
Parameterized Verification by Probabilistic
Abstraction*

Tamarah Arons 1 , Amir Pnueli 1, and Lenore Zuck2

1 Weizmann Institute of Science, Rehovot, Israel,
{amir,tamarah}@wisdom.weizmann.ac.il

2 New York University, New York,
zuck@cs.nyu.edu

Abstract. The paper studies automatic verification of liveness properties with
probability 1 over parameterized programs that include probabilistic transitions,
and proposes two novel approaches to the problem. The first approach is based on
a Planner that occasionally determines the outcome of a finite sequence of "ran­
dom" choices, while the other random choices are performed non-deterministical­
ly. Using a Planner, a probabilistic protocol can be treated just like a non-probabil­
istic one and verified as such. The second approach is based on 7-faimess, a
notion of fairness that is sound and complete for verifying simple temporal prop­
erties (whose only temporal operators are <) and 0) over finite-state systems.
The paper presents a symbolic model checker based on 7-faimess. We then show
how the network invariant approach can be adapted to accommodate probabilistic
protocols. The utility of the Planner approach is demonstrated on a probabilistic
mutual exclusion protocol. The utility of the approach of 7-faimess with network
invariants is demonstrated on Lehman and Rabin's Courteous Philosophers algo­
rithm.

1 Introduction

Probabilistic elements have been introduced into concurrent systems in the early 1980s
to provide solutions (with high probability) to problems that do not have deterministic
solutions. Among the pioneers of probabilistic protocols were ([LR81, Rab82]). One
of the most challenging problems in the study of probabilistic protocols has been their
formal verification. While methodologies for proving safety (invariance) properties still
hold for probabilistic protocols, formal verification of their liveness properties has been,
and still is, a challenge. The main difficulty stems from the two types of nondeterminism
that occur in such programs: Their asynchronous execution, that assumes a potentially
adversarial (though somewhat fair) scheduler, and the nondeterminism associated with
the probabilistic actions, that assumes an even-handed coin-tosser.

It had been realized that if one only wants to prove that a certain property is P-valid,
i.e., holds with probability 1 over all executions of a system, this can be accomplished,

* This research was supported in part by ONR grantN00014-99-1-0131, and the John von Neu­
mann Minerva Center for Verification of Reactive Systems.

A.O. Gordon (Ed.): FOSSACS 2003, LNCS 2620, pp. 87-102, 2003.
© Springer-Verlag Berlin Heidelberg 2003

88 Tamarah Arons, Amir Pnueli, and Lenore Zuck

for finite-state systems, in a manner that is completely independent of the precise prob­
abilities. Decidability of P-validity had been first established in [HSP82] for termina­
tion properties over finite-state systems, using a methodology that is graph-theoretic
in nature. The work in [PZ86b] extends the [HSP82] method and presents deductive
proof rules for proving P-validity for termination properties of finite-state program. The
work in [PZ93] presents sound and complete methodology for establishing P-validity
of general temporal properties over probabilistic systems, and [VW86, PZ93] describe
explicit-state model checking procedures for the finite-state case.

The emerging interest in embedded systems brought forth a surge of research in
automatic verification of parameterized systems, that, having unbounded number of
states, are not easily amenable to model checking techniques. In fact, verification of
such systems is known to be undecidable [AK86]. Much of the recent research has been
devoted to identifying conditions that enable automatic verification of such systems,
and abstraction tools to facilitate the task (e.g., [KP00, APR+o1, EN95, EN96, EK00,
KPSZ02].)

One of the promising approaches to the uniform verification of parameterized sys­
tems is the method of network invariants, first mentioned in [BCG86, SG89], further
developed in [WL89] (who also coined the name "network invariant"), and elaborated
in [KM95] into a working method. In [KPO0, KPSZ02] we extended the approach by
using a notion of abstraction that takes into account fairness properties. The approach
was developed into a working method and implemented on the Weizmann Institute
Temporal Logic Verifier TLV [PS96].

Another promising approach to the uniform verification of parameterized systems
is the method of counter abstraction: Given a parameterized system with finitely many
local states, a concrete state is abstracted by counting, for each possible local state, the
minimum between 2 and the number of processes with that local state. Traditionally,
counter abstraction is used for proving safety properties of parameterized systems (e.g.,
[Lub84].) More recently ([BLS0l, PXZ02]) it was applied also to the verification of
liveness properties; [PXZ02] employs explicit abstraction of fairness requirements.

Since many of the probabilistic protocols that have been proposed and studied (e.g.,
[LR81, Rab82, CLP84]) are parameterized, a naturally arising question is whether we
can combine automatic verification tools of parameterized systems with those of prob­
abilistic ones.

In this paper we propose two novel approaches to the problem. The first is based
on Planners and the second on the notion of "(-fairness introduce in [ZPK02]. When
activated, a planner pre-determines the results of a the next k consecutive "random"
choices, allowing these next choices to be performed in a completely non-deterministic
manner. The approach is sound for finite-state systems: if there is a planner such that a
temporal property holds over all computations of the (non-probabilistic) program that
activates the planner infinitely often, then the property is P-valid. To deal with param­
eterized systems, we abstract a version of the system which activates the planner in­
finitely many times.

The notion of "(-fairness is a notion of fairness that is sound and complete for
verifying simple temporal properties (whose only temporal operators are <> andO)
over finite-state systems. We devised a symbolic model checking algorithm based on

Parameterized Verification by Probabilistic Abstraction 89

','-fairness that automatically verifies simple temporal properties of finite-state systems.
The algorithm was implemented using TLV. We also extended the network invariant
method to apply to ','-fairness, obtaining a method for verifying P-validity over param­
eterized systems.

Whereas we consider only P-validity, the PRISM probabilistic model checker
[KNP02], based on Markov chains and processes, allows the user to verify that a prop­
erty holds with arbitrary probability, and not just probability 1. However, PRISM does
not support the uniform verification of parameterized systems, but rather the verification
of individual system configurations. Thus, while PRISM was used to automatically ver­
ify the [PZ86b] mutual exclusion protocol for N = 10, we (in Section 5) automatically
verify it for every N > 1.

The paper is organized as follows: In Section 2 we describe our formal model,
probabilistic discrete systems (PDS), which is a fair discrete system augmented with
probabilistic requirements. We then define the notion of P-validity over PDSs. We also
briefly describe the programming language (SPL augmented with probabilistic goto
statements) that we use in our examples and its relation to PDS. In Section 3 we intro­
duce our two new methods for proving P-validity over finite-state systems: The Planner
approach, and ','-fairness. We also introduce SYMPMC, the symbolic model checker
based on ','-fairness. In Section 4 we describe our model for (fully symmetric) parame­
terized systems, the method of counter abstraction, and the method of network invari­
ants extended to deal with ','-fairness. Section 5 contains two examples: An automatic
P-validity proof of the liveness property of parameterized probabilistic mutual exclu­
sion algorithm [PZ86b] that uses a Planner combined with counter-abstraction, and an
automatic proof of P-validity of the individual liveness of the Courteous Philosophers
algorithm [LR81] using SYMPMC and Network Invariants. The mutual exclusion ex­
ample is, to our knowledge, the first formal and automatic verification of this protocol
(and protocols similar to it.) The Courteous Philosopher example was proven before in
[KPSZ02]. However, there we converted the protocol to a non-probabilistic one with
compassion requirements, that had to be devised manually and checked separately, and
only then applied the network invariant abstraction. Here the abstraction is from a prob­
abilistic, into a probabilistic, protocol. The advantage of this method is that it does not
require the user to compile the list of compassion requirements, nor for the compas­
sion requirements to be checked. Since checking the probabilistic requirements directly
is more efficient than checking multiple compassion requirements, the run times are
significantly faster (speedups of 50 to 90 percent.) We conclude in Section 6.

2 The Framework

As a computational model for reactive systems we take the model of fair discrete sys­
tem (FDS) [KP00], which is a slight variation on the model of fair transition system
[MP95], and add probabilistic requirements that describe the outcomes of probabilistic
selections. We first describe the formal model and the notion of P-validity-validity
with probability 1. We then briefly describe an a simple programming language that
allows for probabilistic selections.

90 Tamarah Arons, Amir Pnueli, and Lenore Zuck

2.1 Probabilistic Discrete Systems

In the systems we are dealing with, all probabilities are bounded from below. In addi­
tion, the only properties we are concerned with are temporal formulae which hold with
probability 1. For simplicity of presentation, we assume that all probabilistic choices
are binary with equal probabilities. These restrictions can be easily removed without
impairing the results or methods presented in this paper.

A probabilistic discrete system (PDS) S : (V, 8, p, P, :T, C) consists of the follow­
ing components:

• V: A finite set of typed system variables, containing data and control variables. A
state s is an assignment of type-compatible values to the system variables V. For
a set of variables U ~ V, we denote by s [U] the set of values assigned by state s
to the variables U. The set of states over V is denoted by E. We assume that E is
finite.

• 8: An initial condition - an assertion (first-order state formula) characterizing the
initial states.

• p: A transition relation - an assertion p(V, V'), relating the values V of the vari­
ables in states E E to the values V' in a p-successor states' E E.

• P: A finite set of probabilistic selections, each is a triplet (r, t1, t2) where r, t1 and
t2 are assertions. Each such triplet denotes that t1 - and t2-states are the possible
outcomes of a probabilistic transition originating at r-states. We require that for
every s and s' such that s' is a p-successor of s, there is at most one probabilistic
selection (r, ti, t2) E P and one i E {1, 2} such that s is an r-state and s' is
a ti-state. Thus, given two states, there is at most a single choice out of a single
probabilistic selection that can lead from one to the other.

• :T: A set of justice (weak fairness) requirements, each given as an assertion. They
guarantee that every computation has infinitely many J -states, for every J E :T.

• C: A set of compassion (strong fairness) requirements, each is a pair of assertions.
They guarantee that every computation has either finitely many p-states or infinitely
many q-states, for every (p, q) E C.

We require that every state s E E has some transition enabled on it. This is often en­
sured by requiring p to include the disjunct V = V' which represents the idle transition.

Let S be an PDS for which the above components have been identified. We define
a computation tree of S to be an infinite tree whose nodes are labeled by E defined as
follows:

• Initiality: The root of the tree is labeled by an initial state, i.e., by a 8-state.
• Consecution: Consider a node n labeled by a state s. Then one of the following

holds:
1. n has two children, n1 and n2, labeled by s1 and s2 respectively, such that

for some (r, t1, t2) E P, s is an r-state, and s1 and s2 are t1- and t2-states
respectively.

2. n has a single child n' labeled by s', such that s' is a p-successor of s and for
no (r, t1, t2) E Pis it the case thats is an r-state ands' is a ti-state for some
i E {1, 2}.

Parameterized Verification by Probabilistic Abstraction 91

Consider an infinite path 1r : s0 , s 1 , ... in a computation tree. The path 1r is called just
if it contains infinitely many occurrences of J-states for each J E :T. Path 1r is called
compassionate if, for each (p, q) E C, 1r contains only finitely many occurrences of
p-states or 1r contains infinitely many occurrences of q-states. The path 1r is called fair
if it is both just and compassionate.

A computation tree induces a probability measure over all the infinite paths that
can be traced in the tree, the edges leading from a node with two children have each
probability 0.5, and the others have probability 1. We say that a computation tree is ad­
missible if the measure of fair paths in it is 1. Following [PZ93], we say that a temporal
property r.p is P-valid over a computation tree if the measure of paths in the tree that sat­
isfy r.p is 1. (See [PZ93] for a detailed description and definition of the measure space.)
Similarly, r.p is P-valid over the PDS S if it is P-valid over every admissible computation
tree of S.

Note that when S is non-probabilistic, that is, when P is empty, then the notion of
P-validity over S coincides with the usual notion of validity over S.

2.2 Probabilistic SPL

All our concrete examples are given in SPL (Simple Programming Language), which is
used to represent concurrent programs (e.g., [MP95, MAB+94]). Every SPL program
can be compiled into a PDS in a straightforward manner. In particular, every statement
in an SPL program contributes a disjunct to the transition relation. For example, the as­
signment statement "fo: x := y + 1; £1: "can be executed when control is at location
fo. When executed, it assigns the value of y + 1 to the variable x while control moves
from £0 to f 1 . This statement contributes to the transition relation, in the PDS that de­
scribes the program, the disjunct aLfo I\ at'_f1 I\ x' = y + l /\ pres(V - { x, 1r})
(where for a set U ~ V, pres(U) = /\uEU u' = u) and nothing to the probabilis­
tic requirements. The predicates aLfo and at'_f1 stand, respectively, for the assertions
1r = 0 and 1r' = 1, where 1r is the control variable denoting the current location within
the process to which the statement belongs (program counter).

In order to represent probabilistic selections, we augment SPL by probabilistic goto
statements of the form

fo: pr..goto {£1, £2}

which adds the disjunct aLfo I\ (at'_f1 V at'_f2) I\ pres(V - { 1r}) to the transition
relation and the triplet (aLfo, aLf1, aLf2) to the set of probabilistic requirements.
Note that, since we allow stuttering (idling), we lose no generality by allowing only
probabilistic goto's, as opposed to more general probabilistic assignments.

3 Automatic Verification of Finite-State PDSs

Automatic verification of finite-state PDSs has been studied in numerous works e.g.,
[VW86, PZ86a, KNP02]. Here we propose two new approaches to automatic verifi­
cation of P-validity of finite-state PDSs, both amenable to dealing with parameterized
(infinite-state) systems.

92 Tamarah Arons, Amir Pnueli, and Lenore Zuck

3.1 Automatic Verification Using Planners

A planner transforms a probabilistic program Q into a non-probabilistic program QT
by pre-determining the results of a the next k consecutive "random" choices, allow­
ing these next choices to be performed in a completely non-deterministic manner. The
transformation is such that, for every temporal formula r.p over (the variables of) Q, if
r.p is valid over QT, then it is P-valid over Q. Thus, the planner transformation converts
a PDS into an FDS , and reduces P-validity into validity. The transformation is based on
the following consequence of the Borel-Cantelli lemma [Fel68]:

Let b1, ... , bk be a sequence of values, bi E {1, 2}, for some fixed k. Let a
be a computation of the program Q which makes infinitely many probabilis­
tic selections. Then, with probability 1, a contains infinitely many segments
containing precisely k probabilistic choices in which these choices follow the
pattern b1, ... , bk,

The transformation from Q to QT can be described as follows: Each probabilistic state­
ment"£: pr_goto { £1, £2}" in Q is transformed into:

if consult£ > 0

then [consult£ := consult£ - 1]
if planner£ then goto .e 1 else goto £2

else goto {£1,£2}

Thus, whenever counter consult£ is positive, the program invokes the boolean-valued
function planner£ which determined whether the program should branch to £1 or to £2.
Each such "counselled" branch decrements the counter consult£ by 1. When the counter
is 0, the branching is purely non-deterministic. The function planner£ can refer to all
available variables. Its particular form depends on the property r.p, and it is up to the
user of this methodology to design a planner appropriate for the property at hand. This
may require some ingenuity and a thorough understanding of the analyzed program.

Finally, we augment the system with a parallel process, the activator, that non­
deterministically sets all consult£ variables to a constant value k. We equip this process
with a justice requirement that guarantees that it replenishes the counters (activates the
planners) infinitely many times. A proof for the soundness of the method is in Ap­
pendix A.

Example 1. Consider Program up-down in Fig. 1 in which two processes increment and
decrement y E [0 .. 4].

To establish the P-validity of r.p : D ()(y = 0), we can take k = 4 and define
both planner£0 and planner mo to always yield 0, thus consistently choosing the second
(decrementing) mode.

3.2 SYMPMC: A Symbolic Probabilistic Model Checker

While the planner strategy is applicable for many systems, there are cases of parame­
terized systems (defined in Section 4) for which it cannot be applied. (See Section 5.2

�
�������

�
�����

�
�����

�
�������

�
���������

�
�����

�
�����

�
���������

Parameterized Verification by Probabilistic Abstraction 93

local y E [0 . .4] init 2
loop forever do

fo: pr-goto {f1,f2}
f1 :y:=min(y+l,4);

goto fa
f2: y := max(y-1,0);

goto fa

-Pi-

II

loop forever do
mo: pr-goto {m1,m2}
m1 :y:=min(y+l,4);

goto mo
m2: y := max(y-1,0);

goto mo
-H-

Fig.1. Program up-down

for an example.) As an alternative method we describe SYMPMC, a symbolic model
checker that verifies P-validity of simple temporal properties-properties whose only
temporal operators are O and D-over finite state PDSs.

The motivation leading to S YMPMC has been the idea that, since all the probabilities
of a finite PDS are bounded from below, the definition of P-validity that directly deals
with measure spaces can be replaced with some simpler notions of fairness. This was
first done in [Pnu83], where extreme1aimess was introduced, a notion offairness that is
sound and incomplete for proving P-validity. The work in [PZ93] introduced a-fairness,
which was shown to be sound and complete. The work there also introduced an explicit­
state model checker for P-validity that is based on a-fairness. The main drawback of
a-fairness is that it requires fairness with respect to every past formula. From the model
checking procedure of [PZ93] it follows that the only past formulae really needed are
those that appear in the normal-form of the property to be verified. However, obtaining
the normal-form is non-elementary in the size of the property.

In [ZPK02] we observed that a consequence of the model checking procedure of
[PZ93] is that replacing a-fairness by the simpler -y-fairness results in a notion of fair­
ness that is sound and complete for proving simple properties over finite-state programs.
The definition of')' fairness is as follows:

Assume a PDS S : (V, 8, p, P, :T, C) and a path 1r = so, s1, ... in a computation
tree of S. Let (r, t1, t2) be a probabilistic selection. We say that mode (r, ti), j E {1, 2}
is taken at position i ~ 0 of 7r if Si F r and si+1 F ti. We say that the selection
(r, t1, t2) is taken at position i if either (r, t1) or (r, t2) is taken at i. Lets be a state
of the system. We call i an s-position if Si = s. We say that 1r is -y-fair, if for each
states (and there are only finitely many distinct states) and each probabilistic selection
(r, ti, t2), either there are only finitely s-positions from which (r, ti, t2) is taken, orfor
every i = 1, 2, there are infinitely many s-positions from which (r, ti) is taken. The
following corollary states that the replacement of probability by -y-fairness is sound and
complete with respect to P-validity of simple formulae. It is an immediate consequence
of [PZ86a].

Corollary 1. For every finite-state PDS S and simple formula r.p, r.p is P-valid over S
iJf a F r.p for every ')'-fair computation

94 Tamarah Arons, Amir Pnueli, and Lenore Zuck

Based on Corollary 1, the explicit-state model checking procedure of [PZ93], and the
non-probabilistic feasibility algorithm of [KPR98], we introduce SYMPMC, a symbolic
model checker for verifying P-validity of simple properties over finite-state PDSs.

The core of SYMPMC is an algorithm for simple response formulae (formulae of
the form D (a ----+ <> b), where a and b are assertions) over a finite state PDS. This
algorithm is presented in Fig. 2. It checks the P-validity of <p : D (a ----+ <> b) for
assertions a and b. The algorithm returns 0 iff cp is ')'-valid over S, i.e., if <p holds over
all ')'-fair computations of S. SYMPMC had been implemented using TLV [PS96].

ALGORITHM RESPONSE(S)
var:

R: relation ini t IPI n (11,bll x 11,bll l
new: predicate init (IIBII O IIPII*) n 11,bll
oldR: relation init 0
o 1 d : predicate ini t 0 where for a probabilistic requirement

R= (r,t1,h),
while (new# old V R # oldR) do

old := new
oldR := R
new:= new n (Ro new)
R :=Rn (new x new)
foreach J E :1 do

new : = new n R*o IIJII
R:= R n (new x new)

foreach (p, q) E C do

new : = (new - IIPII l U
(new n R*o llqlll

R :=Rn (new x new)
foreach R E P do

treat-P-requirement(R)
endwhile
return

treat-P-req(R):
var:

qpred: predicate ini t E
someq: predicate ini t 0
pbad: predicate

for j =1 to 2 do

qpred := qpred n (Ro lltilll
someq : = someq U llti II
pbad : = llrll - qpred
R := Rn

[(pbad x (E - someq))
U ((E - pbad) xE) l

(IIBII O IIPII*) n (llall - llblll n (R*o new)

Fig. 2. Algorithm RESPONSE for model-checking the P-validity of <.p : D (a ----+ <> b)

The main difference between the algorithm in Fig. 2 and its counterpart in [KPR98] is
the treatment of probabilistic requirements (the third "foreach" in the while loop).
For each probabilistic requirement R = (r, ti, t2), the procedure treat-P-req (R)
removes from the graph all states that are not ')'-fair with respect to R.

In [APZ03] we prove:

Theorem 1. For an input PDS S, Algorithm RESPONSE terminates. For assertions a
and b, RESPONSE returns V such that <p = D (a ----+ <> b) is P-valid in S ijf V = 0.
By setting a and b to true, Algorithm RESPONSE can be used to check for ')'-feasibility
(whether the system has at least one ')'-fair computation). It can also be used to check the
validity of simple formulae by composing the system with temporal testers [KPR98].
Thus, SYMPMC can be used for symbolic model checking of whether a simple temporal
formula is P-valid over a finite state program.

Parameterized Verification by Probabilistic Abstraction 95

4 Probabilistic Parameterized Systems

In this section we tum to probabilistic parameterized systems and their automatic veri­
fication. We first define the systems that are the scope of this paper and briefly discuss
their automatic verification using Planners and SYMPMC.

4.1 Parameterized Systems

We focus on probabilistic parameterized systems that consist of multiple copies of N
identical finite-state SPL processes. For each value of N > 0, S(N), the PDS that
describes the system, is an instantiation of an PDS. Thus, such a system represents an
infinite family of systems, one for each value of N.

We are interested in properties that hold for every process in the system. Thus,
we are interested in liveness properties of the type cp, where cp is a temporal formula
referring only to variables local to a single process. The problem of parameterized ver­
ification is to show that cp is P-valid over every S(N).

4.2 Counter Abstraction

In [PXZ02] we proposed the method of counter abstraction for the verification of live­
ness properties of parameterized systems. A brief overview of the approach for non­
probabilistic systems is given here. For details see [PXZ02].

For simplicity of presentation, we assume that the system S (N) has a set X of
global shared variables whose size is independent of N, and the only variable local to
each process P [i] is the program counter 1r [i]. Each global state s of the system S (N)
is then an (N + IXl)-tuple, describing the location of each process and the values of
each x E X. Assume that the program counters range over the set { 0 ... L - l}.

We define the counter abstraction of states by an (L + IXl)-tuple, such that each
one of the first ILi elements is the counter of the corresponding location, where for a
location£, the counter of£, denoted by K,£, is defined by:

there are no processes in location f,
there is exactly one process in location £
there are two or more processes in location £

Properties are similarly abstracted. Thus, for example, the property :3i : aL££[i] is
abstracted to /'i,£ > 0. Denote by a(cp) the counter-abstraction of the property cp.

As explained in [PXZ02], in order to be able to prove liveness properties it is nec­
essary to carefully abstract the fairness properties. Once this is done, we obtain the
abstracted system a(S), and can show that for every liveness property cp, the validity of
a(cp) over a(S) implies the validity of cp over S(N) for every N > l.

Suppose we have a probabilistic parameterized system S (N) and a temporal prop­
erty cp we wish to show is P-valid. We can apply a Planner transformation, obtain­
ing a non-probabilistic parameterized system, to which we can then apply counter­
abstraction, which will reduce it to an unparameterized finite-state system. If model

96 Tamarah Arons, Amir Pnueli, and Lenore Zuck

checking reveals that a(<p) is valid for this system, we can safely conclude that <p is
P-valid over S(N).

It is important to note that counter-abstraction can be obtained in a fully automatic
way. Obviously, model checking techniques can easily check whether an abstracted
system satisfies abstract properties. The only step in the process that requires user in­
tervention (and ingenuity) is in crafting the functions used by the Planner.

In Section 5 .1 we demonstrate the power of the approach by verifying the liveness
of a probabilistic N-process mutual exclusion algorithm. Previous attempts to verify
the same protocol were either manual [PZ86a] or automatic for N::; 10 [KNPO0].

4.3 Network Invariants

The method of network invariants was first mentioned in [BCG86, SG89], further de­
veloped in [WL89] (who also coined the name "network invariant"), and elaborated in
[KM95] into a working method. The formulation here follows [KP00] and [KPSZ02],
which take into account the fairness properties of the compared systems and support
proofs of liveness properties.

In order to apply the method to PDSs, it is necessary to refine the model, so that it
allows for "environment" actions. Roughly speaking, the set of variables includes a spe­
cial subset consisting of the variables owned by the system. The system then takes steps,
alternating between environment steps that can change all but the owned variables.

It is also necessary to define the observable behavior of a system. To that end, the set
of variables is assumed to includes a set of observables-variables that are externally
observable. The observables are denoted by 0.

A 'Y-observation of S is a projection of a 'Y-fair computation of S onto 0. We
denote by Obs7 (S) the set of all "f-Observations of S. Systems Sc and SA are said to
be comparable if they have the same sets of observable variables,. System SA, is said to
be a 'Y-abstraction of the comparable system Sc, denoted Sc [;;;7 SA, if Obs7 (Sc) c:;;;

Obs7 (SA), The abstraction relation is reflexive, transitive, and compositional, that is,
whenever Sc [;;;7 SA then (ScllQ) [:7 (SAIIQ). It is also property restricting, that is,
if Sc [;;;7 SA then SA F'Y p implies that Sc F'Y p.

Suppose we are given two comparable systems, a concrete 1) a and an abstract
1) A , and wish to establish that 1) a [;;;7 1) A • Without loss of generality, we assume
that Va n VA = 0, and that there exists a 1-1 correspondence between the concrete
observables O a and the abstract observables O A.

In Fig. 3, we present a rule for proving that SA 'Y-abstracts Sa. The rule assumes the
identification of an abstraction mapping a : (U = £°'(Va)) which assigns expressions
over the concrete variables to some of the abstract variables U c:;;; VA . For an abstract
assertion <p, we denote by <.p[a] the assertion obtained by replacing the variables in U
by their concrete expressions.
The Abstraction Rule resembles the abstraction rule of [KPSZ02], with the addition of
Premise A6. This premise must, in general, be verified for every assignment U to the
abstract variables VA, The following condition suffices to guarantee premise A6 and is
met in many abstractions:

For every abstract requirement (r, ti, t2) E PA, there exists a concrete require­
ment (r0 , tf, tf) E Pa, where r[a] = r0 , t1[a] = tf and t2[a] = tf.

Parameterized Verification by Probabilistic Abstraction 97

Al. Ba --+ :WA : e A [o:]
A2. D 0 F D(P0 --+ :3V~: PA[o:l[o:'])
A3. D 0 F D(o: --+ 0 0 = 0 A)

A4. D 0 F DO J[o:], for every J E :TA

AS. D O F D O p[o:] --+ D O q[o:], for every (p, q) E CA
A6. Da F D 0((VA = U)[o:] I\ r[o:] /\ 0 v~=l ti[o:]) --+

/\~=l D O((VA = U)[o:] I\ r[o:] /\ Qti[o:]),
for every (r, t1, t1) EPA and every assignment U over VA

Fig. 3. Abstraction Rule

Given a parameterized system S(N), the network invariant method calls for devising
a network invariant I - a finite state PDS, intended to provide an abstraction for
the (open) parallel composition of any k processes of the parameterized system. The
method then calls for confirming that I is indeed an abstraction, and model checking
that when composed with a single process it satisfies a property of that process. The
first step, that of designing I, calls for some ingenuity of the verifier. As we showed
in [KPSZ02], the task can be often quite simple. The third step can be achieved us­
ing SYMPMC. The second step, confirming that I is indeed a good abstraction, calls
for establishing the two ')'-abstractions (P[l] II··· IIP[m]) ~'Y I and (IIIP[i]) ~'Y I,
where mis a small constant (usually in the range [1..3]) independent of N, and P[i] is
a generic copy of the system's process.

5 Examples

In this section we present two examples, one for each of the methodologies we de­
scribed in the previous section. To demonstrate the power of the "Planner and Counter
abstraction" approach, we take the probabilistic mutual exclusion protocol of [PZ86b].
To demonstrate the power of the "SYMPMC and network invariant" approach, we take
the Lehman and Rabin's Courteous Philosopher protocol [LR81].

5.1 Verifying Probabilistic Mutual Exclusion Using a Planner

A flow diagram of the protocol, as well as its SPL code, are in Fig. 4. The usual "trying
section" consists of two parts: A "waiting room" in which a process waits for a "door"
to open in order to be admitted to the "competition", and the competition. Once the
door closes, no new process can enter the competition. Processes in the competition flip
coins: Losers, those who flip tails, wait until there are no winners. A process that flips
heads, and finds out that it is the only one to have done so (and there are no processes in
the critical or exit region), enters the critical section. Otherwise, it waits until all winners
join it, and they all proceed to flip coins again. Once a process leaves the critical region,
it examines if there are processes in the competition. If there are, it just goes back to its
idle state. Otherwise, it opens the door and waits until all processes in the waiting room
enter the competition before it goes back to the idle state.

98 Tamarah Arons, Amir Pnueli, and Lenore Zuck

In the original protocol each process has a variable y that can take on eight values,
according to the location(s) of the process. We omit it here, and instead present a version
that includes locations only, and is amenable to counter-abstraction. Each process i can
perform, in a single atomic step, a test consisting of a boolean combination of formulae
of the form :lj =/- i: 1r[j] EL for L ~ [0 .. 15]. We denote such a test by some EL, and
its negation by none E L. The only probabilistic transition is at location C4 .

Idle

competition
empty

in n : integer where n 2'. 2
n

II P[i] ::
i=l

loop forever do

Co : non-critical
C1 : skip
C2 : await none E { 4 .. 13} V some E {14, 15}
C3: skip
C4 : pr _goto { C5, Cs}
C5 : if none E {5, 6, 10 .. 15} then goto C10
C6 : skip
C1 : await none E {5, 6, 10 .. 15}

and then goto C4
Cs : await none E {4 .. 7, 10 .. 15}
Cg : gotoC4
C 10 : Critical
C11: if none E {4 .. 9} gotoC13
C12 : goto Co
C13 : skip
C14 : await none E {2, 3}
C15 : goto Co

Fig. 4. A Probabilistic Mutual Exclusion Protocol

The mutual exclusion property of the protocol, stating that it is never the case that
two or more processes are in C10 at the same time, is easy to model check, for example
using the methodology of [APR+Ol] or counter-abstraction. The liveness property of
the protocol is Vi: 1r[i] = 1---. <) (1r[i] = 10), and we wish to show its P-validity for
every N 2'. 2.

We take k = 1 and define a planner planner 4 which determines the result of the
next probabilistic choice at C4 whenever activated. This planner is defined by

planner4 : none E {5, 6, 10 .. 15}

This planner directs the next branch to C5 if there is no process in any of the locations
H = {5, 6, 10 .. 15}, and to C6 otherwise.

The intuition behind this planner is that a process can enter the critical section, from
location C5, only if there are no other processes in H-locations. When there are pro-

Parameterized Verification by Probabilistic Abstraction 99

cesses in H-locations, we want to reduce the number of processes that are likely to join
them, which planner 4 accomplishes by returning "O" and thus forcing processes from
£4 to enter £s. When there are no processes in H-locations, we want the first process
that can to enter £5, so that it can enter the critical section. Thus, planner4 returns "1"
in such cases. This planner design can obviously be counter abstracted, hence, we suc­
ceeded to use TLV to establish the livelock-freedomproperty of the protocol given by:
D(:3i: 7r[i] = 1-+ 0(:3i: 7r[i] = 10)).

Once livelock freedom has been established, it is the structure of the protocol that
guarantees individual liveness, by restricting the number of times a process in the com­
petition can overtake another - once a process i is trying to access the critical section
(enters £2 .. 9), every other process can enter the critical section at most twice before i
does, which trivially implies the individual accessibility or the protocol 3•

We also established the individual liveness property of the protocol directly us­
ing TLV and "counter abstraction save one" ([PXZ02]) using the same planner. See
http:/lwww.cs.nyu.edu/zucklpubs/pme for TLV code.

5.2 Verifying the Courteous Philosophers Using SYMPMC

The success of the planner strategy in parameterized systems depends on having a single
strategy for random draws that will allow every process to achieve its liveness property.
The [LR81] Courteous Philosophers Algorithm is an example where we cannot use a
planner: any planner strategy that allows one philosopher to eat may preclude its neigh­
bours from eating. Hence, to automatically verify The [LR81] Courteous Philosophers
Algorithm, we use the network invariant approach.

The network invariant we obtained is essentially the one derived in [KPSZ02] and
we omit it here for space reasons. There is, however, a crucial difference: In [KPSZ02]
we replaced the probabilistic requirements by compassion requirements. Here, with
the aid of the revised Abstraction Rule and SYMPMC, we could work directly with
','-fairness and did not need to (manually) devise adequate compassion requirements
replacing the probabilistic choices. Thus, the resulting network invariant is significantly
simpler and execution time is much shorter.

6 Conclusion and Future Work

The paper deals with the problem of automatic proof of P-validity of liveness proper­
ties over parameterized systems. We started with a discussion of the non-parameterized
case, and described two new approaches to the problem: Planners that convert a proba­
bilistic system into a non-probabilistic one and allow one to treat P-validity as regular
validity, and model checking over ','-fair computations, which is sound and complete
for simple temporal properties. We then outlined the two approaches of automatic ver­
ification of liveness properties of parameterized systems, counter abstraction and net­
work invariants, and showed how the network invariant method can be combined with

3 Bounded overtaking property is a safety property and thus it can be established by ignoring
the probabilistic transitions of the protocol.

100 Tamarah Arons, Amir Pnueli, and Lenore Zuck

S YMPMC. We demonstrated our techniques by providing automatic proofs for two non­
trivial protocols. The first by Planner & counter-abstraction, the second by SYMPMC &
(extended) network invariants.

Strictly speaking, neither method combination we used in our examples is fully au­

tomatic, they both require user input. On one hand the design of a Planner or a Network
Invariant may require user ingenuity; on the other hand, most systems are verified by
their own designers, who have a pretty good intuition about the appropriate Planner/net­
work invariant.

We are currently working on extending counter-abstraction with "}'-fairness. If suc­
cessful, this will provide a fully automatic proofs of P-validity of parameterized system
for the cases that the method of counter-abstraction is applicable.

References

[AK86] K. R. Apt and D. Kozen. Limits for automatic program verification of finite-state
concurrent systems. Information Processing Letters, 22(6), 1986.

[APR+0l] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. In Proc. 13th Intl. Conference on
Computer Aided Verification (CAV'0l), volume 2102 ojLect. Notes in Comp. Sci.,
Springer-Verlag, pages 221-234, 2001.

[APZ03] T. Arons, A. Pnueli, and L. Zuck. Verification by probabilistic abstraction. Weiz­
mann Institute of Science Teclmical Report, 2003.

[BCG86] M.C. Browne, E.M. Clarke, and 0. Grumberg. Reasoning about networks with
many finite state processes. In Proc. 5th ACM Symp. Prine. of Dist. Comp., pages
240--248, 1986.

[BLS0l] K. Baukus, Y. Lakhnesche, and K. Stahl. Verification of parameterized protocols.
Journal of Universal Computer Science, 7(2):141-158, 2001.

[CLP84] S. Cohen, D. Lehmann, and A. Pnueli. Symmetric and economical solutions to the
mutual exclusion problem in a distributed system. Theor: Comp. Sci., 34:215-225,
1984.

[EK00] E.A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In
17th International Conference on Automated Deduction (CADE-17), pages 236--
255, 2000.

[EN95] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In Proc. 22th ACM
Conj. on Principles of Programming Languages, POPL'95, San Francisco, 1995.

[EN96] E.A. Emerson and K.S. Namjoshi. Automatic verification of parameterized syn­
chronous systems. In R. Alur and T. Benzinger, editors, Proc. 8th Intl. Conference
on Computer Aided Verification (CAV'96), volume 1102 of Leet. Notes in Comp.
Sci., Springer-Verlag, 1996.

[Fel68] W. Feller. An Introduction to Probability Theory and its Applicaitons, volume 1.
John Wiley & Sons, 3 edition, 1968.

[HSP82] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent pro­
grams. In Proc. 9th ACM Symp. Prine. of Prog. Lang., pages 1-6, 1982.

[KM95] R.P. Kurshan and K.L. McMillan. A structural induction theorem for processes.
Information and Computation, 117:1-11, 1995.

[KNPO0] M. Kwiatkowska, G. Norman, and D. Parker. Verifying randomized distributed
algorithms with prism. In Proc. of the Workshop on Advances in Verification
(WAVe) 2000. 2000.

Parameterized Verification by Probabilistic Abstraction 101

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model
checker. In TOOLS 2002, volume 2324 of LNCS, 2002.

[KPOO] Y. Kesten and A. Pnueli. Control and data abstractions: The cornerstones of prac­
tical formal verification. Software Tools for Technology Transfer, 4(2):328-342,
2000.

[KPR98] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal
logic specifications. In K.G. Larsen, S. Skyum, and G. Winskel, editors, Proc. 25th
Int. Colloq. Aut. Lang. Prog., volume 1443 of LNCS, pages 1-16. Springer-Verlag,
1998.

[KPSZ02] Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in action. In
Proceedings of Concur'02, volume 2421 of LNCS. Springer-Verlag, 2002.

[LR81] D. Lehmann and M.O. Rabin. On the advantages of free choice: A symmetric and
fully distibuted solution to the dining philosophers problem (exended abstract). In
Proc. 8th ACM Symp. Prine. of Prog. Lang., pages 133-138, 1981.

[Lub84] B.D. Lubachevsky. An approach to automating the verification of compact parallel
coordination programs. Acta Infromatica, 21, 1984.

[MAB+94] Z. Manna, A. Anuchitanukul, N. Bj!llrner, A. Browne, E. Chang, M. Col6n, L. De
Alfaro, H. Devarajan, H. Sipma, and T.E. Uribe. STeP: The Stanford Temporal
Prover. Technical Report STAN-CS-TR-94-1518, Dept. of Comp. Sci., Stanford
University, Stanford, California, 1994.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

[Pnu83] A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proc.
I 5th ACM Symp. Theory of Comp., pages 278-290, 1983.

[PS96] A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic
verification. In R. Alur and T. Benzinger, editors, Proc. 8th Intl. Conference on
Computer Aided Verification (CAV'96), volume I 102 ofLect. Notes in Comp. Sci.,
Springer-Verlag, pages 184-195, 1996.

[PXZ02] A. Pnueli, J. Xu, and L. Zuck. The (0, 1, oo) counter abstraction. In Proc. 14th Intl.
Conference on Computer Aided Verification (CAV'02), volume 2404 ojLect. Notes
in Comp. Sci., Springer-Verlag, 2002. http://www.cs.nyu.edwzuck/pubs/cav02.ps.

[PZ86a] A. Pnueli and L. Zuck. Probablistic verification by tableaux. In Proc. First IEEE
Symp. Logic in Comp. Sci., pages 322-331, 1986.

[PZ86b] A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis­
tributed Computing, 1:53-72, 1986.

[PZ93] A. Pnueli and L.D. Zuck. Probabilistic verification. Information and Computation,
103(1):1-29, 1993.

[Rab82] M.O. Rabin. The choice coordination problem. Acta Informatica, 17:121-134,
1982.

[SG89] Z. Shtadler and 0. Grum.berg. Network grammars, communication behaviors and
automatic verification. In J. Sifakis, editor, Automatic Verification Methods for
Finite State Systems, volume 407 of LNCS, pages 151-165. Springer-Verlag, 1989.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. First IEEE Symp. Logic in Comp. Sci., pages 332-344, 1986.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with
network invariants. In J. Sifakis, editor, Automatic Verification Methods for Finite
State Systems, volume 407 of LNCS, pages 68-80. Springer-Verlag, 1989.

[ZPK02] L. Zuck, A. Pnueli, and Y. Kesten. Automatic verification of probabilistic free
choice. In Proc. of the 3rd workshop on Verification, Model Checking, and Abstract
Interpretation, volume 2294 of LNCS, 2002.

	Parameterized Verification by ProbabilisticAbstraction
	Introduction
	The Framework
	Probabilistic Discrete Systems
	Probabilistic SPL

	Automatic Verification of Finite-State {{sc pds}}s
	Automatic Verification Using Planners
	{sc SymPmc}: A Symbolic Probabilistic Model Checker

	Probabilistic Parameterized Systems
	Parameterized Systems
	Counter Abstraction
	Network Invariants

	Examples
	Verifying Probabilistic Mutual Exclusion Using a Planner
	Verifying the Courteous Philosophers Using {sc SymPmc}

	Conclusion and Future Work
	Soundness of the Planner Approach

