21].
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if a µ-calculus comes with an intended interpretation, the relevant question is
whether these inclusions are strict in the interpretation, and this question has no
obvious answer. For the propositional modal µ-calculus the semantical strictness
of these inclusions was proved in [6, 13, 1]. For the µ-calculus of parity games
with its interpretation in the class of all complete lattices these inclusions were
shown to be strict in [18].

In this paper we investigate an orthogonal problem. It is easily seen that the
relation

Comp(Σn, Πn) = Σn+1 ∩Πn+1(1)

holds in every µ-calculus, at least at the syntactic level; it can be asked whether
such equality still holds with respect to a given interpretation. This question is
inspired by the characterization of the ambiguous classes in the Borel hierarchy
[12, §11.B,§22.27], of which, there are already known analogies within µ-calculi.
Indeed, it is an easy exercise to show that if a language of infinite words is
accepted both by a deterministic automaton in Σn+1 and by a deterministic au-
tomaton in Πn+1, then this language is accepted by a deterministic automaton
in Comp(Σn, Πn). We remark that questions related to the alternation-depth hi-
erarchy for deterministic automata on infinite words tend to be easy, for example
this hierarchy is even decidable [17]. Also, it was shown in [2] that if language
of trees is definable both by an automaton in Σ2 and by an automaton in Π2,
then it is also definable by an automaton in Comp(Σ1, Π1).

We show that, for the µ-calculus of games with its interpretation in the class
of all complete lattices, the equality (1) holds semantically, for every n ≥ 0. As far
as we know, together with the observation that this equality holds for languages
of infinite words defined by deterministic automata, this is the first complete
result of this type for µ-calculi. We do not answer the analogous question for
other µ-calculi but we believe that the ideas and tools presented here can be
adapted to other contexts. These tools are proof-theoretic in nature: the main
technical proposition is an interpolation theorem2 that we prove essentially with
Maehara’s method [22, §1.6.5]. The proofs that we consider here are however
circular, see [19], and being able to apply existing proof-theoretic techniques is
not straightforward.

The paper is organized as follows. In section 1 we define parity games with
draws and the operations on these games. We also define their semantics as mono-
tonic mappings on a complete lattice. In section 2 we organize parity games with
draws into a µ-calculus and define the syntactical preorder that characterizes the
semantical order relation. In section 3, we firstly recall the definition and basic
facts about the hierarchy; then we prove that equality (1) holds at the semantical
level.

2 This interpolation result concerns the hierarchy of fixed points; it contrasts with
the uniform interpolation property of the modal µ-calculus [7] which concerns the
common language of two formulas and does not take into account the hierarchy of
fixed points, since the main tool to prove it are disjunctive normal forms.
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1 Parity Games with Draws

A parity game with draws is a tuple G = 〈PosGE , PosGA, PosGD,MG, ρG〉 where:

– PosGE , Pos
G
A, Pos

G
D are finite pairwise disjoint sets of positions (Eva’s posi-

tions, Adam’s positions, and draw positions),
– MG, the set of moves, is a subset of (PosGE∪PosGA)×(PosGE∪PosGA∪PosGD),
– ρG is a mapping from (PosGE ∪ PosGA) to N.

Whenever an initial position is specified, these data define a game between player
Eva and player Adam. The outcome of a finite play is determined according to
the normal play condition: a player who cannot move loses. It can also be a draw,
if a position in PosGD is reached.3 The outcome of an infinite play { (gk, gk+1) ∈
MG }k≥0 is determined by means of the rank function ρG as follows: it is a win
for Eva if and only if the number

max { i ∈ N | ∃ infinitely many k s.t. ρG(gk) = i }
is even. To simplify the notation, we shall use PosGE,A for the set PosGE ∪ PosGA
and use similar notations such as PosGE,D, etc. We let MaxG = max ρG(PosGE,A)
if the set PosGE,A is not empty, and MaxG = −1 otherwise.

1.1 Operations on Parity Games

We define here some operations and constants on games. When defining oper-
ations on games we shall always assume that the sets of positions of distinct
games are pairwise disjoint.
Meets and Joins. For any finite set I,

∧
I is the game defined by letting

PosE = ∅, PosA = {p0}, PosD = I, M = { (p0, i) | i ∈ I } (where p0 �∈ I),
ρ(p0) = 0. The game

∨
I is defined similarly, exchanging PosE and PosA.

Composition Operation. Given two games G and H and a mapping ψ :
PGD −→ PHE,A,D, the game K = G ◦ψ H is defined as follows:

– PosKE = PosGE ∪ PosHE ,
– PosKA = PosGA ∪ PosHA ,
– PosKD = PosHD ,
– MK = (MG ∩ (PosGE,A × PosGE,A)) ∪ MH

∪ { (p, ψ(p′)) | (p, p′) ∈MG ∩ (PosGE,A × PosGD) } .
– ρK is such that its restrictions to the positions of G and H are respectively

equal to ρG and ρH .

Sum Operation. Given a finite collection of parity games Gi, i ∈ I, their sum
H =

∑
i∈I Gi is defined in the obvious way:

– PHZ =
⋃
i∈I P

Gi

Z , for Z ∈ {E,A,D},
– MH =

⋃
i∈IM

Gi ,
– ρH is such that its restriction to the positions of each Gi is equal to ρGi .

3 Observe that there are no possible moves from a position in PosG
D.



74 André Arnold and Luigi Santocanale

Fixed-point Operations. If G is a game, a system on G is a tuple S =
〈E,A,M〉 where:

– E and A are pairwise disjoint subsets of PosGD,
– M ⊆ (E ∪A) × PosGE,A,D.

Given a system S and θ ∈ {µ, ν}, we define the parity game θS .G:

– PosθS .G
E = PosGE ∪ E,

– PosθS .G
A = PosGA ∪A,

– PosθS .G
D = PosGD − (E ∪A),

– MθS.G = MG ∪M ,
– ρθS .G is the extension of ρG to E ∪A such that:

• if θ = µ, then ρθS .G takes on E ∪ A the constant value MaxG if this
number is odd or MaxG + 1 if MaxG is even,

• if θ = ν, then ρθS.G takes on E ∪ A the constant value MaxG if this
number is even or MaxG + 1 if MaxG is odd.

Predecessor Game. Let G be a game such that MaxG �= −1, i.e. there is at
least one position in PosGE,A. Let TopG = { g ∈ PosGE,A | ρG(g) = MaxG }, then
the predecessor game G− is defined as follows:

– PosG
−

E = PosGE − TopG,
– PosG

−
A = PosGA − TopG,

– PosG
−

D = PosGD ∪ TopG,
– MG−

= MG − (TopG × PosGE,A,D),

– ρG
−

is the restriction of ρG to PosG
−

E,A.

1.2 Semantics of Parity Games

Given a complete lattice L, the intepretation of a parity game G is going to be
a monotone mapping of the form

||G|| : LP
G
D −→ LP

G
E,A ,

where LP
G
K is the PGK -fold product lattice of L with itself. If g ∈ PosGA,E then

||Gg|| will denote the projection of ||G|| onto the g coordinate. Any parity game
G can be reconstructed in a unique way from the predecessor game G− by one
application of some fixed-point operation θS ; moreover the predecessor game
is “simpler”. Thus we define the interpretation of a parity game inductively. If
PGE,A = ∅, then LP

G
E,A = L∅ = 1, the complete lattices with just one element,

and there is just one possible definition of the mapping ||G||. Otherwise, if MaxG

is odd, then ||G|| is the parameterized least fixed-point of the monotone mapping

LP
G
E,A × LP

G
D −→ LP

G
E,A
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defined by the system of equations:

xg =






∨ { xg′ | (g, g′) ∈MG } if g ∈ PosGE ∩ TopG,
∧ { xg′ | (g, g′) ∈MG } if g ∈ PosGA ∩ TopG,
||G−

g ||(XTopG , XPosG
D

) otherwise.

If MaxG is even, then ||G|| is the parameterized greatest fixed-point of this
mapping.

2 The µ-Calculus of Games

Let X be a countable set of variables. A pointed parity game with labeled draws
is a tuple 〈G, pG� , λG〉 where G is a parity game, pG� ∈ PosGE,A,D is a specified
initial position, and λG : PosGD −→ X is a labeling of draw positions by variables.
With G we shall denote the collection of all pointed parity games with labeled
draws; as no confusion will arise, we will call a pointed parity game with labeled
draws simply “game”. Similarly, we shall abuse the notation and write G to
denote the entire tuple 〈G, pG� , λG〉. With the notation Gg we shall denote the
game that differs from G only in that the initial position is now g, i.e pGg

� = g.
We give the collection G the structure of a µ-calculus, as defined in [3, §2.1].

If x is a variable, the game x̂ has just one draw position labeled by x. The arity
of a game G, denoted by ar(G), is the subset of variables λG(PosGD).

A substitution is a mapping σ : X −→ G; given a game G and a substitution
σ, the composition of G and σ – for which we use the notation G[σ] – is defined
as

G[σ] = (G ◦ψ
∑

x∈ar(G)

σ(x)) ,

where ψ(g) = p
σ(λG(g))
� for g ∈ PosGD. Moreover, pG[σ]

� = pG� and λG[σ](p) =
λσ(x)(p) whenever p ∈ Pos

σ(x)
D . Therefore ar(G[σ]) =

⋃
x∈ar(G) ar(σ(x)).

Similarly, given G in G and x ∈ X , let Posx = { g ∈ PosGD |λG(g) = x }.
Define the system S as 〈∅, Posx, Posx × {pG� }〉. Then we define

θx.G = (θS .G) ,

where moreover λθx.G is the restriction of λG and pθx.G� = pG� . Remark that
θx.G = G if x �∈ ar(G).

The above constructions are analogous to those given in [3, §7.2] for automata
and therefore one can mimic the proof presented there to show that G with this
structure satisfies the axioms of a µ-calculus.

Observe that the operation of forming the predecessor game G− can be
extended to pointed parity games with labeled draws if we choose a variable
xg �∈ ar(G) for each g ∈ TopG: we let in this case λG

−
be the extension of λG

such that λG
−
(g) = xg for g ∈ TopG.
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2.1 The Preorder on G
In order to describe a preorder on the class G, we shall define a new game 〈〈G,H〉〉
for a pair of games G and H in G. This is not a pointed parity game with draws
as defined in the previous section; to emphasize this fact, the two players will be
named Mediator and Opponent instead of Eva and Adam.

Before formally defining the game 〈〈G,H〉〉, we give its informal description
and explanation. Mediator’s goal is to prove that the relation ||G|| ≤ ||H || holds
in any complete lattice; Opponent’s goal is to show that this relation does not
hold. For example, if G =

∨
i∈I Gi has the shape of a join and H =

∧
j∈JHj has

the shape of a meet, then this is an Opponent’s position: Mediator should be
prepared to prove ||Gi|| ≤ ||Hj || for any pair of indexes i and j; thus Opponent
should find a pair of indexes (i, j) and show that ||Gi|| �≤ ||Hj ||. If G =

∧
i∈IGi is

a meet and H =
∨
j∈J Hj is a join, then this is a Mediator’s position: Mediator

should find either an i and show that ||Gi|| ≤ ||H || or a j and show that ||G|| ≤
||Hj ||; Opponent should be prepared to disprove any such relation.4

Thus the game is played on the two boards, simultaneously. At a first ap-
proximation, a position of 〈〈G,H〉〉 is a pair of positions from G and H . Since
we code meets as Adam’s positions and joins as Eva’s positions, Mediator is
playing with Adam on G and with Eva on H ; Opponent is playing with Eva on
G and with Adam on H . Thus a pair (g, h) in PosGA × PosHE clearly belongs to
Mediator and a pair (g, h) in PosGE × PosHA clearly belongs to Opponent. Pairs
in PosGE × PosHE or PosGA × PosHA are ambiguous, as both players could play.
The situation is not symmetric, however, as Opponent is obliged to play while
Mediator is allowed to play, if he wants, but he can also decide to delay his
move. In the formal definition, we code the fact that two players can play from
the same pair by duplicating every pair into a Mediator’s position and into an
Opponent’s position.

Definition 2.1. The game 〈〈G,H〉〉 is defined as follows:

– The set of Mediator’s positions is

PosGE,A,D × {M} × PosHE,A,D ,

and the set of Opponent’s positions is

PosGE,A,D × {O} × PosHE,A,D .

– We describe the moves5 by cases:
• If (g, h) ∈ (PosGE × PosHA,D) ∪ (PosGE,D × PosHA ), then there is just one

“silent” move
(g,M, h) → (g,O, h)

4 These moves suffice to Mediator to reach his goal, as the relation ≤ that we shall
define turns out to be transitive. This fact is analogous to a cut-elimination theorem
and to Whitman’s conditions characterizing free lattices [10].

5 As we wish to distinguish moves coming from G and moves coming from H , the
underlying graph of this game can have distinct edges relating the same pair of
vertices.
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and moves of the form

(g,O, h) → (g′,M, h) (g,O, h) → (g,M, h′)

for every move (g, g′) ∈MG and every move (h, h′) ∈MH .
• If (g, h) ∈ (PosGA × PosHE,D) ∪ (PosGA,D × PosHE ), then there is just one

silent move
(g,O, h) → (g,M, h)

and moves of the form

(g,M, h) → (g′, O, h) (g,M, h) → (g,O, h′)

for every move (g, g′) ∈MG and every move (h, h′) ∈MH .
• If (g, h) ∈ (PosGE × PosHE ) then there are moves of the form

(g,O, h) → (g′,M, h) (g,M, h) → (g,O, h′)

for every move (g, g′) ∈MG and every move (h, h′) ∈MH , and moreover
a silent move

(g,M, h) → (g,O, h) .

• Similarly, if (g, h) ∈ (PosGA × PosHA ) then there are moves of the form

(g,M, h) → (g′, O, h) (g,O, h) → (g,M, h′)

for every move (g, g′) ∈MG and every move (h, h′) ∈MH , and moreover
a silent move

(g,M, h) → (g,O, h) .

• Finally, if (g, h) ∈ PosGD × PosHD , then: If λG(g) = λH(h), then there is
a move

(g,M, h) → (g,O, h)

and no move from (g,O, h). Hence this is a winning position for Mediator.
If λG(g) �= λH(h), then there is a move

(g,O, h) → (g,M, h)

and no move from (g,M, h). The latter is a win for Opponent.
– Now let us define the winning plays for Mediator in this game. As usual

a maximal finite play is lost by the player who cannot move. For infinite
plays, observe that any (maximal) play γ in 〈〈G,H〉〉 defines two plays (not
necessarily maximal) πG(γ) inG and πH(γ) inH . Generalizing what happens
for finite plays we say that Mediator wins an infinite play γ if and only if
either πG(γ) is a win for Adam on G, or πH(γ) is a win for Eva on H .
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In the above definition we must explain the meaning of statements such as
“πH(γ) is a win for Eva on H” whenever πH(γ) is a finite play which is not
maximal. In this case, the last position of the play πH(γ) belongs either to
PosHE or to PosHA : we say that this is a win for Adam in the first case and a
win for Eva in the latter case, with the intuition that the player who gives up
playing loses.

This convention allows Mediator to play just on one board and to give up on
the other if Adam has a winning strategy on G or Eva has a winning strategy on
H . On the other hand, as soon as Opponent gives up on one board, he’s going
to lose. Notice that the game 〈〈G,H〉〉 alternates between Opponent’s positions
and Mediator’s positions, thus if a player among Mediator and Opponent gives
up on one board, this is indeed his own responsibility.

Finally observe that the condition (1): “πG(γ) is a win for Adam on G, or
πH(γ) is a win for Eva on H” implies but is not equivalent to (2): “if πG(γ) is a
win for Eva on G, then πH(γ) is a win for Eva on H”. The logic is complicated
by the fact that πG(γ) could be a draw, but this is also the only obstacle to
obtain the equivalence between (1) and (2).

Definition 2.2. If G andH belong to G, then we declare that G ≤ H if and only
if Mediator has a winning strategy in the game 〈〈G,H〉〉 starting from position
(pG� , O, pH� ).

In the following, we shall write G ∼ H to mean that G ≤ H and H ≤ G. We
continue by listing some useful facts about the game 〈〈G,H〉〉 and the relation
≤.

Lemma 2.3. In the game 〈〈G,H〉〉 Mediator has a winning strategy from a posi-
tion of the form (g,O, h) if and only if he has a winning strategy from (g,M, h).

We do not include a proof of this lemma for lack of space.
An homomorphism from a game G to a game H is a mapping f from the

positions of G to the positions of H such that:

– f(pG� ) = hH� ,
– if g belongs to PosGE (resp. PosGA) then f(g) belongs to PosHE (resp. PosHA )

and ρG(g) = ρH(f(g)),
– if g belongs to PosGD then f(g) belongs to PosHD and λG(g) = λH(f(g)),
– if (g, g′) ∈MG then (f(g), f(g′)) ∈MH .

An homomorphism f from a game G to a game H is a bisimulation if moreover:

– for any position g of G, if (f(g), h) ∈ MH then there exists a position g′ of
G such that (g, g′) ∈MG and h = f(g′).

Lemma 2.4. If there is a bisimulation from G to H, then G ∼ H.
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The proof of this lemma, which we do not include for lack of space, amounts to
observe that both in the game 〈〈G,H〉〉 and the game 〈〈H,G〉〉 Mediator can use
a “copycat” strategy. We can use Lemma 2.4 to establish several equivalences.
Let G be a game and T ⊆ PosGE,A be a collection of positions of G. Let XT ⊆ X
be a subset of variables in bijection with T and such that XT ∩ ar(G) = ∅.
The game GT�XT is obtained as follows: every position t ∈ T is added to the
set of draw positions and labeled by the variable xt which corresponds to t. Of
course there are no more moves from a position t ∈ T in the game GT�XT . The
relation Gg ∼ GT�XT

g [Gt/xt]t∈T holds, as a consequence of the fact that there
is a bisimulation from GT�XT

g [Gt/xt] to Gg. Also, let G′
g be the game obtained

from Gg by considering the reachable part from g. Again, we have Gg ∼ G′
g as

the inclusion of the positions of G′
g into the positions of Gg is a bisimulation.

Thus we are allowed to consider only games in G that are reachable from the
initial position.

Proposition 2.5. The relation ≤ has the following properties:

1. It is reflexive and transitive.
2. Composition is monotonic: If G ≤ H and if for all x ∈ X, σ(x) ≤ σ′(x)

then G[σ] ≤ H [σ′].
3. For any game G and any substitution σ, G ≤ ∧

I [σ] if and only if G ≤ σ(xi)
for all i ∈ I.

4. For any game H and any substitution σ,
∨
I [σ] ≤ H if and only if σ(xi) ≤ H

for all i ∈ I.
5. For θ ∈ {µ, ν}, θx.G ∼ G[θx.G/x].
6. If G[H/x] ≤ H then µx.G ≤ H.
7. If G ≤ G[H/x] then G ≤ νx.H.
8. It is the least relation on G having properties 1 to 7.
9. It is sound and complete with respect to the class of all complete lattices:

G ≤ H if and only if for any complete lattice L and any v : X −→ L

||GpG
�
||(v ◦ λG) ≤ ||HpH

�
||(v ◦ λH) .

Proof. These properties were stated and proved in [20] for a restricted class of
fair games and for a different relation � (similar to the one of [5, 11]). However,
we can prove the following: 1) the relation ≤ is indeed reflexive, transitive, and
monotonic, 2) every game in G is ≤-equivalent to a fair game, 3) if G and H are
fair games, then G ≤ H if and only if G � H .

Therefore the quotient of the class of fair games under the equivalence relation
induced by � is order isomorphic to the quotient of G under the equivalence
relation ∼ and this quotient inherits all the properties proved in [20]. ��

In particular the quotient G/∼ is a lattice where the greatest lower bound
(resp. least upper bound) of the equivalence classes of G1, . . . , Gk is the equiv-
alence class of

∧
k(G1, . . . , Gk) (resp.

∨
k(G1, . . . , Gk)). It is a µ-lattice as well,

meaning that all the µ-terms constructible from the signature 〈�,∧,⊥,∨〉 are
interpretable as infima, suprema, least prefixed points and greatest postfixed
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points of previously defined operations. The µ-lattice G/∼ is freely generated by
the set X , meaning that given any µ-lattice L and any mapping ψ : X −→ L,
there exists a unique extension of ψ to a mapping ψ′ : G/∼ −→ L that preserves
the interpretation of µ-terms. From this property it readily follows that ≤ is the
least preorder having the properties listed above.

3 Ambiguous Classes in the Mostowski Hierarchy

If G is a game then two mappings ρ and ρ′ from PosGE,A to N are said to be
equivalent with respect to G if any infinite path in G is winning according to ρ
if and only if it is winning according to ρ′. Let G be a game and ρ be a mapping
equivalent to ρG w.r.t. G. It is easily observed that the game G′ obtained from
G by substituting the rank function ρ with ρG is equivalent to G: G ∼ G′.

Definition 3.1. We say that a game G belongs to Σ0 = Π0 if and only if it is
acyclic. For n ≥ 1, we say that a game G belongs to Σn (resp. Πn) if there is a
mapping ρ equivalent to ρG w.r.t. G, and an odd (resp. even) number m ≥ n−1
such that ρ(PosGE,A) ⊆ {m − n + 1, . . . ,m}. We say that a game belongs to
Comp(Σn, Πn) if it can be obtained from games in Σn and Πn by a sequence of
applications of the composition operation.

Observe that, by construction, for every n ≥ 1, if G belongs to Σn (resp. Πn)
then µx.G belongs to Σn (resp. Πn+1) and νx.G belongs to Σn+1 (resp. Πn).
Moreover, Comp(Σ0, Π0) = Σ0 and in general Comp(Σn, Πn) ⊆ Σn+1 ∩Πn+1.
We shall show that the converse holds as well.

Lemma 3.2. If a game G belongs to Σ1 ∩Π1 then it is acyclic.

Proof. As G belongs to Σ1 ∩Π1 there are two mappings ρ and ρ′ equivalent to
ρG w.r.t. G whose images are respectively {m} and {m′}, where m is odd and
m′ is even. If G is not acyclic, there exists a position p in G and a non empty
path γ from p to p. The infinite path γω is a win for Adam, according to ρ, and
a win for Eva, according to ρ′. This is a contradiction. ��

Lemma 3.3. If a game G is strongly connected and belongs to Σn+1 ∩ Πn+1

then either it belongs to Σn, or it belongs to Πn.

Proof. If G belongs to Σn+1 ∩ Πn+1 then there exist two mappings ρ and ρ′,
equivalent to ρG w.r.t. G, whose images are respectively included in {m −
n, . . . ,m} and {m′ − n, . . . ,m′} where m is odd and m′ is even.

Assume that there are two positions p, p′ ∈ PosGE,A such that ρ(p) = m and
ρ′(p′) = m′. Since G is strongly connected, there exists a non empty path γ from
p to p′ and a non empty path γ′ from p′ to p. The maximal value of ρ (resp. ρ′)
which occurs infinitely often in the path (γγ′)ω is m (resp. m′). Therefore this
infinite path is a win for Adam according to ρ and a win for Eva according to
ρ′, a contradiction as ρ and ρ′ are equivalent.
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It follows that either ρ never takes the value m on PosGE,A or ρ′ never takes
the value m′ on PosGE,A. In the first case ρ(PosGE,A) ⊆ {m− n, . . . ,m− 1} and
G ∈ Πn. In the second case ρ′(PosGE,A) ⊆ {m′ −n, . . . ,m′ − 1} and G ∈ Σn. ��

Corollary 3.4. If a game G belongs to Σn+1 and to Πn+1, then it belongs to
Comp(Σn, Πn).

Proof. If n = 0 then this is lemma 3.2. Otherwise we can construct G from its
maximal strongly connected components Gi by means of a sequences of substitu-
tions. According to lemma 3.3, each of the Gi is either in Σn or in Πn. Therefore
G ∈ Comp(Σn, Πn). ��

Thus we have argued that the equality (1) holds at the syntactic level. In
the introduction we have stressed that the relevant question is whether such
equality holds with respect to the given interpretation of all complete lattices.
By the characterization in [20], this is the same as asking whether such equation
holds up to the equivalence relation ∼ induced by the preorder ≤.

Definition 3.5. Let G ∈ G and say that G ∈ Sn if there exists a G′ ∈ Σn such
that G ∼ G′. Similarly, say that G ∈ Pn if there exists a G′ ∈ Πn such that
G ∼ G′, and that G ∈ Cn if there exists a G′ ∈ Comp(Σn, Πn) such that G ∼ G′.

The ambiguous class Dn is simply the intersection of Pn and Sn. The main
result of this paper is the following:

Theorem 3.6. The ambiguous class Dn+1 = Pn+1 ∩ Sn+1 and the class Cn are
equal, for every n ≥ 0.

The relation Cn ⊆ Pn+1 ∩ Sn+1 immediately follows from the definition of
the classes Cn,Sn+1,Pn+1 and by the relation (1). For the converse it is enough
to prove the following Proposition.

Proposition 3.7. Let G and H be games in Πn+1 and Σn+1, respectively, and
suppose that G ≤ H. Then there exists a K ∈ Comp(Σn, Πn) such that G ≤ K
and K ≤ H.

Indeed, if G′ ∈ Sn+1 ∩ Pn+1, then let G ∈ Πn+1 and H ∈ Σn+1, such that
G′ ∼ G ∼ H . If K is as in the statement of Proposition 3.7, then the relations

G′ ≤ G ≤ K ≤ H ≤ G′

exhibit G′ as a member of Cn.
Proof (of Proposition 3.7). Let us fix G ∈ Πn+1 and H ∈ Σn+1, thus we
shall assume that ρG(PosGE,A) ⊆ {m − n, . . . ,m} where m is even and that
ρH(PosHE,A) ⊆ {m′−n, . . . ,m′} withm′ odd. We also assume that G ≤ H and fix
a winning strategy for Mediator in the game 〈〈G,H〉〉 from position (pG� , O, p

H
� ).

This game is almost6 a game whose set of infinite winning plays is described by
6 The winning condition can be described using Rabin pairs on the edges.
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a Rabin acceptance condition. Thus, if Mediator has a winning strategy in this
game, then he has a deterministic bounded memory winning strategy as well.
Therefore we shall assume that the fixed winning strategy is deterministic and
has a bounded memory. We shall represent it as the tuple 〈S,U, s�, ψ〉, where
〈S,U, s�〉 is a finite pointed graph, with set of memory states S, set of update
transitions U , and an initial state s�; ψ is an homomorphism of graphs from
〈S,U, s�〉 to the graph of 〈〈G,H〉〉 (mapping every memory state to a position
and an update transition to a move) with the following properties:

– ψ(s�) = (pG� , O, pH� ),
– if s ∈ S and ψ(s) = (g,O, h) is an Opponent’s position, then for every

move (g,O, h) → (g′,M, h′) there exists a unique s′ such that s → s′ and
ψ(s′) = (g′,M, h′),

– if s ∈ S and ψ(s) = (g,M, h) is a Mediator’s position, then there exists a
unique transition s→ s′,

– if s0 → s1 → . . . is an infinite path in the graph 〈S,U〉, then the infinite play
ψ(s0) → ψ(s1) → . . . is a win for Mediator.

Recall from 1.1 the definition of the predecessor game G−. In particular, re-
call that TopG = { g ∈ PosGE,A | ρG(g) = MaxG } and that TopH = { h ∈
PosHE,A | ρH(h) = MaxH }. Observe that, for the games G and H under con-
sideration, G− belongs to Σn and H− belongs to Πn. Intuitively, our next goal
is to show that we can completely decompose the given winning strategy into
a collection of local strategies that Mediator can play either in 〈〈G,H−〉〉, or in
〈〈G,H ′〉〉 for some game H ′ of the form

∧
I , or in 〈〈G−, H〉〉 or in some 〈〈G′, H〉〉

for some game G′ of the form
∨
I .

We shall denote by [ s ] the maximal strongly connected component of the
graph 〈S,U〉 to which s belongs. We observe that the following exhaustive and
exclusive cases arise:

(Ac) The component [ s ] is reduced to the singleton {s}. Observe that we cannot
have a transition s → s as the graph of 〈〈G,H〉〉 is bipartite. Therefore the
component [ s ] is acyclic.

(Cy) The component [ s ] is cyclic (and contains at least two elements). We have
the following subcases:
(CyA) The projection of [ s ] onto H is stuck and belongs to Adam: let

s1, s2 ∈ [ s ] be such that s1 → s2 and let ψ(si) = (gi, Pi, hi) for i = 1, 2;
then h1 = h2 ∈ PosHA and the move (g1, P1, h1) → (g2, P2, h1) is either
a left move (i.e. (g1, g2) ∈MG) or it is a silent move.

(CyE) The projection of [ s ] onto G is stuck and belongs to Eva: the formal
definition is obtained by exchanging H with G and Adam with Eva in
the definition of (CyA).

The previous conditions do not hold and:
(CyG) The projection of [ s ] onto G contains a visit to TopG: there

exists an s′ ∈ [ s ] such that ψ(s′) = (g′, P ′, h′) and ρG(g′) = MaxG.
(CyH) The projection of [ s ] onto H contains a visit to TopH : there

exists an s′ ∈ [ s ] such that ψ(s′) = (g′, P ′, h′) and ρH(h′) = MaxH .
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(CyN) None of the previous conditions hold. In particular, for all s′ ∈
[ s ], if ψ(s′) = (g′, P ′, h′), g′ ∈ PosGE,A implies ρG(g′) < MaxG and
h′ ∈ PosHE,A implies ρG(h′) < MaxH .

The reader should verify that the above cases are indeed disjoint. To see that
(CyA) and (CyE) are disjoint, observe that a proper cycle in the graph of
〈〈G,H〉〉 cannot be stuck both on G and on H . To see that (CyG) and (CyH)
are disjoint consider a maximal strongly connected component [ s ] that visits
both TopG and TopH , and a path γ that visits all the states in [ s ]. The unique
way the path ψ(γω) can be a win in the game 〈〈G,H〉〉 for Mediator is that the
play ψ(γ) is stuck on H on an Adam’s position, in which case [ s ] satisfies (CyA),
or that this play is stuck on G on an Eva’s position, in which case [ s ] satisfies
(CyE).

Definition 3.8. We say that s �→ s′ if and only if there exists a path s = s0 →
s1 → . . .→ sn = s′, but s′ does not belong to the strongly connected component
of s.

Clearly, the relation s �→ s′ is irreflexive and acyclic, and therefore well founded.

Lemma 3.9. Let s ∈ S and ψ(s) = (g, P, h), where P ∈ {O,M}. Suppose that
the strongly connected component [ s ] is of type (CyG) or of type (CyN). If for
each h′ ∈ TopH there exists κ(h′) such that Gg′ ≤ κ(h′) whenever s �→ s′ and
ψ(s′) = (g′, P ′, h′), then

Gg ≤ H−
h [κ(h′)/yh′ ]h′∈TopH .

Of course there is a dual lemma if the stronlgy connected component [ s ] is of
type (CyH); we leave the reader to formulate it. Observe that in order to form
a collection {κ(h′)} satisfying the hypothesis of the lemma, it is enough to let
κ(h′) =

∨
∅ if there is no s′ such that s �→ s′ and ψ(s′) = (g′, P ′, h′).

Proof (of lemma 3.9). The positions of the game 〈〈G,H−
h [κ(h′)/yh′ ]h′∈TopH 〉〉

form a set which is the disjoint union of a component PosGE,A,D × {M,O} ×
(PosHE,A,D−TopH) and of components PosGE,A,D×{M,O}×Pos

κ(h′)
E,A,D for h′ ∈

TopH . Moreover, in the latter components, the game is exactly as in 〈〈G, κ(h′)〉〉.
Mediator can use the strategy S from position ψ(s) on the first component

PosGE,A,D×{M,O}×(PosHE,A,D−TopH), as long as the strategy does not suggest
a move (g′, P, h) → (g′, P ′, h′) for some h′ ∈ TopH . If this is the case and if s′

is the state of the strategy that lifts (g′, P ′, h′), then s �→ s′, because [ s ] cannot
contain a visit to TopH . Hence, by assumption, there is a winning strategy in
the game 〈〈Gg′ , κ(h′)〉〉 from both positions (g′, O, pκ(h′)

� ) and (g′,M, p
κ(h′)
� ), by

lemma 2.3. The move (g′, P, h) → (g′, P ′, h′) becomes a move to (g′, P ′, pκ(h′)
� )

in 〈〈G, κ(h′)〉〉 and Mediator can continue with a winning strategy from the latter
position. ��
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We complete now the proof of Proposition 3.7 by proving the following
stronger claim:

Claim. For each s ∈ S such that ψ(s) = (g, P, h) there is a game Ks in the class
Comp(Σn, Πn) such that Gg ≤ Ks ≤ Hh.

The proof is by induction on the well founded relation �→ and it is subdivided
into cases, according to the type of the strongly connected component [ s ].

We suppose first that the type of [ s ] is (Ac), so that if s→ s′ then s �→ s′.
Observe that if s→ s′ is a transition lifting a silent move of the form

(g,O, h) → (g,M, h) (g,M, h) → (g,O, h)

then there is essentially nothing to prove: we can let Ks = Ks′ since by the
induction hypothesis Gg ≤ Ks′ ≤ Hh.

If g ∈ PosGE and P = O, then for each move (g, g′) ∈ MG there is a move
(g,O, h) → (g′,M, h) and a lifting s → s(g′) of this move. By the induction
hypothesis there are Ks(g′) ∈ Comp(Σn, Πn) such that Gg′ ≤ Ks(g′) ≤ Hh. We
can let Ks =

∨
(g,g′)∈MG Ks(g′) ∈ Comp(Σn, Πn), it follows that

Gg ∼ ∨
(g,g′)∈MG Gg′ ≤ ∨

(g,g′)∈MG Ks(g′) ≤ Hh .

Assume now that g ∈ PosGA, P = M , and that the unique transition s → s′

of the strategy is suggesting a move of the form (g,M, h) → (g′,M, h) for some
(g, g′) ∈ MG. We let Ks = Ks′ ∈ Comp(Σn, Πn), and knowing that Gg′ ≤
Ks′ ≤ Hh we derive

Gg ∼ ∧
(g,g′)∈MGGg′ ≤ Gg′ ≤ Ks ≤ Hh .

We can use a dual argument if h ∈ PosHA and P = O or if h ∈ PosHE and P = M .
If g ∈ PosGD and h ∈ PosHD , then we let Ks be the game with only one position
labeled by λG(g).

We suppose now that the type of [ s ] is (CyA). Observe that if s′ ∈ [ s ] and
ψ(s′) = (g′, O, h) is an Opponent position, then for each move (h, h′) ∈MH there
is a move (g′, O, h) → (g′,M, h′) in 〈〈G,H〉〉 and a lifting of this move s′ → s′(h′)
in 〈S,U〉. By definition of the type (CyA), s′(h′) �∈ [ s ], hence there exists a
Ks′(h′) such that Gg′ ≤ Ks′(h′) ≤ Hh′ . We can let Ks′ =

∧
(h,h′)∈MHKs′(h′)

since this game belongs to Comp(Σn, Πn) and

Gg′ ≤ ∧
(h,h′)∈MHKs′(h′) ≤ ∧

(h,h′)∈MHHh′ ∼ Hh .

If s′ ∈ [ s ] and ψ(s′) = (g′,M, h), then there is a unique transition s′ → s′′.
If s �→ s′ then we can use the inductive hypothesis; otherwise, if s′′ ∈ [ s ],
we observe that ψ(s′′) = (g′′, O, h) is an Opponent position and that we have
described how to construct Ks′′ satisfying the claim in the previous parargraph.
As the relation Gg′ ≤ Gg′′ holds, we can let Ks′ = Ks′′ , since

Gg′ ≤ Gg′′ ≤ Ks′′ ≤ Hh .
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We suppose now that the type of [ s ] is either (CyG) or (CyH). For each
h′ ∈ TopH let

κ(h′) =
∨

s �→ s′

ψ(s′) = (g′, P ′, h′)

Ks′

where the Ks′ ∈ Comp(Σn, Πn) have been previously constructed and satisfy
the relation Gg′ ≤ Ks′ ≤ Hh′ . Observe that Gg′ ≤ κ(h′) whenever s �→ s′ and
ψ(s′) = (g′, P ′, h′), therefore by lemma 3.9 the relation

Gg ≤ H−
h [κ(h′)/yh′ ]h′∈TopH

holds. Also, we have κ(h′) ≤ Hh′ for all h′ ∈ TopH and therefore

H−
h [κ(h′)/yh′ ]h′∈TopH ≤ H−

h [Hh′/yh′ ]h′∈TopH

where the last game is clearly equivalent to Hh. If we let Ks be the game
H−
h [κ(h′)/yh′ ]h′∈TopH , then Ks belongs to Comp(Σn, Πn), since H−

h ∈ Πn,
Πn ⊆ Comp(Σn, Πn), and for all h′ ∈ TopH κ(h′) ∈ Comp(Σn, Πn). More-
over we have shown that Gg ≤ Ks ≤ Hh.

We can use dual arguments if the strongly connected component is of type
(CyE) or (CyH); therefore the claim holds for every s ∈ S and for s� ∈ S in
particular. As we have ψ(s�) = (pG� , O, p

H
� ), the relations

G = GpG
�
≤ Ks� ≤ HpH

�
= H ,

prove Proposition 3.7. ��
Finally we remark that if there exists a bounded memory winning strategy in

the game 〈〈G,H〉〉 for Mediator, then there exists a winning strategy for Mediator
of size |G| × |H |, where |G| = cardPosGE,A,D + cardMG is the size of a game
G. This follows from considerations developed in [8]. Thus effective bounds to
construct K such that G ≤ K ≤ H can be extracted out of this information.
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