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Abstract. The paper studies automatic verification of liveness properties with 
probability 1 over parameterized programs that include probabilistic transitions, 
and proposes two novel approaches to the problem. The first approach is based on 
a Planner that occasionally determines the outcome of a finite sequence of "ran­
dom" choices, while the other random choices are performed non-deterministical­
ly. Using a Planner, a probabilistic protocol can be treated just like a non-probabil­
istic one and verified as such. The second approach is based on 7-faimess, a 
notion of fairness that is sound and complete for verifying simple temporal prop­
erties (whose only temporal operators are <) and 0) over finite-state systems. 
The paper presents a symbolic model checker based on 7-faimess. We then show 
how the network invariant approach can be adapted to accommodate probabilistic 
protocols. The utility of the Planner approach is demonstrated on a probabilistic 
mutual exclusion protocol. The utility of the approach of 7-faimess with network 
invariants is demonstrated on Lehman and Rabin's Courteous Philosophers algo­
rithm. 

1 Introduction 

Probabilistic elements have been introduced into concurrent systems in the early 1980s 
to provide solutions (with high probability) to problems that do not have deterministic 
solutions. Among the pioneers of probabilistic protocols were ([LR81, Rab82]). One 
of the most challenging problems in the study of probabilistic protocols has been their 
formal verification. While methodologies for proving safety (invariance) properties still 
hold for probabilistic protocols, formal verification of their liveness properties has been, 
and still is, a challenge. The main difficulty stems from the two types of nondeterminism 
that occur in such programs: Their asynchronous execution, that assumes a potentially 
adversarial (though somewhat fair) scheduler, and the nondeterminism associated with 
the probabilistic actions, that assumes an even-handed coin-tosser. 

It had been realized that if one only wants to prove that a certain property is P-valid, 
i.e., holds with probability 1 over all executions of a system, this can be accomplished, 
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for finite-state systems, in a manner that is completely independent of the precise prob­
abilities. Decidability of P-validity had been first established in [HSP82] for termina­
tion properties over finite-state systems, using a methodology that is graph-theoretic 
in nature. The work in [PZ86b] extends the [HSP82] method and presents deductive 
proof rules for proving P-validity for termination properties of finite-state program. The 
work in [PZ93] presents sound and complete methodology for establishing P-validity 
of general temporal properties over probabilistic systems, and [VW86, PZ93] describe 
explicit-state model checking procedures for the finite-state case. 

The emerging interest in embedded systems brought forth a surge of research in 
automatic verification of parameterized systems, that, having unbounded number of 
states, are not easily amenable to model checking techniques. In fact, verification of 
such systems is known to be undecidable [AK86]. Much of the recent research has been 
devoted to identifying conditions that enable automatic verification of such systems, 
and abstraction tools to facilitate the task (e.g., [KP00, APR+o1, EN95, EN96, EK00, 
KPSZ02].) 

One of the promising approaches to the uniform verification of parameterized sys­
tems is the method of network invariants, first mentioned in [BCG86, SG89], further 
developed in [WL89] (who also coined the name "network invariant"), and elaborated 
in [KM95] into a working method. In [KPO0, KPSZ02] we extended the approach by 
using a notion of abstraction that takes into account fairness properties. The approach 
was developed into a working method and implemented on the Weizmann Institute 
Temporal Logic Verifier TLV [PS96]. 

Another promising approach to the uniform verification of parameterized systems 
is the method of counter abstraction: Given a parameterized system with finitely many 
local states, a concrete state is abstracted by counting, for each possible local state, the 
minimum between 2 and the number of processes with that local state. Traditionally, 
counter abstraction is used for proving safety properties of parameterized systems (e.g., 
[Lub84].) More recently ([BLS0l, PXZ02]) it was applied also to the verification of 
liveness properties; [PXZ02] employs explicit abstraction of fairness requirements. 

Since many of the probabilistic protocols that have been proposed and studied ( e.g., 
[LR81, Rab82, CLP84]) are parameterized, a naturally arising question is whether we 
can combine automatic verification tools of parameterized systems with those of prob­
abilistic ones. 

In this paper we propose two novel approaches to the problem. The first is based 
on Planners and the second on the notion of "(-fairness introduce in [ZPK02]. When 
activated, a planner pre-determines the results of a the next k consecutive "random" 
choices, allowing these next choices to be performed in a completely non-deterministic 
manner. The approach is sound for finite-state systems: if there is a planner such that a 
temporal property holds over all computations of the (non-probabilistic) program that 
activates the planner infinitely often, then the property is P-valid. To deal with param­
eterized systems, we abstract a version of the system which activates the planner in­
finitely many times. 

The notion of "(-fairness is a notion of fairness that is sound and complete for 
verifying simple temporal properties (whose only temporal operators are <> andO ) 
over finite-state systems. We devised a symbolic model checking algorithm based on 
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','-fairness that automatically verifies simple temporal properties of finite-state systems. 
The algorithm was implemented using TLV. We also extended the network invariant 
method to apply to ','-fairness, obtaining a method for verifying P-validity over param­
eterized systems. 

Whereas we consider only P-validity, the PRISM probabilistic model checker 
[KNP02], based on Markov chains and processes, allows the user to verify that a prop­
erty holds with arbitrary probability, and not just probability 1. However, PRISM does 
not support the uniform verification of parameterized systems, but rather the verification 
of individual system configurations. Thus, while PRISM was used to automatically ver­
ify the [PZ86b] mutual exclusion protocol for N = 10, we (in Section 5) automatically 
verify it for every N > 1. 

The paper is organized as follows: In Section 2 we describe our formal model, 
probabilistic discrete systems (PDS), which is a fair discrete system augmented with 
probabilistic requirements. We then define the notion of P-validity over PDSs. We also 
briefly describe the programming language (SPL augmented with probabilistic goto 
statements) that we use in our examples and its relation to PDS. In Section 3 we intro­
duce our two new methods for proving P-validity over finite-state systems: The Planner 
approach, and ','-fairness. We also introduce SYMPMC, the symbolic model checker 
based on ','-fairness. In Section 4 we describe our model for (fully symmetric) parame­
terized systems, the method of counter abstraction, and the method of network invari­
ants extended to deal with ','-fairness. Section 5 contains two examples: An automatic 
P-validity proof of the liveness property of parameterized probabilistic mutual exclu­
sion algorithm [PZ86b] that uses a Planner combined with counter-abstraction, and an 
automatic proof of P-validity of the individual liveness of the Courteous Philosophers 
algorithm [LR81] using SYMPMC and Network Invariants. The mutual exclusion ex­
ample is, to our knowledge, the first formal and automatic verification of this protocol 
(and protocols similar to it.) The Courteous Philosopher example was proven before in 
[KPSZ02]. However, there we converted the protocol to a non-probabilistic one with 
compassion requirements, that had to be devised manually and checked separately, and 
only then applied the network invariant abstraction. Here the abstraction is from a prob­
abilistic, into a probabilistic, protocol. The advantage of this method is that it does not 
require the user to compile the list of compassion requirements, nor for the compas­
sion requirements to be checked. Since checking the probabilistic requirements directly 
is more efficient than checking multiple compassion requirements, the run times are 
significantly faster (speedups of 50 to 90 percent.) We conclude in Section 6. 

2 The Framework 

As a computational model for reactive systems we take the model of fair discrete sys­
tem (FDS) [KP00], which is a slight variation on the model of fair transition system 
[MP95], and add probabilistic requirements that describe the outcomes of probabilistic 
selections. We first describe the formal model and the notion of P-validity-validity 
with probability 1. We then briefly describe an a simple programming language that 
allows for probabilistic selections. 



90 Tamarah Arons, Amir Pnueli, and Lenore Zuck 

2.1 Probabilistic Discrete Systems 

In the systems we are dealing with, all probabilities are bounded from below. In addi­
tion, the only properties we are concerned with are temporal formulae which hold with 
probability 1. For simplicity of presentation, we assume that all probabilistic choices 
are binary with equal probabilities. These restrictions can be easily removed without 
impairing the results or methods presented in this paper. 

A probabilistic discrete system (PDS) S : (V, 8, p, P, :T, C) consists of the follow­
ing components: 

• V: A finite set of typed system variables, containing data and control variables. A 
state s is an assignment of type-compatible values to the system variables V. For 
a set of variables U ~ V, we denote by s [U] the set of values assigned by state s 
to the variables U. The set of states over V is denoted by E. We assume that E is 
finite. 

• 8: An initial condition - an assertion (first-order state formula) characterizing the 
initial states. 

• p: A transition relation - an assertion p(V, V'), relating the values V of the vari­
ables in states E E to the values V' in a p-successor states' E E. 

• P: A finite set of probabilistic selections, each is a triplet (r, t1, t2) where r, t1 and 
t2 are assertions. Each such triplet denotes that t1 - and t2-states are the possible 
outcomes of a probabilistic transition originating at r-states. We require that for 
every s and s' such that s' is a p-successor of s, there is at most one probabilistic 
selection (r, ti, t2) E P and one i E {1, 2} such that s is an r-state and s' is 
a ti-state. Thus, given two states, there is at most a single choice out of a single 
probabilistic selection that can lead from one to the other. 

• :T: A set of justice (weak fairness) requirements, each given as an assertion. They 
guarantee that every computation has infinitely many J -states, for every J E :T. 

• C: A set of compassion (strong fairness) requirements, each is a pair of assertions. 
They guarantee that every computation has either finitely many p-states or infinitely 
many q-states, for every (p, q) E C. 

We require that every state s E E has some transition enabled on it. This is often en­
sured by requiring p to include the disjunct V = V' which represents the idle transition. 

Let S be an PDS for which the above components have been identified. We define 
a computation tree of S to be an infinite tree whose nodes are labeled by E defined as 
follows: 

• Initiality: The root of the tree is labeled by an initial state, i.e., by a 8-state. 
• Consecution: Consider a node n labeled by a state s. Then one of the following 

holds: 
1. n has two children, n1 and n2, labeled by s1 and s2 respectively, such that 

for some (r, t1, t2) E P, s is an r-state, and s1 and s2 are t1- and t2-states 
respectively. 

2. n has a single child n' labeled by s', such that s' is a p-successor of s and for 
no (r, t1, t2) E Pis it the case thats is an r-state ands' is a ti-state for some 
i E {1, 2}. 
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Consider an infinite path 1r : s0 , s 1 , ... in a computation tree. The path 1r is called just 
if it contains infinitely many occurrences of J-states for each J E :T. Path 1r is called 
compassionate if, for each (p, q) E C, 1r contains only finitely many occurrences of 
p-states or 1r contains infinitely many occurrences of q-states. The path 1r is called fair 
if it is both just and compassionate. 

A computation tree induces a probability measure over all the infinite paths that 
can be traced in the tree, the edges leading from a node with two children have each 
probability 0.5, and the others have probability 1. We say that a computation tree is ad­
missible if the measure of fair paths in it is 1. Following [PZ93], we say that a temporal 
property r.p is P-valid over a computation tree if the measure of paths in the tree that sat­
isfy r.p is 1. (See [PZ93] for a detailed description and definition of the measure space.) 
Similarly, r.p is P-valid over the PDS S if it is P-valid over every admissible computation 
tree of S. 

Note that when S is non-probabilistic, that is, when P is empty, then the notion of 
P-validity over S coincides with the usual notion of validity over S. 

2.2 Probabilistic SPL 

All our concrete examples are given in SPL (Simple Programming Language), which is 
used to represent concurrent programs (e.g., [MP95, MAB+94]). Every SPL program 
can be compiled into a PDS in a straightforward manner. In particular, every statement 
in an SPL program contributes a disjunct to the transition relation. For example, the as­
signment statement "fo: x := y + 1; £1: "can be executed when control is at location 
fo. When executed, it assigns the value of y + 1 to the variable x while control moves 
from £0 to f 1 . This statement contributes to the transition relation, in the PDS that de­
scribes the program, the disjunct aLfo I\ at'_f1 I\ x' = y + l /\ pres(V - { x, 1r}) 
(where for a set U ~ V, pres(U) = /\uEU u' = u) and nothing to the probabilis­
tic requirements. The predicates aLfo and at'_f1 stand, respectively, for the assertions 
1r = 0 and 1r' = 1, where 1r is the control variable denoting the current location within 
the process to which the statement belongs (program counter). 

In order to represent probabilistic selections, we augment SPL by probabilistic goto 
statements of the form 

fo: pr..goto {£1, £2} 

which adds the disjunct aLfo I\ (at'_f1 V at'_f2) I\ pres(V - { 1r}) to the transition 
relation and the triplet (aLfo, aLf1, aLf2) to the set of probabilistic requirements. 
Note that, since we allow stuttering (idling), we lose no generality by allowing only 
probabilistic goto's, as opposed to more general probabilistic assignments. 

3 Automatic Verification of Finite-State PDSs 

Automatic verification of finite-state PDSs has been studied in numerous works e.g., 
[VW86, PZ86a, KNP02]. Here we propose two new approaches to automatic verifi­
cation of P-validity of finite-state PDSs, both amenable to dealing with parameterized 
(infinite-state) systems. 
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3.1 Automatic Verification Using Planners 

A planner transforms a probabilistic program Q into a non-probabilistic program QT 
by pre-determining the results of a the next k consecutive "random" choices, allow­
ing these next choices to be performed in a completely non-deterministic manner. The 
transformation is such that, for every temporal formula r.p over (the variables of) Q, if 
r.p is valid over QT, then it is P-valid over Q. Thus, the planner transformation converts 
a PDS into an FDS , and reduces P-validity into validity. The transformation is based on 
the following consequence of the Borel-Cantelli lemma [Fel68]: 

Let b1, ... , bk be a sequence of values, bi E {1, 2}, for some fixed k. Let a 
be a computation of the program Q which makes infinitely many probabilis­
tic selections. Then, with probability 1, a contains infinitely many segments 
containing precisely k probabilistic choices in which these choices follow the 
pattern b1, ... , bk, 

The transformation from Q to QT can be described as follows: Each probabilistic state­
ment"£: pr_goto { £1, £2}" in Q is transformed into: 

if consult£ > 0 

then [consult£ := consult£ - 1 ] 
if planner£ then goto .e 1 else goto £2 

else goto {£1,£2} 

Thus, whenever counter consult£ is positive, the program invokes the boolean-valued 
function planner£ which determined whether the program should branch to £1 or to £2. 
Each such "counselled" branch decrements the counter consult£ by 1. When the counter 
is 0, the branching is purely non-deterministic. The function planner£ can refer to all 
available variables. Its particular form depends on the property r.p, and it is up to the 
user of this methodology to design a planner appropriate for the property at hand. This 
may require some ingenuity and a thorough understanding of the analyzed program. 

Finally, we augment the system with a parallel process, the activator, that non­
deterministically sets all consult£ variables to a constant value k. We equip this process 
with a justice requirement that guarantees that it replenishes the counters ( activates the 
planners) infinitely many times. A proof for the soundness of the method is in Ap­
pendix A. 

Example 1. Consider Program up-down in Fig. 1 in which two processes increment and 
decrement y E [0 .. 4]. 

To establish the P-validity of r.p : D ()(y = 0), we can take k = 4 and define 
both planner£0 and planner mo to always yield 0, thus consistently choosing the second 
( decrementing) mode. 

3.2 SYMPMC: A Symbolic Probabilistic Model Checker 

While the planner strategy is applicable for many systems, there are cases of parame­
terized systems (defined in Section 4) for which it cannot be applied. (See Section 5.2 
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local y E [0 . .4] init 2 
loop forever do 

fo: pr-goto {f1,f2} 
f1 :y:=min(y+l,4); 

goto fa 
f2: y := max(y-1,0); 

goto fa 

-Pi-

II 

loop forever do 
mo: pr-goto {m1,m2} 
m1 :y:=min(y+l,4); 

goto mo 
m2: y := max(y-1,0); 

goto mo 
-H-

Fig.1. Program up-down 

for an example.) As an alternative method we describe SYMPMC, a symbolic model 
checker that verifies P-validity of simple temporal properties-properties whose only 
temporal operators are O and D-over finite state PDSs. 

The motivation leading to S YMPMC has been the idea that, since all the probabilities 
of a finite PDS are bounded from below, the definition of P-validity that directly deals 
with measure spaces can be replaced with some simpler notions of fairness. This was 
first done in [Pnu83], where extreme1aimess was introduced, a notion offairness that is 
sound and incomplete for proving P-validity. The work in [PZ93] introduced a-fairness, 
which was shown to be sound and complete. The work there also introduced an explicit­
state model checker for P-validity that is based on a-fairness. The main drawback of 
a-fairness is that it requires fairness with respect to every past formula. From the model 
checking procedure of [PZ93] it follows that the only past formulae really needed are 
those that appear in the normal-form of the property to be verified. However, obtaining 
the normal-form is non-elementary in the size of the property. 

In [ZPK02] we observed that a consequence of the model checking procedure of 
[PZ93] is that replacing a-fairness by the simpler -y-fairness results in a notion of fair­
ness that is sound and complete for proving simple properties over finite-state programs. 
The definition of')' fairness is as follows: 

Assume a PDS S : (V, 8, p, P, :T, C) and a path 1r = so, s1, ... in a computation 
tree of S. Let (r, t1, t2) be a probabilistic selection. We say that mode (r, ti), j E {1, 2} 
is taken at position i ~ 0 of 7r if Si F r and si+1 F ti. We say that the selection 
(r, t1, t2) is taken at position i if either (r, t1) or (r, t2) is taken at i. Lets be a state 
of the system. We call i an s-position if Si = s. We say that 1r is -y-fair, if for each 
states (and there are only finitely many distinct states) and each probabilistic selection 
(r, ti, t2), either there are only finitely s-positions from which (r, ti, t2) is taken, orfor 
every i = 1, 2, there are infinitely many s-positions from which (r, ti) is taken. The 
following corollary states that the replacement of probability by -y-fairness is sound and 
complete with respect to P-validity of simple formulae. It is an immediate consequence 
of [PZ86a]. 

Corollary 1. For every finite-state PDS S and simple formula r.p, r.p is P-valid over S 
iJf a F r.p for every ')'-fair computation 
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Based on Corollary 1, the explicit-state model checking procedure of [PZ93], and the 
non-probabilistic feasibility algorithm of [KPR98], we introduce SYMPMC, a symbolic 
model checker for verifying P-validity of simple properties over finite-state PDSs. 

The core of SYMPMC is an algorithm for simple response formulae (formulae of 
the form D ( a ----+ <> b), where a and b are assertions) over a finite state PDS. This 
algorithm is presented in Fig. 2. It checks the P-validity of <p : D ( a ----+ <> b) for 
assertions a and b. The algorithm returns 0 iff cp is ')'-valid over S, i.e., if <p holds over 
all ')'-fair computations of S. SYMPMC had been implemented using TLV [PS96]. 

ALGORITHM RESPONSE(S) 
var: 

R: relation ini t IPI n ( 11,bll x 11,bll l 
new: predicate init (IIBII O IIPII*) n 11,bll 
oldR: relation init 0 
o 1 d : predicate ini t 0 where for a probabilistic requirement 

R= (r,t1,h), 
while (new# old V R # oldR) do 

old := new 
oldR := R 
new:= new n (Ro new) 
R :=Rn (new x new) 
foreach J E :1 do 

new : = new n R*o IIJII 
R:= R n (new x new) 

foreach (p, q) E C do 

new : = (new - IIPII l U 
(new n R*o llqlll 

R :=Rn (new x new) 
foreach R E P do 

treat-P-requirement(R) 
endwhile 
return 

treat-P-req(R): 
var: 

qpred: predicate ini t E 
someq: predicate ini t 0 
pbad: predicate 

for j =1 to 2 do 

qpred := qpred n (Ro lltilll 
someq : = someq U llti II 
pbad : = llrll - qpred 
R := Rn 

[ (pbad x (E - someq)) 
U ( (E - pbad) xE) l 

(IIBII O IIPII*) n (llall - llblll n (R*o new) 

Fig. 2. Algorithm RESPONSE for model-checking the P-validity of <.p : D ( a ----+ <> b) 

The main difference between the algorithm in Fig. 2 and its counterpart in [KPR98] is 
the treatment of probabilistic requirements (the third "foreach" in the while loop). 
For each probabilistic requirement R = (r, ti, t2), the procedure treat-P-req (R) 
removes from the graph all states that are not ')'-fair with respect to R. 

In [APZ03] we prove: 

Theorem 1. For an input PDS S, Algorithm RESPONSE terminates. For assertions a 
and b, RESPONSE returns V such that <p = D ( a ----+ <> b) is P-valid in S ijf V = 0. 
By setting a and b to true, Algorithm RESPONSE can be used to check for ')'-feasibility 
(whether the system has at least one ')'-fair computation). It can also be used to check the 
validity of simple formulae by composing the system with temporal testers [KPR98]. 
Thus, SYMPMC can be used for symbolic model checking of whether a simple temporal 
formula is P-valid over a finite state program. 
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4 Probabilistic Parameterized Systems 

In this section we tum to probabilistic parameterized systems and their automatic veri­
fication. We first define the systems that are the scope of this paper and briefly discuss 
their automatic verification using Planners and SYMPMC. 

4.1 Parameterized Systems 

We focus on probabilistic parameterized systems that consist of multiple copies of N 
identical finite-state SPL processes. For each value of N > 0, S(N), the PDS that 
describes the system, is an instantiation of an PDS. Thus, such a system represents an 
infinite family of systems, one for each value of N. 

We are interested in properties that hold for every process in the system. Thus, 
we are interested in liveness properties of the type cp, where cp is a temporal formula 
referring only to variables local to a single process. The problem of parameterized ver­
ification is to show that cp is P-valid over every S(N). 

4.2 Counter Abstraction 

In [PXZ02] we proposed the method of counter abstraction for the verification of live­
ness properties of parameterized systems. A brief overview of the approach for non­
probabilistic systems is given here. For details see [PXZ02]. 

For simplicity of presentation, we assume that the system S ( N) has a set X of 
global shared variables whose size is independent of N, and the only variable local to 
each process P [ i] is the program counter 1r [ i]. Each global state s of the system S ( N) 
is then an (N + IXl)-tuple, describing the location of each process and the values of 
each x E X. Assume that the program counters range over the set { 0 ... L - l}. 

We define the counter abstraction of states by an (L + IXl)-tuple, such that each 
one of the first ILi elements is the counter of the corresponding location, where for a 
location£, the counter of£, denoted by K,£, is defined by: 

there are no processes in location f, 
there is exactly one process in location £ 
there are two or more processes in location £ 

Properties are similarly abstracted. Thus, for example, the property :3i : aL££[i] is 
abstracted to /'i,£ > 0. Denote by a( cp) the counter-abstraction of the property cp. 

As explained in [PXZ02], in order to be able to prove liveness properties it is nec­
essary to carefully abstract the fairness properties. Once this is done, we obtain the 
abstracted system a(S), and can show that for every liveness property cp, the validity of 
a( cp) over a(S) implies the validity of cp over S(N) for every N > l. 

Suppose we have a probabilistic parameterized system S ( N) and a temporal prop­
erty cp we wish to show is P-valid. We can apply a Planner transformation, obtain­
ing a non-probabilistic parameterized system, to which we can then apply counter­
abstraction, which will reduce it to an unparameterized finite-state system. If model 



96 Tamarah Arons, Amir Pnueli, and Lenore Zuck 

checking reveals that a( <p) is valid for this system, we can safely conclude that <p is 
P-valid over S(N). 

It is important to note that counter-abstraction can be obtained in a fully automatic 
way. Obviously, model checking techniques can easily check whether an abstracted 
system satisfies abstract properties. The only step in the process that requires user in­
tervention (and ingenuity) is in crafting the functions used by the Planner. 

In Section 5 .1 we demonstrate the power of the approach by verifying the liveness 
of a probabilistic N-process mutual exclusion algorithm. Previous attempts to verify 
the same protocol were either manual [PZ86a] or automatic for N::; 10 [KNPO0]. 

4.3 Network Invariants 

The method of network invariants was first mentioned in [BCG86, SG89], further de­
veloped in [WL89] (who also coined the name "network invariant"), and elaborated in 
[KM95] into a working method. The formulation here follows [KP00] and [KPSZ02], 
which take into account the fairness properties of the compared systems and support 
proofs of liveness properties. 

In order to apply the method to PDSs, it is necessary to refine the model, so that it 
allows for "environment" actions. Roughly speaking, the set of variables includes a spe­
cial subset consisting of the variables owned by the system. The system then takes steps, 
alternating between environment steps that can change all but the owned variables. 

It is also necessary to define the observable behavior of a system. To that end, the set 
of variables is assumed to includes a set of observables-variables that are externally 
observable. The observables are denoted by 0. 

A 'Y-observation of S is a projection of a 'Y-fair computation of S onto 0. We 
denote by Obs7 (S) the set of all "f-Observations of S. Systems Sc and SA are said to 
be comparable if they have the same sets of observable variables,. System SA, is said to 
be a 'Y-abstraction of the comparable system Sc, denoted Sc [;;;7 SA, if Obs7 (Sc) c:;;; 

Obs7 (SA), The abstraction relation is reflexive, transitive, and compositional, that is, 
whenever Sc [;;;7 SA then (ScllQ) [:7 (SAIIQ). It is also property restricting, that is, 
if Sc [;;;7 SA then SA F'Y p implies that Sc F'Y p. 

Suppose we are given two comparable systems, a concrete 1) a and an abstract 
1) A , and wish to establish that 1) a [;;;7 1) A • Without loss of generality, we assume 
that Va n VA = 0, and that there exists a 1-1 correspondence between the concrete 
observables O a and the abstract observables O A. 

In Fig. 3, we present a rule for proving that SA 'Y-abstracts Sa. The rule assumes the 
identification of an abstraction mapping a : ( U = £°'(Va ) ) which assigns expressions 
over the concrete variables to some of the abstract variables U c:;;; VA . For an abstract 
assertion <p, we denote by <.p[a] the assertion obtained by replacing the variables in U 
by their concrete expressions. 
The Abstraction Rule resembles the abstraction rule of [KPSZ02], with the addition of 
Premise A6. This premise must, in general, be verified for every assignment U to the 
abstract variables VA, The following condition suffices to guarantee premise A6 and is 
met in many abstractions: 

For every abstract requirement ( r, ti, t2) E PA, there exists a concrete require­
ment (r0 , tf, tf) E Pa, where r[a] = r0 , t1[a] = tf and t2[a] = tf. 
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Al. Ba --+ :WA : e A [o:] 
A2. D 0 F D(P0 --+ :3V~: PA[o:l[o:']) 
A3. D 0 F D(o: --+ 0 0 = 0 A) 

A4. D 0 F DO J[o:], for every J E :TA 

AS. D O F D O p[o:] --+ D O q[o:], for every (p, q) E CA 
A6. Da F D 0((VA = U)[o:] I\ r[o:] /\ 0 v~=l ti[o:]) --+ 

/\~=l D O((VA = U)[o:] I\ r[o:] /\ Qti[o:]), 
for every (r, t1, t1) EPA and every assignment U over VA 

Fig. 3. Abstraction Rule 

Given a parameterized system S(N), the network invariant method calls for devising 
a network invariant I - a finite state PDS, intended to provide an abstraction for 
the ( open) parallel composition of any k processes of the parameterized system. The 
method then calls for confirming that I is indeed an abstraction, and model checking 
that when composed with a single process it satisfies a property of that process. The 
first step, that of designing I, calls for some ingenuity of the verifier. As we showed 
in [KPSZ02], the task can be often quite simple. The third step can be achieved us­
ing SYMPMC. The second step, confirming that I is indeed a good abstraction, calls 
for establishing the two ')'-abstractions (P[l] II··· IIP[m]) ~'Y I and (IIIP[i]) ~'Y I, 
where mis a small constant (usually in the range [1..3]) independent of N, and P[i] is 
a generic copy of the system's process. 

5 Examples 

In this section we present two examples, one for each of the methodologies we de­
scribed in the previous section. To demonstrate the power of the "Planner and Counter 
abstraction" approach, we take the probabilistic mutual exclusion protocol of [PZ86b]. 
To demonstrate the power of the "SYMPMC and network invariant" approach, we take 
the Lehman and Rabin's Courteous Philosopher protocol [LR81]. 

5.1 Verifying Probabilistic Mutual Exclusion Using a Planner 

A flow diagram of the protocol, as well as its SPL code, are in Fig. 4. The usual "trying 
section" consists of two parts: A "waiting room" in which a process waits for a "door" 
to open in order to be admitted to the "competition", and the competition. Once the 
door closes, no new process can enter the competition. Processes in the competition flip 
coins: Losers, those who flip tails, wait until there are no winners. A process that flips 
heads, and finds out that it is the only one to have done so (and there are no processes in 
the critical or exit region), enters the critical section. Otherwise, it waits until all winners 
join it, and they all proceed to flip coins again. Once a process leaves the critical region, 
it examines if there are processes in the competition. If there are, it just goes back to its 
idle state. Otherwise, it opens the door and waits until all processes in the waiting room 
enter the competition before it goes back to the idle state. 
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In the original protocol each process has a variable y that can take on eight values, 
according to the location(s) of the process. We omit it here, and instead present a version 
that includes locations only, and is amenable to counter-abstraction. Each process i can 
perform, in a single atomic step, a test consisting of a boolean combination of formulae 
of the form :lj =/- i: 1r[j] EL for L ~ [0 .. 15]. We denote such a test by some EL, and 
its negation by none E L. The only probabilistic transition is at location C4 . 

Idle 

competition 
empty 

in n : integer where n 2'. 2 
n 

II P[i] :: 
i=l 

loop forever do 

Co : non-critical 
C1 : skip 
C2 : await none E { 4 .. 13} V some E {14, 15} 
C3: skip 
C4 : pr _goto { C5, Cs} 
C5 : if none E {5, 6, 10 .. 15} then goto C10 
C6 : skip 
C1 : await none E {5, 6, 10 .. 15} 

and then goto C4 
Cs : await none E {4 .. 7, 10 .. 15} 
Cg : gotoC4 
C 10 : Critical 
C11: if none E {4 .. 9} gotoC13 
C12 : goto Co 
C13 : skip 
C14 : await none E {2, 3} 
C15 : goto Co 

Fig. 4. A Probabilistic Mutual Exclusion Protocol 

The mutual exclusion property of the protocol, stating that it is never the case that 
two or more processes are in C10 at the same time, is easy to model check, for example 
using the methodology of [APR+Ol] or counter-abstraction. The liveness property of 
the protocol is Vi: 1r[i] = 1---. <) (1r[i] = 10), and we wish to show its P-validity for 
every N 2'. 2. 

We take k = 1 and define a planner planner 4 which determines the result of the 
next probabilistic choice at C4 whenever activated. This planner is defined by 

planner4 : none E {5, 6, 10 .. 15} 

This planner directs the next branch to C5 if there is no process in any of the locations 
H = {5, 6, 10 .. 15}, and to C6 otherwise. 

The intuition behind this planner is that a process can enter the critical section, from 
location C5, only if there are no other processes in H-locations. When there are pro-
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cesses in H-locations, we want to reduce the number of processes that are likely to join 
them, which planner 4 accomplishes by returning "O" and thus forcing processes from 
£4 to enter £s. When there are no processes in H-locations, we want the first process 
that can to enter £5, so that it can enter the critical section. Thus, planner4 returns "1" 
in such cases. This planner design can obviously be counter abstracted, hence, we suc­
ceeded to use TLV to establish the livelock-freedomproperty of the protocol given by: 
D(:3i: 7r[i] = 1-+ 0(:3i: 7r[i] = 10)). 

Once livelock freedom has been established, it is the structure of the protocol that 
guarantees individual liveness, by restricting the number of times a process in the com­
petition can overtake another - once a process i is trying to access the critical section 
(enters £2 .. 9), every other process can enter the critical section at most twice before i 
does, which trivially implies the individual accessibility or the protocol 3• 

We also established the individual liveness property of the protocol directly us­
ing TLV and "counter abstraction save one" ([PXZ02]) using the same planner. See 
http:/lwww.cs.nyu.edu/zucklpubs/pme for TLV code. 

5.2 Verifying the Courteous Philosophers Using SYMPMC 

The success of the planner strategy in parameterized systems depends on having a single 
strategy for random draws that will allow every process to achieve its liveness property. 
The [LR81] Courteous Philosophers Algorithm is an example where we cannot use a 
planner: any planner strategy that allows one philosopher to eat may preclude its neigh­
bours from eating. Hence, to automatically verify The [LR81] Courteous Philosophers 
Algorithm, we use the network invariant approach. 

The network invariant we obtained is essentially the one derived in [KPSZ02] and 
we omit it here for space reasons. There is, however, a crucial difference: In [KPSZ02] 
we replaced the probabilistic requirements by compassion requirements. Here, with 
the aid of the revised Abstraction Rule and SYMPMC, we could work directly with 
','-fairness and did not need to (manually) devise adequate compassion requirements 
replacing the probabilistic choices. Thus, the resulting network invariant is significantly 
simpler and execution time is much shorter. 

6 Conclusion and Future Work 

The paper deals with the problem of automatic proof of P-validity of liveness proper­
ties over parameterized systems. We started with a discussion of the non-parameterized 
case, and described two new approaches to the problem: Planners that convert a proba­
bilistic system into a non-probabilistic one and allow one to treat P-validity as regular 
validity, and model checking over ','-fair computations, which is sound and complete 
for simple temporal properties. We then outlined the two approaches of automatic ver­
ification of liveness properties of parameterized systems, counter abstraction and net­
work invariants, and showed how the network invariant method can be combined with 

3 Bounded overtaking property is a safety property and thus it can be established by ignoring 
the probabilistic transitions of the protocol. 
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S YMPMC. We demonstrated our techniques by providing automatic proofs for two non­
trivial protocols. The first by Planner & counter-abstraction, the second by SYMPMC & 
(extended) network invariants. 

Strictly speaking, neither method combination we used in our examples is fully au­

tomatic, they both require user input. On one hand the design of a Planner or a Network 
Invariant may require user ingenuity; on the other hand, most systems are verified by 
their own designers, who have a pretty good intuition about the appropriate Planner/net­
work invariant. 

We are currently working on extending counter-abstraction with "}'-fairness. If suc­
cessful, this will provide a fully automatic proofs of P-validity of parameterized system 
for the cases that the method of counter-abstraction is applicable. 
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