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Abstract. In this paper, we describe a completely automated framework for it-
erative abstraction refinement that is fully integrated into a formal-verification
environment. This environment consists of three basic software tools: Forecast, a
BDD-based model checker, Thunder, a SAT-based bounded model checker, and
MCE, a technology for multiple-counterexample analysis. In our framework, the
initial abstraction is chosen relative to the property under verification. The ab-
straction is model checked by Forecast; in case of failure, a counterexample is
returned. Our framework includes an abstract counterexample analyzer module
that applies techniques for bounded model checking to check whether the abstract
counterexample holds in the concrete model. If it does, it is extended to a con-
crete counterexample. This important capability is provided as a separate tool that
also addresses one of the major problems of verification by manual abstraction.
If the counterexample is spurious, we use a novel refinement heuristic based on
MCE to guide the refinement. After the part of the abstract model to be refined
is chosen, our refinement algorithm computes a new abstraction that includes as
much logic as possible without adding too many new variables, therefore striking
a balance between refining the abstraction and keeping its size manageable. We
demonstrate the effectiveness of our framework on challenging Intel designs that
were not amenable to BDD-based model-checking approaches.

1 Introduction

One of the most significant recent developments in the area of formal design verification
is the discovery of algorithmic methods for verifying properties of finite-state systems.
In temporal-logic model checking, we verify the correctness of a finite-state system with
respect to a desired temporal property by checking whether a labeled state-transition
graph that models the system satisfies a temporal logic formula that specifies this property
[9,27,33,37]. With the advent of symbolic techniques [7], model-checking tools have
enjoyed a substantial and growing use over the last few years, showing ability to discover
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subtle flaws that result from extremely improbable events. While until recently these
tools were viewed as of academic interest only, they are now routinely used in industrial
applications [5,16]. Nevertheless, model checking is still limited with respect to the size
of the designs it can handle, due to the so-called state-explosion problem, which refers
to the exponential complexity of model checking with respect to the number of state
variables in the model. One of the most fundamental techniques for dealing with the
state explosion problem is that of abstraction, in which the concrete model is abstracted
to a simpler model that has a smaller state space, and, hopefully, retains the essential
features of the concrete model [11]. The abstract model is typically an overapproximation
of the concrete model–it allows behaviors that are not allowed in the concrete model.
Thus, with respect to universal properties (properties that are defined in terms of universal
quantification over traces), model checking the abstract model is sound–if the abstract
model satisfies the property, then so does the concrete model. Since the abstract model,
however, is an overapproximation, “false negatives” are possible; one can get spurious
counterexamples, which cannot be extended to allowed behaviors in the concrete model.

Consequently, without automation, model checking by abstraction requires a fair
amount of manual labor. First, one has to decide how to abstract the concrete model. If
the model checker shows that the abstract model satisfies the property under verifica-
tion, then so does the concrete model and we are done. Otherwise, the model checker
returns a counterexample with respect to the abstract model. One then has to analyze the
counterexample to see if it is real or spurious. If the counterexample is real, then it has
to be extended to a counterexample of the concrete model, which is then returned to the
verification engineer for debugging. If the counterexample is spurious, one has to refine
the abstract model in order to bring it closer to the concrete model, so that the spuri-
ous counterexample is eliminated. This labor-intensive process reduces dramatically the
productivity of the verification engineer. As a result, the usefulness of model checking
to the formal verification of large industrial designs is seriously hampered. Over the last
decade, there has been a consistent effort to automate the above process of model check-
ing by abstraction, offering algorithmic support to iterative abstraction refinement. This
consists of three basic steps: abstract the design’s model, analyze the counterexample,
refine the abstraction (see Figure 1). Starting with Balarin and Sangiovanni-Vincentelli
[2], researchers described several ways in which these steps can be automated [11,25,
31,28,10,30,17,38] (see Related Work).

In this paper, we describe a completely automated prototype framework for iter-
ative abstraction refinement that is integrated into a formal-verification environment
consisting of three basic software tools: Forecast, a BDD-based model checker [16],
Thunder, a SAT-based bounded model checker [13], and MCE, a technology for multiple-
counterexample analysis [14]. As in [25], to abstract the model, we automatically cut
(prune) the design logic, by turning chosen circuit nodes (not necessarily latches) into
free, i.e., unconstrained inputs, therefore pruning the logic that drives them; also, the
initial abstraction is chosen relative to the property under verification. Our framework
applies bounded model checking techniques [4] to analyze the counterexample. The key
insight here is that the abstract counterexample has a bounded length, which enables us
to reduce this problem to a bounded model checking problem. Clarke et al in [8] have
proposed similar SAT-based techniques to address this problem. In addition to being an
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Fig. 1. Framework for automated abstraction and iterative counterexample-guided refinement

integral part of the automatic refinement framework, this capability in our solution is
also crucial to support manual abstraction methods, so it is also provided as a stand-alone
utility. In summary, the task is to check whether an abstract counterexample holds in the
concrete model. If it does, it has to be extended to a concrete counterexample, which the
verification engineer can use for debugging.

If the analysis step indicates that the abstract counterexample is spurious, then the
abstraction is too “loose” and it has to be refined. Some freed nodes have to be un-freed,
adding new logic to the abstract model. This increases the model’s logical complexity,
which raises the computational complexity of model checking it. Thus, there is a tradeoff
here between eliminating spurious behaviors and increasing the size of the abstract
model. One of our two main contributions is a novel heuristic to choose the nodes to be
un-freed. A recent work shows how Multiple Counterexample (MCE) technology [14]
supports the analysis of many counterexamples simultaneously. We show how an MCE-
based heuristic can be used to guide the refinement process by selecting for un-freeing
nodes that are more relevant for eliminating the spurious counterexamples.

Our second main contribution is to show how, after the nodes to be un-freed are
chosen, we can refine the model by including as much logic as possible without adding too
many new variables (freed nodes). Other iterative refinement frameworks [38] perform
the refinement only at latch level. In many real-life designs, however, replacing a latch
with all the new latches in its transitive fan-in can cause sudden addition of huge amounts
of logic. Therefore it is desirable to be able to prune at the intermediate nodes.We describe
a heuristic that analyzes the logic between the un-freed nodes and their fan-in latches
to find a balance between refining the abstraction and keeping the abstract model’s size
manageable.

The rest of the paper is structured as follows: Section 2 describes related work in
the published literature. Section 3 introduces the model checking environment in which
our tool operates, and the way an initial abstraction is chosen. Sections 4 and 5 describe,
respectively, the counterexample analysis module, and the refinement algorithm. In Sec-
tion 6 we evaluate the effectiveness of our prototype on a set of challenging Intel designs
that were not amenable to BDD-based model-checking approaches.

We follow with concluding remarks in Section 7.
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2 Related Work

The cone-of-influence (COI) reduction [12] is the most common abstraction technique,
used today as a core component in most model-checking tools. The COI of a property
consists of all the variables that affect the property directly or indirectly, based on the
dependencies between the variables of the model.Variables that are not in the COI cannot
influence the validity of the specification and can therefore be removed from the model.
COI reduction is an exact abstraction, in the sense that the abstract model satisfies the
property if and only if the concrete model does. More aggressive abstractions, which are
the ones we consider in this paper, go one step further by eliminating parts of the COI that
are believed to be irrelevant to the property being checked. In doing so, they create an
overapproximation, as the abstract model might introduce spurious behaviors that were
not present in the concrete one. A significant effort has been invested in automating the
whole process, resulting in various iterative refinement frameworks [25,2,26,31,32,28,
22,10,17,38,35]. We now discuss some of these works.

An early such framework is the localization reduction of Kurshan [25], defined in
the context of ω-regular language containment, and implemented in COSPAN [19].
This reduction keeps the nodes (both latches and intermediate nodes) that are topolog-
ically close (in the node dependency graph) to the property being verified, while the
other nodes are abstracted away with non-deterministic assignments. The refinement is
counterexample guided, with each step adding additional nodes, again according to the
dependency graph. Unfortunately, not enough details (for an effective implementation)
are provided in [25] on the check for spurious counterexamples or the selection of a
small set of nodes to eliminate such counterexamples.

Balarin and Sangiovanni-Vincentelli [2] present a similar iterative framework for
checking language emptiness of communicating automata. To check for spurious coun-
terexamples they synthesize an automaton from the error trace and intersect it with the
automaton of the concrete model. The resulting language emptiness problem is submit-
ted to a BDD-based model checker. Our experience shows that BDD-based methods
have little chance of coping with the size of the concrete model. By contrast, SAT-based
solutions like ours for counterexample analysis scale much better with the model size.
Moreover, we avoid compiling the error trace into an automaton, to avoid introducing
auxiliary variables. Instead, our reduction to bounded model checking translates the
error trace into new constraints added to the SAT instance.

Clarke et al. [10] use counterexample-guided refinement for ACTL∗ model check-
ing. Their abstraction exploits the control structure of a HDL (Hardware Description
Language) design rather than the dependency graph. This provides finer control by
allowing several degrees of abstraction for each variable. Relying on such syntactic in-
formation, however, hampers the application of this technique to gate-level designs. To
check for spurious counterexamples, BDD-based reachability analysis is performed on
the concrete model constrained with the information provided by the error trace. This
suffers from the same scalability problem mentioned above. This last issue is addressed
in [3], where the analysis and reconstruction of counterexamples is performed on an
intermediate model that is midway between the concrete model and the abstract one.
The intermediate model is itself refined in an incremental way. As the other BDD-based
approaches, this approach still has limited capacity as the examples reported in the paper
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do not exceed 400 variables. Today it is widely accepted that SAT or ATPG are more ap-
propriate for the analysis of spurious counterexamples. That is the approach taken in [8]
where SAT is used for this task. This paper suggests also two new refinement heuristics,
one based on Integer Linear Programming and the other based on Machine Learning.
Both heuristics try to find a minimal set of variables that separates between a set of dead
states and a set of bad states. To that purpose, one needs to sample sufficiently many
states in both sets. In the worst case we might have to sample an exponential number of
states, so the sampling itself can be quite expensive.

The iterative refinement tool described in [38] was the first one to employ different
verification engines.A hybrid BDD-ATPG engine is used for model checking, sequential
ATPG is used for detecting spurious counterexamples, and a combination of 3-valued
simulation and sequential ATPG is used to obtain refinement hints. We strongly believe
that using additional engines in addition to BDD-based ones is, indeed, the only way to
overcome the limitations of BDD-based model checking.

A distinguishing feature of our approach is the fine control over successive refine-
ments’ size growth. This stems from two critical aspects: First, our refinement does not
attempt to eliminate one single error trace at all price. Our experience shows that this
tends to push the refinement in the wrong direction by adding more logic than necessary.
Instead, our refinement analyzes simultaneously all the error traces (of a given length)
and adds a small number of nodes that are likely to be the root cause of all such spurious
counterexamples. Second, we do not limit our pruning to the level of latches, but we
also prune at the level of intermediate nodes in the design. This strategy was found to
be critical in coping with nodes that have a large fan-in cone by avoiding to bring in
the whole cone of these nodes at once. By carefully choosing the nodes to be pruned,
we get fine control over the growth of the successive refinements’ size. The Min-Cut
technique we apply to achieve this effect and the flow problem we generate from the
circuit when using this technique are quite standard, but their use for the specific purpose
of choosing the next pruning of the model is new. In [38], a Min-Cut is computed in the
counterexample analysis phase, but as we said, in that work only latches are chosen for
pruning. A similar technique is also used in the Ketchum tool [21], when checking for
unreachability of coverage states, as an optimization of automatic test-pattern genera-
tion. It is known (even though no details have been published) that in the FormalCheck
tool a Min-Cut is used for refinement, but to our best knowledge, it is computed on a
completely different flow problem.

3 Model Checking Environment and Initial Abstraction

The set-up: The hardware design being verified is given in a high-level hardware de-
scription language and compiled into a logical model, on which the model abstraction
and refinement process takes place. The logical models on which we operate consist of
a set V of Boolean variables used to represent the system states, a Boolean formula I
representing the set of initial states, a collection TR of Boolean formulas representing
transition constraints, and a collection F of formulas representing fairness constraints.
All the formulas are over the variables in V , except for the formulas in TR, which are
over the variables in V ∪ V ′, where V ′ = {x′ | x ∈ V }. Given an assignment s to the
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variables in V , let s′ denote the corresponding assignment to the variables in V ′. A fair
trace of this model is an infinite sequence s0, s1, . . . of assignments to the variables in
V , such that s0 satisfies I , for every i ∈ N and for all τ ∈ TR si ∪ s′i+1 satisfies τ , and
for every ϕ ∈ F there are infinitely many i such that si satisfies ϕ [29].

In our set-up, the specification and assumptions are given in Intel’s ForSpec language
[1], which is linear-time temporal logic augmented with regular expressions, clocks,
and resets. Given a temporal assumption f and a temporal assertion g, the requirement
we must check is that the model satisfies f → g. This check is implemented via the
automata-theoretic approach [36]. Both f and ¬g are compiled into logical models of
their respective Büchi automata. These models are conjoined with the logical model of
the design under verification, and the model checker then tests the combined model for
language emptiness.

The abstraction method we chose consists of selecting certain nodes in this combined
model, and turning them into free inputs. The constraints in TR are typically of the form
“v′ = . . .” or “v = . . .”, so we can turn v into a free input by removing from TR any
constraints with v or v′ on the left side. We call this operation freeing v. After it is
done, part (or all) of the logic that drives v stops influencing the variables that define
the property, thus allowing the COI reduction to prune that part of the logic from the
model. The freed nodes therefore define a frontier that separates, in the concrete model,
the logic included in the current abstract model from the logic that is pruned out.

Initial Abstraction: The first step is automatic generation of an initial abstract
model, i.e., the first frontier. The specification and assumption’s logic are probably
very relevant to the property being checked, so pruning them is likely to cause spurious
counterexamples. Moreover, the part of the model generated by the ForSpec compiler
is relatively small. Our initial abstract model is thus obtained by freeing the first nodes
of the original design’s logic model that are connected to the ForSpec-generated logic
(See Figure 2). Model checking this first abstract model usually takes very little time
and finds only spurious counterexamples, unless the property is directly implied by the
provided assumption, regardless of the design being verified.

Property
Assumption

Circuit model

: Frontier (Free nodes)

: NEW (still unused) nodes
: First abstract model

Fig. 2. Initial Abstraction

Model Checking: Forecast, Intel’s BDD-based model checker, searches for a coun-
terexample trace, which is represented by a prefix and a fair cycle (i.e., one in which
every fairness constraint is satisfied at least in one state). In this paper we focus on
safety properties, for which only a prefix of a trace is needed [24]. In case an abstract
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counterexample is found, Forecast provides a trace that must be analyzed to determine
if it is real (see Section 4). Forecast also provides Multiple-Counterexample (MCE)
information [14], to be used by the refinement module (See Section 5.2).

We should note that Forecast is run using all the usual reductions and optimizations,
such as the Cone of Influence reduction [12] and Dynamic Variable Reordering [34],
which means that the order of the logic variables in the BDDs evolves during the model
checking session. Every run’s final variable order is saved in a file and later incorporated
by the model checker in the next iteration, as part of its initial variable ordering. Every
iteration’s abstract model includes all the variables that appear in the preceding ones, so
by incorporating the previously computed variable order we can obtain smaller BDDs.

4 Counterexample Analysis

Automatic abstractions as well as manual abstractions can result in false negatives.
Therefore, the efficiency of any framework that supports abstractions highly depends on
the ability to detect whether the abstract counterexamples resulting from a verification
session are spurious or not. In this section, we describe a counterexample analysis method
(hereafter called “CexAn”) for determining whether an abstract counterexample is real,
i.e., can be extended to the concrete model. If this is the case, CexAn extends the abstract
counterexample to a concrete one. Hence, the benefits of CexAn are both in determining
spurious failures and, in case of valid failure reports, easing the debugging of the abstract
counterexamples since the provided concrete counterexamples include assignments for
the concrete model’s inputs.

CexAn is built on SAT-based bounded model checking technology. The inputs to
CexAn are the concrete model M, and the abstract counterexample AbstCex. The coun-
terexample analysis problem is translated to a k-bounded model checking problem,
where k + 1 is the length of AbstCex. As in bounded model checking, the concrete
model is unrolled k steps and a propositional formula is generated. The formula de-
scribes paths from s0 to sk such that s0 is an initial state and for all 0 ≤ i < k, there is
a transition from si to si+1: Path(s0, . . . , sk) = I(s0) ∧∧k−1

i=0 TR(si, si+1)
The construction of Path(s0, . . . , sk), while straightforward in principle, is a nontrivial
computational task because of the size of the concrete model (the formula may have
hundreds of thousands propositional variables!). Our bounded model checking tool,
Thunder, implements the unrolling very efficiently. The AbstCex is also translated to a
propositional formula CexForm, in the following way: LetPhasei be a Boolean formula
describing the i-th phase (0 ≤ i ≤ k) in AbstCex. Every Phasei restricts the variables
corresponding to abstract model nodes, to the values they take in the corresponding
phase of CexForm. Then, we define: CexForm(s0, . . . , sk) =

∧k
i=0 Phasei

The SAT engine looks for a satisfying assignment for the formula:
Path(s0, . . . , sk) ∧ CexForm(s0, . . . , sk).

In case a satisfying assignment is found, we report that the counterexample is real
and provide the extended counterexample in terms of the concrete model’s signals. If
a satisfying assignment does not exist, we conclude that the concrete model does not
display a counterexample agreeing with AbstCex on the signals present in the abstract
model, so we report that the counterexample is spurious.
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5 Refinement Algorithm

5.1 Rationale

For abstractions by freeing and pruning, refining an abstraction means moving the fron-
tier of freed nodes, therefore defining a bigger abstract model. This involves two main
steps: i) choosing the nodes in the frontier that will be “un-freed”, therefore adding their
whole “cone of influence” back into the model, and ii) choosing the nodes in the newly
added logic that will be freed, to keep the abstract model small. In the new abstraction,
the un-freed nodes’ values are constrained by the added logic, so fewer behaviors will
be possible. The refinement iterations terminate since we do not apply backtracking.

The goal of an iterative refinement process is to find an abstraction that does not
display any spurious counterexamples. It may have no counterexamples at all, or it may
reveal a real one. To achieve this goal in fewer iterations, every refinement step should
add as much logic as possible. However, our search for this goal is carried out within
the capacity limits of the model checking phase, so we must only add the logic that has
the best chance to (eventually) eliminate all the spurious counterexamples.

Given a spurious counterexample, it is computationally difficult to find a minimal
set of nodes that need to be un-freed to eliminate it [10]. One approach is to greedily add
nodes to the abstract model until the spurious counterexample at hand is eliminated. This
greedy approach may be quite suboptimal and lead to significant growth of the abstract
model. Another approach is to overapproximate and add a large “chunk” of logic in
one refinement step to guarantee elimination of the spurious counterexample. This may
cause the sudden addition of too much logic to the abstract model. Thus, eliminating the
spurious counterexample at hand in a single refinement step is not necessarily the best
way of refining the abstraction.

The next section presents a new heuristic that, at every iteration, guides the refinement
by hinting at nodes in the frontier that should be un-freed to eliminate all or many of the
spurious counterexamples of a given length. For the reasons just described, we prefer to
limit the amount of logic added in a single iteration, and decide on the next refinement
steps based on fresh hints from the guiding heuristic. The tradeoff between adding more
logic in a single iteration and limiting the abstract model’s size is present throughout the
rest of this section.

5.2 Choosing the Nodes in the Frontier to Be Un-freed

In counterexample-guided refinement frameworks, spurious counterexamples are an-
alyzed, looking for hints as to which elements of the abstraction cause the spurious
counterexamples. In our case, the hints we need should suggest which nodes in the fron-
tier must be un-freed first. Our tool’s refinement module implements a new technique for
obtaining such hints. The new heuristic exploits Multiple Counterexample (MCE) infor-
mation [14] provided as a multi-valued counterexample annotation by our BDD-based
symbolic model checker, Forecast.A multi-valued annotation of a counterexample repre-
sents all the counterexamples of the same length. The use of MCE information facilitates
the simultaneous elimination of several spurious counterexamples in a few refinement
steps. This makes the new heuristic specially suited for attaining the goal defined in
Section 5.1.
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Multi-valued counterexample annotation. Traditional symbolic model checkers pro-
vide a single counterexample as the output of a failing verification. It is specially difficult
to diagnose a verification failure reported as a single counterexample trace. On one hand,
the verification engineer has too much data, all the signal’s values along the whole coun-
terexample trace. On the other hand, he has too little data, only one counterexample
among many possible ones. Forecast addresses the counterexample diagnosis problem
by providing MCE information in the form of “multi-valued counterexample annota-
tion”, a concise and intuitive counterexample data representation. In this annotation, a
counterexample trace is enhanced with a classification of signal values along the trace
into three types: (a) Strong 0/1: indicates that in all counterexamples, the value of the
signal at the given phase of the trace is 0 or 1, respectively. (b) Conditional 0/1: indi-
cates that although the value of the signal at this phase is 0 or 1 for this counterexample,
this value can be different for another counterexample illustrating the failure. (c) Irrel-
evant 0/1: indicates that the value of the signal at this phase is probably unrelated to the
verification failure. Thus a single multi-valued annotated counterexample also provides
information on all the other possible counterexamples of the same length.

Using MCE to obtain hints for refining abstractions. The strong values provide
insight on the pertinent signals causing the counterexample. For example, if the value
of a signal at a certain phase of a counterexample is a strong zero, this means that
correcting the design so that the value of the signal will be one at that phase often gets
rid of all counterexamples of the same length as the counterexample at hand. Hence, the
error rectification problem is often reduced to determining how to cause a strong-valued
signal to take on a different value. We first assign a unique fixed weight to each of the
three value types, where strong values get a higher weight. Then, given a multi-valued
annotated spurious counterexample, we compute, for every node, the average weight
of the values assigned to it along the whole trace. The nodes with the highest average
weight are chosen for refinement.

The decision on how many nodes in the current frontier should be un-freed at every
iteration involves the tradeoff described in Section 5.1. Choosing only the node with
the highest average weight yields the most cautious refinement process, but a longer
one. Experimentation, and examination of the list of frontier nodes sorted by decreasing
weight, suggest that good results can be obtained by un-freeing only a few nodes at a
time. In Section 6, we elaborate on experimental results that lead to a decision on the
number of nodes to un-free at each iteration.

5.3 Choosing the New Frontier

In some iterative abstraction refinement frameworks in which the abstractions consist of
pruning the model (e.g., [38]), only latches (i.e., registers) are chosen to become part of
the frontier. After choosing the latches to be un-freed, the new latches that replace them
in the frontier are those in their transitive fan-in (except for those that already appear
within the current abstract model). Our experiments on real-life examples showed that
this refinement policy causes, in many cases, a sudden increase in the abstract model’s
size, bigger than what we would like to have in a controlled refinement process – usually
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: Frontier (Free nodes)

: nodes within current abstract model
: Latches : NEW (still unused) nodes

: Current abstract model

Unoptimized upper frontier: Optimized upper frontier:
- "Pushed down" at non-latches

with a single NEW fan-in.
- Latches without NEW variables

in their fan-in are removed.

Lower frontier: Chosen frontier:
Replacing the chosen node(s) with the first
NEW latches in their transitive fan-in.

The lowest minimal separating
frontier between the upper and
lower frontiers.

Replacing the chosen node(s) with the 
NEW nodes in their immediate fan-in.

Fig. 3. Choosing a new frontier

causing lots of irrelevant logic to be taken into the current abstract model, and therefore
slowing down the model checking phase or even reaching its capacity limit. To keep the
growth rate of the number of variables under control, we realized that it is crucial to be
able to add any node to the free nodes frontier, without restricting ourselves to freeing
only latches. The most cautious approach is to replace a node in the frontier with those
nodes in its immediate fan-in (only the new ones, i.e., those which do not appear in the
previous model). This yields a very slow refinement process. In the sequel, we refer to this
frontier as the upper frontier, and we call the frontier that passes through the latches and
input signals in the transitive fan-in – lower frontier (see Figure 3). Obviously, a tradeoff
(based on the discussion in Section 5.1) has to be found between the upper frontier and
the lower frontier. It is desirable to allow the model to grow as much as possible, while
minimizing the number of variables in the BDDs, since this typically minimizes the size
of the BDDs describing sets of reachable states. However, the addition of intermediate
nodes increases the number of constraints, which may in turn increase the time cost of
computing image sets. Between the upper and lower frontiers there are no latches, so the
number of variables added depends on the number of nodes in the chosen frontier itself
(because they are turned into free inputs). This means that we must seek the smallest
frontier, and among those with minimal size, the one that has the most constraints on
the transition relation.
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First, we present some straightforward optimizations that can be applied to the upper
frontier, so that it is pushed “downwards” without adding variables (and sometimes
saving some). These optimizations (illustrated in Figure 3) are performed repeatedly on
the upper frontier, until they are no longer applicable:

– Single-new-fan-in propagation: At every given moment, the nodes in the fan-in of
a node in the frontier can be divided into two sets: those that already appear in the
current abstract model, and those that do not (we call them new nodes). If a node n1
in the frontier is not a latch, and it has a single new fan-in node n2, then n1 can be
replaced in the frontier by n2 without adding variables to the model.

– Latches without new fan-in variables: If a node in the frontier is a latch, and it does
not have any new variables (i.e., latches or primary inputs that are not part of the
current abstract model) in its transitive fan-in, then it can be un-freed (i.e., removed
from the frontier). This adds to the abstract model all the new logic that drives the
latch, without adding any variables to the model. This optimization saves many
refinement iterations that would otherwise be spent un-freeing this kind of latches.

The frontier we are looking for must separate the upper and lower frontiers, in the sense
that every path (following the fan-in relation) connecting a node in the lower frontier
to a node in the upper one must include at least one node belonging to the frontier.
This means that we are looking for a minimal cut in the part of the model between the
optimized upper frontier and the lower frontier. The computation of such a minimal
cut is a standard procedure in circuit analysis [23,18], implemented by first translating
the part of the model between the frontiers into a simple flow problem based on the
fan-in relation, then executing a Maxflow algorithm [15], and finally applying the Max-
Flow Min-Cut Theorem [6] to derive a minimal cut from the maximal flow found. If
several such minimal cuts exist, we prefer the lowest one, i.e., the one that takes as much
intermediate logic as possible into the next abstract model.

6 Results

We now report how our iterative refinement prototype performs in experiments carried
out on Intel designs. Some are verification test cases, i.e., the model checker answers
“true”, and some are falsification test cases, where a real counterexample is reported. All
the selected test cases are way beyond the capacity of Forecast, our BDD-based model
checker (they did not complete within the timeout bound of 48 hours, even with COI
reduction).

Table 1 records, for each test case, the number of iterations required to reach a definite
result (pass or fail), the number of variables (latches and inputs) in the concrete model
and in the abstract model of the last iteration (both after the COI reduction), Forecast
CPU time for the last iteration, and total Forecast CPU time.

A significant problem in industrial-size projects is ensuring that the properties that
are satisfied by a snapshot of the design under development, are also satisfied by later
versions. In the context of conventional testing this is checked through regression testing.
By saving the set of nodes that belong to the frontier defining the last abstraction (as
well as the generated BDD variable order) we provide support for regression verification
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Table 1. Results on ten real-life test cases beyond the capacity of BDD-based symbolic model
checking. Real1-Real9 are verification cases, Real10 is a falsification case.

Iterations Variables in concrete Forecast CPU time (secs)
vs. last abstract model Last iteration Total

Real1 1 627/132 215 215
Real2 10 627/167 1390 8008
Real3 10 627/161 112 1653
Real4 5 627/149 251 914
Real5 5 627/148 310 915
Real6 5 627/155 240 809
Real7 5 635/157 291 975
Real8 18 627/244 2983 9558
Real9 77 903/192 2100 19800
Real10 8 669/218 22 227

[20], which attempts to repeat a verification result after the design has been modified
(e.g., if the changes affect only parts of the model that are pruned out after the nodes
in the frontier are freed). For regression verification purposes, one would expect the
running time to be quite close to Forecast CPU time on the last iteration. As is shown in
Table 1, Forecast CPU times on the last iterations are negligible (less than 3000 seconds)
in comparison to the original timeout bound (48 hours).

We also applied our prototype to five other designs: Real11, Real2’, Real3’, Real4’,
Real8’. The results, reported in Table 2, demonstrate three points:
Robustness: The latter four designs are later versions of designs Real2, Real3, Real4,
Real8 from Table 1. As can be seen by the reported number of variables in the concrete
models, these designs are larger than the earlier versions by about 50 variables. Such
growth can pose a significant hurdle to a BDD-based model checker. In contrast, this
growth did not have a marked impact on our prototype.
Regression: As discussed above, for regression verification a good starting point is the
abstraction and variable order obtained from the last refinement iteration. To see the
impact of variable order reuse, we ran the last iteration of the refinement both with the
order obtained from prior iterations and without that order (in that case Forecast supplied
an initial order based on static analysis). As can be seen in designs Real11 and Real8’,
order reuse can have a dramatic impact on performance.

MCE hints: To assess the power of MCE hints, we ran the prototype with different
settings, un-freeing at each iteration 4, 16, or 24 variables. As is seen in the table, going
from 4 to 16 reduced the number of iterations (and consequently also total running time)
significantly, but going from 16 to 24 did not have such an effect.We also checked for each
iteration whether the spurious counterexample has been eliminated and reported on the
fraction of iterations in which this happened. Again, as is seen in the table, a significant
effect occurred only in the transition from 4 to 16 un-freed variables. Note that this
transition typically did not increase the number of variables in the final abstraction. Our
experience shows that for each design there is a balance point between counterexample
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Table 2. Results on five real-life verification test cases that were beyond the capacity of Forecast,
when the number of nodes un-freed at every iteration was 4, 16 or 24. The Forecast time is also
shown when the last iteration is rerun without reusing initial variable order information.

Un-freed Iterations Variables Forecast time (secs) Iterations
nodes (concrete vs. last Last iteration that removed

abstract model) reused order no reuse the CEX

Real11 4 26 652/302 1902 10229 8/26
16 7 652/221 2276 5/7
24 6 652/331 1714 4/6

Real2’ 4 10 677/222 1529 1757 7/10
16 5 677/218 1381 3/5
24 5 677/218 1492 3/5

Real3’ 4 10 652/187 430 426 5/10
16 6 652/221 1250 5/6
24 6 652/223 2762 4/6

Real4’ 4 6 677/209 656 814 3/6
16 4 677/211 265 3/4
24 4 677/256 256 3/4

Real8’ 4 17 677/290 1307 3692 5/17
16 7 677/293 6053 5/7
24 6 677/293 timeout(3 hrs.) 4/6

Table 3. Comparison between refining to the lower frontier vs. to the mincut frontier

No-Mincut Mincut
Iterations Latches Inputs time Iterations Latches Inputs time

Test1 1 0 140 111 1 0 126 48
Test2 t/o 16571 9 38 154 1171
Test3 19 36 180 5003 9 40 151 2241
Test4 18 34 147 4185 8 30 129 897
Test5 14 26 142 2391 6 25 130 1305
Test6 22 42 286 4543 8 36 151 653
Test7 15 28 152 1549 5 27 121 555
Test8 1 0 141 115 1 0 138 62
Test9 1 0 141 116 6 19 136 528
Test10 1 0 141 117 1 0 138 60
Test11 1 0 146 69 1 0 139 86
Test12 1 0 141 111 6 18 138 1246

elimination and abstraction growth rate. This point depends only on the design and not
on the property, since the design is the major contributor to state explosion.

We applied our iterative refinement flow on 12 distinct real-life test cases, comparing
the results of using the lower frontier vs. the min-cut frontier,. The results, reported in
Table 3, clearly demonstrate three advantages of the Min-Cut optimization:
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– The run-time of the iterative refinement flow can be significantly reduced. In all
but 3 tests, we achieved reduction in run time. In one case, Test2, the run did not
complete at all without applying the Min-Cut optimization, timing-out after several
hours. Applying Min-Cut, the verification completed in 1171 seconds.

– When Min-Cut optimizations are not used, un-freeing more than 2 latches at a time
adds too much redundant logic and have a negative impact on the quality of the
abstraction as well as run time, whereas when Min-Cut is applied the frontier can
pass through non-latch elements so the addition of logic for every un-freed frontier
node can be more conservative. We were able to un-free more frontier nodes (8) at
each iteration. As a result, the number of iterations is reduced, as seen in the table.

– The Min-Cut technique may not reduce significantly the number of latches in the
final abstractions, but it reduced the number of inputs significantly, as seen in Test6.

7 Concluding Remarks

Automatic generation of abstractions and their iterative refinement is a successful method
that expands the applicability of current model-checking tools. Our work contributes to
this area in several ways: First, we describe an automatic counterexample analysis tool,
which is integrated with a SAT-based bounded model checker. Besides detecting spurious
abstract counterexamples for the iterative refinement framework, this tool can be used
in isolation for analyzing the results of manual abstractions. Most useful is its ability
to provide a concrete version for real counterexamples. Second, our work departs from
the way counterexamples have been used to guide the refinement process until now,
in that the refinement step need not necessarily eliminate the spurious counterexample
at hand. Instead, the refinement is done so that all the spurious counterexamples are
eventually eliminated. While doing it, one must choose only the most relevant logic in
order to avoid reaching the capacity limits of the model checker before a successful
abstraction is found. We present a novel heuristic based on Multiple Counterexample
(MCE) technology, that specifically addresses this goal. The MCE heuristic hints at the
nodes in the frontier that are most relevant for all the counterexamples of the same length
as the one at hand. Third, our refinement algorithm achieves fine control over the abstract
models’ size growth by allowing the frontier to include intermediate logic nodes, and
by applying optimizations aimed at minimizing the number of added variables while
maximizing the constraints added to the abstract model.

Our experiments show the success of this approach for real-life test cases that were
beyond the capacity of a state-of-the-art BDD-based model checker, and provide insight
on how various tool configuration parameters can be tuned for a given set of test cases.

One possible avenue for future work is to combine hints from different sources when
deciding which nodes will be un-freed. Other possible direction for development is to
allow the refinement process to backtrack and try other refinement directions when the
capacity limits of the model checker are reached.
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