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Abstract. We define an abstract problem of module composition (MC).
In MC, modules are seen as black boxes with input and output ports.
The objective is, given a set of available modules, to instantiate some of
them (one or more times) and connect their ports, in order to obtain a
target module. A general compatibility relation defines which ports can
be connected to each other. Constraints are imposed on the number of
instances of each module and the number of copies of each port. A linear
objective function can be given to minimize the total cost of module
instances and port copies.

The MC problem is motivated by the need to automate the composi-
tion of legacy modules used in the development of software embedded
in cars. Due to the large number of modules, composition “by hand”
is tedious and error-prone, and its automation would lead to significant
cost reduction.

We show that the MC problem is NP-complete, by formulating an equiv-
alent integer optimization problem. We also identify a number of special
cases where the MC problem can be solved in polynomial time. Finally,
we suggest techniques that can be used for the general cases.

1 Introduction

In this paper we introduce a problem of module composition and provide algo-
rithms and fundamental worst-case complexity results for it.

The setting is as follows. We are given a set of available module types. Each
module type is characterized simply by a set of input ports and a set of output
ports. A binary compatibility relation between input and output ports models
which input port can be connected to which output port. The problem is to
(1) generate zero or more instances of each module type, (2) generate zero or
more copies of each port in each module instance, and (3) connect all ports in
a compatible way so that no port remains disconnected. As we show below, this
problem is general enough to capture the problem of finding a composition of
available modules that “implements” a given target module.

Constraints can be imposed on the number of instances of each module type
(e.g., “at least 2 copies of A, at most 1 copy of B”, etc) and the number of
copies of each port in an instance (e.g., “can fan-out port p at most 10 times,
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port ¢ needs at least 2 inputs”, etc). A linear objective function can be given to
minimize the total cost of module instances, port copies and connections.

To motivate the reader, we give an example, shown in Figure [[l The figure
shows two available module types A and B and a target module T'. The goal is
to instantiate and connect A and B to obtain 7. The only compatible ports are
output port ¢; of A with input port ps of B (we use an arrow from p3 to ¢ to
denote that). For simplicity, we assume there are no bounds on the number of
instances of modules or the number of copies of ports. By instantiating each of
A and B and their ports once and connecting ¢; to p3, we achieve our goal.

Now, it is easy to see that the above problem is equivalent to the following
slightly modified problem. Given A, B and T~! (the “inverted” version of T,
that is, where input ports are turned into outputs and outputs into inputs),
find a composition which includes exactly one instance of T~! and results in the
“closed” module (that is, where all ports are connected). Therefore, in the rest
of this paper, we consider this modified version of the problem where there are
only available modules and the goal is to reach a closed composition. We call
this the module composition problem (MC).

The results we obtain for MC are the following. First, we give an equivalent
formulation as an integer programming optimization problem. Second, we show
that MC is NP-complete. Third, we identify a number of special cases where
MC can be solved in polynomial time, by solving an equivalent network flow
problem. Finally, we suggest methods to be used in the general case.

Applications. We believe that the abstract problem introduced and studied
in this paper has a number of practical applications. For example, in a circuit
layout context, modules might represent chips and ports might represent wires.
In a software engineering context, modules and ports might represent software
components and their interfaces. Automatic composition can be especially useful
in a dynamic and distributed environment, such as programs communicating over
the Internet using middleware like CORBA or JINI: in such an environment, it
is important for fault tolerance and reconfiguration to dispose of fast automatic
composition techniques.

The application that has initially motivated our work comes from the domain
of automotive embedded software development [12J2]. The problem there is to
“design a software tool that automatically composes a fully executable model
from a list of components and an architectural description of the final model”
(quote from [12]). The components are used for simulation and eventually code
generation. Due to the large number of legacy components (hundreds or more,
often developed by different groups), the current practice of composition “by
hand” is extremely tedious, as well as error prone. It is obvious that an automatic
composition technique would greatly reduce the software production cost.

Related work. Automating software composition is not a new idea. Tools such
as make are widely used to automate compilation or any other software trans-
formation, taking into account dependencies, and so on. The major difference
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of these tools with our approach is, however, that in make, all alternative rules
(i.e., possible solution chains) have to be a-priori known and hardcoded in the
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makefile. Another drawback is that hardcoding preferences among alternative
solutions is not always easy in tools like make.

Our work is obviously related to Architecture Description Languagesﬂ as well
as to Software Architectures (e.g., see [15]) and other component models (e.g.,
see [18]). Our approach is independent of methodological and language-specific
aspects. We have focused in defining a basic formal problem (with obvious prac-
tical applications) and obtaining fundamental complexity results. We have also
been interested in a “light-weight” approach. Our framework is intentionally
simple: for example, it cannot impose global constraints on a solution and mod-
ules do not have operational semantics. This simplicity makes automation in the
large possible.

[16/11] propose the tool Metaframe, based on linear temporal logic and using a
variant of the synthesis algorithm of [I0] (of exponential worst-case complexity).
The major difference with our framework is that they build only linear compo-
sitions (i.e., chains) rather than general graphs, as we do. Other differences are
that in Metaframe, all possible solutions can be obtained, whereas in our case,
we obtain only one solution. In Metaframe, constraints on the order of modules
in a chain can be expressed (e.g., A must appear before B), however, it is not
clear how to specify preference constraints or bounds on the number of modules.

The problem in [7]§] is to automatically generate all possible configurations
of middleware architectures. Here, too, all possible solutions are found. Their
framework is not restricted to linear architectures, however, the number of com-
ponents to be used in a solution is fixed in advance, and preference constraints
cannot be expressed. Like Steffen et al, Kloukinas et al. also use algorithms
inspired by model-checking and formal verification techniques.

Also related is the dataflow composition based framework implemented in
the tool Sword [614]. The problem is quite similar to ours: the synthesis of a
composite service based on available services. As with the above works, it is not
clear whether multiple copies of each service can be used and whether preferences
or bounds can be expressed. The algorithm used in Sword is also quite different
from ours: it uses rule-based techniques from the domain of artificial intelligence.

Finally, related is the component-modeling language Alloy, for which it is
possible to perform automatic analysis in a first-order logic [5]. The analysis
is sound but not complete, since the logic is undecidable. We do not know yet
whether it is possible to express some type of module composition and automate
it within the Alloy framework.

This work extends the results of [17] which deal with the problem of auto-
matically composing modules in a chain.

2 Module Composition Problem

Let N denote the set of natural numbers {0, 1,2, ...}.

! BE.g., see www.sei.cmu.edu/architecture/adl.html for a list of ADLs.
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We consider a finite set of ports, P = {p1,...,pr}. We assume that P =
Pin U Pout, where Py, N Poye = 0. Py, is the set of input ports, Py is the set of
output ports.

We also consider a compatibility relation C C P, X Pout, between input and
output ports. The understanding is that input port p can be connected to output
port ¢ iff (p,q) € C.

A module type is a tuple A = (In, Out, fin, fout), where In C Pi,, Out C
Pout, fin : In — 2N and fo : Out — 2N. An instance of A is a tuple
(In,Out, gin, Jout), where gin : In — N and gpye : Out — N, such that for
all p € In, gin(p) € fin(p), and for all ¢ € Out, gout(q) € four(q). The mean-
ing is that f,u:(p) defines the possible fan-out factors of output port p, namely,
how many (compatible) input ports can be connected to p. For example, if
fout(p) = {1,2} then at least one and at most two ports should be connected
to p. We can view fo:(p) as specifying how many copies of p an instance of
module A can have. Each copy of p will be connected to a single copy of another
port. Then, in a given instance of A, gou:(p) fixes exactly how many copies of p
there are, within the range specified by fou:(p). The meanings of f;,, and g;, are
symmetric.

We will use the following notation and assumptions. For a module type A =
(In,Out, fin, fout), in(A4), out(A), fin(A) and fou:(A) denote In, Out, f;, and
fout, respectively. Similarly for module instances. We will assume that f;,(p)
and f,u:(¢) are non-negative integer intervals, e.g., [0, 5], [1,1], and so on. We
will also assume that the set of input and output ports of a module type are
disjoint. Finally, we will assume that given a set of module types, they all have
disjoint sets of input ports and disjoint sets of output ports.

Given a multiset of module instances Z (not necessarily all of the same
module type), a composition on T is defined as a multiset X of tuples of the
form (A,p, B,q), where A,B € Z, p € in(A) and ¢ € out(B). The meaning of
(A, p, B, q) is that input port p of A is connected to output port g of B.

We say that a composition X on Z is closed if the following conditions hold:

VA € Z,Vp € in(A),[{(A,p, -, ) € X}| = gin(A)(p) (1)
VA € I,Yq € out(A), {(-, - A,q) € X} = gout(A)(q) (2)

Conditions [ and Bl say that X connects a port to exactly as many ports as
specified by its fan factor.
We say that a composition X on Z respects a compatibility relation C if

Vp € Pin, q € Pout, (-, 0, -,q) € X = (p,q) € C (3)

The last element we need is a set of constraints on how many instances of
a module type we can have. We formalize that as a function Njg : M — 2V,
where M is the set of module types and for each module type A in M, Njus(A)
is an interval. For example, if Ni,st(A) = [1,10], this means that at most 10
instances of A are available and at least 1 instance should be used, whereas if
Ninst(A) = N, then an arbitrary number of instances of A can be used, possibly
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none. We say that a set of module instances Z respects Ni,s if for each module
type A, if n4 is the number of instances of A in Z (notice that Z is a multiset),
then ng € Nipst(4).

We are now ready to state the module composition problem.

Definition 1 (Module Composition Problem (MC)). Given
(a) disjoint sets of input and output ports Pin, Pout,
(b) a compatibility relation C C Py, X Poyt,
(c) a set of module types M, and
(d) constraints on the number of module instances
Nipst : M — 2N;
find
(e) a set of module instances T that respects Nipst, and
(f) a composition X on T that respects C and is closed.

Ezxzample 2. Consider the set of module types shown at the top of Figure Bl For
the sake of simplicity, we assume that two ports are compatible iff they have
the same nameld We require that exactly one instance of module A, be present
in the composition, while there are no constraints on the number of instances
of Ay, As, A3. In our framework this can be modeled by setting Ninst(Ag) = {1}
and Nipst(A1) = Nipst(A2) = Nipst(As) = N. The fan factors of all ports are
constrained to be exactly 1, except for output port a of module Ay, which can
have from 0 up to 3 copies. That is, fout(Ao)(a) = [0, 3], and fin(p) = fout(q) =
[1,1], for all other ports p,q in the system. A solution of this MC is shown at
the bottom of the figure. In the solution, there is one instance of Ay, Ao, A3 and
two instances of A;. Also, there are two copies of output port a of Ag, each
connected to a copy of input port a of a different instance of A;.

Remark 3 (The compatibility relation). We assume that the compatibility rela-
tion is given. Indeed, how compatibility of ports is derived is application specific,
and out of the scope of this paper. Still, we give some examples of the range of
expressiveness of the compatibility relation below. Note that the compatibility
relation can be derived (possibly automatically) independently of the composi-
tion problem: this can be done once and used in many composition instances.
As in Example[2], compatibility could be simply based on names: two ports are
compatible iff they have the same name (note that our framework is strictly more
expressive than naming, see footnote [2). Another possibility is type matching:
each port represents a type, and two ports are compatible iff their types match
(for example, p;n: matches g;n: and ¢reqr). Note that polymorphic types can be
handled as well: for example, a module computing the length of a list of objects
of any type can have an input port p which is compatible with all output ports

2 There exist compatibility relations which can be expressed in our framework, i.e.,
as a binary relation C C Pj, X Pout, yet cannot be reduced to naming. Section
contains an example of such a relation (Figure ). The algorithm we present in
Section B] can handle any relation C C P, X Poyt.
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Fig. 2. A module composition problem and a solution.

representing listsH Ports could also represent interfaces (i.e., sets of functions
defined by their signatures), in which case port p is compatible with port ¢ if
the interface defined by p is a subset of the one defined by q

Ports could even be given semantics in terms of automata (as in [9] or [3])
which can express, for instance, the acceptable order of function calls in an inter-
facel] (e.g., “before you call get() you must call init()”). Here, compatibility can
be defined as a simulation relation between automata and can be derived auto-
matically by testing offline, for every pair of input/output ports (p, ¢), whether
the automaton of p simulates the one of q.

Non-uniqueness of solutions, optimality. We observe that an MC does not
necessarily have a unique solution. This is because of the following reasons:

— If a set of instances works, then doubling the instances will work too (pro-
vided the constraints on number of instances are met).

— Even if we require the number of elements in Z to be minimal, there might
be more than one minimal solutions.

— Even if we fix the number of instances, there might be multiple ways to
instantiate the fan factors of some ports. For example, if (p,q) € C and
fzn(p) N fout(q) = [17 2]a then we could let gzn(p) = gout(q) =1or gzn(p) =
Jout(q) = 2, which amounts to creating one or two copies of each port and
connecting them.

3 When polymorphism is allowed, it is sometimes desirable, in case type p is compatible
with many types qi, ..., gk, to select the type ¢; that is “closest” to p. This can be
done in our framework through the use of an objective function to be minimized,
see below.

4 We see the module having input p as the caller component and the module having
output ¢ as the called-upon component.

% For example, see the RosettaNet project (www.rosettanet.org), where every “Partner
Interface Process” (i.e. every interaction between two entities) is standardized, its
syntax given in XML and its semantics described by an automaton.
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— Even if we fix both the number of module instances and port copies, there
may be different compositions (i.e., different ways to “wire” the modules)
possible.

The algorithm that we give in the following section finds an optimal solution
to an MC, provided a solution exists. The solution is optimal with respect to a
given (linear) objective function which represents the sum of the costs of creating
instances of a module (an instance of module type A; will add a cost ¢;), creating
copies of ports (a copy of port p will add a cost ¢,), and connecting ports
(connecting port p to port ¢ will add a cost ¢, 4). This is useful, since we can
express the fact that some modules might be more costly than others, as well as
express preferences/priorities in connecting pairs of ports.

3 Automated Module Composition

In this section we present the main results of our study of MC:

— The general MC is decidable and NP-complete.
— In a number of special cases (e.g., when the number of instances for each
module type is known), MC can be solved in polynomial time.

The basic idea for proving decidability is to formulate an integer program, such
that MC has a solution iff the integer program has a solution. Moreover, an op-
timal solution of the integer program with respect to a linear objective function
corresponds to an optimal set of instances Z for MC. Given Z, finding a com-
position X is straightforward. NP-hardness is proved by reducing the Knapsack
problem to MC. We start by illustrating our approach with a simple example.

3.1 A Simple Example

Consider again the MC problem of Figure 2] Initially, let us assume that the
fan factors of all ports are equal to 1 (we relax this assumption later). That is,
fin(®) = four(q) = [1,1], for all ports p,q in the system. We will also assume
throughout this example that all costs are equal to 1, that is, a solution is optimal
if it minimizes the sum of module instances, port copies and connections.

We begin by creating integer variables xg, 1, 2, T3, where x; represents the
number of instances of module A; in the solution. From Nj,s:, we obtain the
constraints g =1, 2; > 0,7 =1,2,3.

Viewing the port names as independent vectors, we can represent each mod-
ule type by a simple linear expression on these vectors. Doing so, we get the
expressions —c — d + a for Ag, —a + b for Ay, —b+ ¢ for Ay, and —b+ d for As.

Now, it is easy to see that the requirement that the composition be closed is
equivalent to the following constraint:

2o (—c—d+a)+x-(—a+b) +x2-(=b+c)+z3-(=b+d)=0 (4

or equivalently:
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a-(xo—x1)+b-(x1—x3—x3)+c¢- (—xo+x2) +d-(—xg+23) =0 (5)

Indeed, module Ay will “contribute” xq copies of its output port named a (since
the fan factors are set to 1), and each of these has to be connected to a copy
of the input port of A; named a, therefore, x¢ must be equal to 7 in order to
have a closed composition.

Since a, b, ¢, d are independent vectors, equation (B)) is equivalent to the set
of equations:

T9g—x1 =0 (6)

1 —T9 —x3 =0 (7)
—20+22=0 (8)
—zo+z3=0 (9)

Thus, we ended up with a simple system of linear equations on integer variables,
namely, equations (@)-(@), along with the initial constraint zg = 1. Solving the
system (e.g., by Gaussian elimination), we find that it is infeasible. This means
that there exists no solution to the above instance of MC.

We now relax the constraint that the fan factors of all ports should be 1.
For example, suppose that fou:(A4p)(a) = [0,3]. To model this, we create an
additional variable y§, which represents the fan-out factor of port a of Ay. Since
each instance of Ay can contribute from 0 up to 3 copies of a, we have the
constraint:

200 <yl <x0-3 (10)
Equation (H) now becomes:
yo-a+xo-(—c—d)+z1-(—a+b)+x2-(=b+c)+a3-(—b+d)=0 (11)
We can transform constraints (I0) and (II)) to an equivalent set of equations:
Yo —3x0+s=0 (
Yo —z1 =0 (13
Ir1 — Ty — T3 — 0 (
—zo+22=0 (
—zo+x3=0 (16
where s > 0 is a slack variable that transforms the inequality constraint into
an equality. Solving equations zgp = 1 and ([2)-([8) by Gaussian elimination,
we obtain the optimal solution xg = 22 = 23 =1, y§ = 1 = 2, s = 1. This
corresponds to the set of module instances shown in the bottom of Figure[2l.
Once the set of module instances is determined, connecting the ports (i.e.,
finding a composition) is trivial: pick any unconnected copy of an input port and
connect it to an unconnected copy of a compatible output port; repeat until all
ports are connected. Notice that this procedure is guaranteed to terminate with
all ports connected, since the above constraints ensure that a closed composition

exists. Also notice that since connections are made at random, there might be
more than one compositions possible.
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3.2 Formulation as an Integer Programming Problem

Let M = {Ao, A41,...,An} be the set of module types. The integer program
contains the following non-negative integer variables and constraints.

— x;, i = 0,...,n, represents the number of instances of module A;. Let
Ninst (A;) = [l;, u;]. For each z;, we have the constraint

I <xp <y (17)

If u; = oo, then the constraint becomes I; < x;.

— Yp, D € Pin, represents the total number of copies of input port p of a module
A;, in all instances of A;. Letting fi,(A4;)(p) = [ap, bp], each instance of A;
can “contribute” from a, up to b, copies of p. Therefore, for each p, we have
the constraint

X ap <Yy < x; - by. (18)

If b, = oo, then the constraint becomes x; - ap < yp.

— 2g, ¢ € Pou, represents the total number of copies of output port ¢ of a
module A4;, in all instances of A;. Letting f,u1(A;)(q) = [aq, by, each instance
of A; can “contribute” from a, up to b, copies of ¢q. Therefore, for each g,
we have the constraint

i ag < z2qg < Xy - by, (19)

If b4 = oo, then the constraint becomes x; - aq < 2.

— Wpq, (p,q) € C, represents the number of connections between a copy of p
and a copy of g. We relate the wy, , with the y, and z, variables with the
following sets of constraints, for each p € Pi,, ¢ € Pout:

Yp = Z Wpg and zg= Z Wp,q (20)

(p,q)€C (p,q)€C

Constraints (20) ensure that a closed connection exists.

Proposition 4. There is a solution to MC iff there exist non-negative integers
zi, fori=0,...,n, yp, forp € Pin, 24, for ¢ € Pout, Wy 4, for (p,q) € C, such that
constraints (17)-(20) are satisfied.

Regarding optimality, it can be easily incorporated in the above formulation, by
introducing an objective function to be minimized. Let ¢; > 0 be the cost of an
instance of module 4;, ¢, > 0 be the cost of a copy of port p, ¢; > 0 be the cost
of a copy of port ¢, and ¢, 4 > 0 be the cost of connecting a copy of p to a copy
of q. We define the objective function to be:

f@y,z,w) =3, ., Ci%i+ D pep, lp + 2 gepo, Ca%a T 2 gepo, CraWpas

where x,y, z, w are the vectors of variables x;, yp, 24, Wp 4, respectively.
Then, we get an integer optimization problem:
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minimize f(x,y, z,w), subject to constraints (I7)-(20),
and x;,Yp, 24, Wp,q are non-negative integers.

It is worth observing that, first, if {; = 0 for all ¢ = 0,...,n, then the trivial
solution x; = y, = 24 = wp ¢ = 0 is both feasible and optimal. Second, if for all i
such that I; > 1, for all p € in(A4;), ap, =0, and for all g € out(4;), ag =0, then
the solution x; = l;, yp, = 24 = wp,q = 0 is both feasible and optimal. Therefore,
the interesting cases arise when there exists some ¢ such that I; > 1 and for some
p € in(4;), ap > 1, or for some ¢ € out(A;), ag > 1.

Eliminating redundancy in the integer program. In many cases, there
may be a lot of redundancy in the above integer program, in the sense that the
number of variables and constraints can be reduced. We have seen such a case
in the example of section [3.I], where we used not all of the y,, or z, variables and
none of the w,, , variables. We now explain which variables and constraints can
be eliminated and when. Our discussion on eliminating wy, 4 variables also shows
that not all compatibility relations can be reduced to naming.

Eliminating y, or zq variables. In the case where f;,(p) = [1,1] for some input
port p (i.e., the fan factor of p is 1), constraint (I8) above becomes z; -1 <y, <
x;-1, or y, = x;. In that case, we can eliminate variable ¥, and use z; in its place.
Similarly, for some output port ¢, we can eliminate variable z; if fo,:(q) = [1, 1].

Eliminating w, 4 variables. The reason why we did not have to use any wy 4
variables in the example of section[31lis that we assumed that the compatibility
relation of that example can be reduced to port naming, such that two ports
are compatible iff they have the same name. This cannot always be done. For
example, look at Figure Bl For the compatibility relation on the left, we cannot
find a naming that works. Indeed, assume we give p; the name a. Then we have
to name ¢; and g2 by a too. Since ¢ is named a and is compatible with po,
we have to name ps by a as well. But now ps and ¢; have the same name,
even though they are not compatible. On the other hand, for the compatibility
relation on the right of the figure, we can find a naming (just name all ports a)
that works.

Formally, we say that a compatibility relation C C P;, X P, has the Z
property if for any p1,ps € P, and any q1, g2 € Poyt

(P1,q1) € CA(p1,q2) € CA(p2,q2) €C = (p2,q1) € C. = (p2,q1) € C.

Then, we can show the following;:

Lemma 5. We can find a function name : P;, U P,,; — N such that Vp €
Pip,q € Pour,name(p) = name(q) < (p,q) € C, iff C has the Z property.

Thus, if C has the Z property, we can partition P;, and Pyt into disjoint subsets
I:)in = PinO U Pin1 u-.- Pinka Pout = Pouto U Pout1 U Poutky such that p e |:)inz

iff name(p) = ¢ and ¢ € Poy" iff name(q) = 4. Then, we can eliminate variables
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wy, 4, and replace the set of constraints (20)-(20) by one constraint as follows,

for each 1 =0, ..., k:
Z Yp = Z 2q- (21)

PEP;,? qEPut?

In fact, even if C does not have the Z property, “parts” of it might possess it. In
such a case, we can perform the above optimization for these parts, eliminating
the corresponding w,, , variables.

b1 \H a1 b1 ><H a1
b2 q2 p2 q2
does not have the Z property has the Z property

Fig. 3. Illustration of the Z property.

3.3 NP-Completeness
Theorem 6. The Module Composition Problem is NP-Complete.

Proof: First we show that MC is in NP. It has been shown that any integer
programming problem can be transformed in polynomial time into a 0-1 integer
programming problem, that is, where all variables take the values 0 or 1 (e.g., see
chapter 1.5 of [I3]). Since there is a polynomial number of 0-1 variables, say k,
there are 2% possible solutions. For each solution, it can be checked in polynomial
time whether it is feasible. If a feasible solution is found, the composition can
be computed in linear time in the number of ports, as discussed in section
Therefore, MC is in NP.

To prove that MC is NP-hard, we reduce a variant of the Knapsack problem
(KP) to MC. KP is defined as follows. We are given a set of numbers S =
{c1,...,cn} C N, and some M € N. We are asked whether there exists a subset
S" C S, such that ) ¢ x = M. The problem is known to be NP-complete [4].

We reduce KP to MC as follows. Let Ag, A1, ..., A, be module types, where:

— Ninst(Ag) = {1} and Nijnst(A;) = {0,1}, for each i = 1,...,n.

— Ap has no output ports, M input ports, and fi,(Ag)(p) = [1,1] for each
input port p of Ag.

— For each ¢ = 1,...,n, A; has no input ports, ¢; output ports, and
fout(A;)(g) = [1,1] for each output port ¢ of A;.

— Every input port is compatible with every output port.

It is easy to see that KP has a solution iff the above MC has a solution. [ ]
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3.4 Special Cases of Polynomial Complexity

Although the worst-case complexity of the general MC is exponential, there are
many interesting special cases where MC can be solved in polynomial time. This
is when the integer program of section can be transformed to an equivalent
network flow problem, which can be solved in polynomial time using a variety of
algorithms (e.g., see [I]). We now identify some of these cases.

Special case I: known number of module instances. Suppose that the number of
module instances are known, that is, [; = u;, for all i = 0, ..., n. In this case the
problem is equivalent to a min-cost flow problem, in a network defined as follows.
There is one node for each input port p, one node for each output port g, a source
node s and a sink node t. There is a directed link from s to each node p, and the
flow along this link corresponds to y,. There is a directed link from each node ¢
to ¢, and the flow along this link corresponds to z,. There is a directed link from
p to g, for each (p, ¢) € C, and the flow along this link corresponds to wy, 4. There
is a directed link from t to s. Finally, there are lower and upper capacity bounds
on the links (s,p) and (g,t), corresponding to constraints (I8) and (I3). The
objective function is similar to the one given in section B2, namely, minimize
(Xpep, & Yp) + (Xyep,, Ca %)

A number of min-cost flow algorithms can be used in this case. For example,
the enhanced capacity scaling algorithm has complexity O((elogv)-(e+vlogwv)),
where v is the number of nodes and e the number of edges. Notice that in the
network construction above, we have v = |Pin| + |Pout| +2 and e = |Pin| + |Pout| +

ICl.

Special case II: modules with single input/output ports. Suppose that each mod-
ule type has at most one input port and at most one output port, that is,
lin(A;)] <1 and |out(4;)| <1, for all i = 0,...,n, and fin(p) = four(q) = [1,1],
for all ports p,q. Then, the problem can be again transformed into a min-cost
network flow problem, where the network is defined as follows. There are two
nodes, s; and t;, for each i = 0,...,n. There is a directed link from s; to t; with
capacity x; € [l;,u;]. If A; has an input port p and A; has an output port g, such
that (p,q) € C, then there is a directed link from ¢; to s;. The objective function
is similar to the one given in section [B.2] namely, minimize Zizo,...,n Ci - Ty

Again, any min-cost flow algorithm can be used. In this case, the number of
nodes is 2n and the number of edges is n + |C]|.

3.5 Overall Algorithm for the Module Composition Problem

Based on the results of the previous sections, the overall algorithm to solve MC
has three stages.

In Stage 1, we try to find an optimal solution to the integer optimiza-
tion program given in section B2 If no feasible solution exists, then MC has
no solution (by proposition H). If an optimal solution is found, we proceed to
stage 2.
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In Stage 2, we know the z;’s, y,’s, 2,’s and w,, 4’s. From these, we can build
a set of module instances Z as follows. There will be z; instances of module
A;. For each input port p of A;, there will be a total of y, copies of p in all
instances of A;. How many copies are assigned to each instance does not matter,
as long as there are between a, and b, copies of p in each instance. Therefore,
we can assign copies to instances at random, making sure the above constraints
are metfi Similarly, we assign a total of z, copies of port g.

Finally, in Stage 3, we build the composition as follows. Initially all copies of
all ports are disconnected. We repeat the following, until all copies of all ports
are connected: pick any unconnected copy of an input port and connect it to an
unconnected copy of a compatible output port

Obviously, the hard part is Stage 1: solving the integer program. For this, the
following strategy can be employed. First, check whether the problem instance
belongs to one of the special cases given in section[3.4l These tests can be done
automatically. If the problem belongs to a special case, apply a min-cost flow
algorithm of choice.

If the problem does not belong to any special case, apply a heuristic of choice.
There is a large number of heuristics for integer optimization problems developed
in the literature. We just mention a few here, referring the reader to [1JI3] for
details.

1. Apply Lagrangian relazation, by removing the constraints (I7)-(Id) from the
feasible region and adding the following term to the objective function:

9z Yy, z,w) = (3 Ailus — 23) + pa(i — 1))
+ (Zp Ap(bpi — yp) + pp(Yp — api))
+ (Zq Aq(bgi — 2q) + pq(2q — aqi)),

where the \’s and p’s are the Lagrange multipliers. By doing this, we end-
up with a min-cost network flow problem, which can be iteratively solved to
obtain a strict bound on the optimal solution and perhaps also find one.

2. Use branch-and-bound to iteratively solve linear relaxations of the integer
program (i.e., where the variables are not restricted to be integers), and
converge to an integer solution.

3. Use a cutting-plane algorithm to do the above.

4 Summary, Discussion, and Perspectives

We have introduced an abstract problem of module composition and showed
how its solution can be computed effectively. We believe that the problem arises
in many instances in practice, in particular in the development of large software

5 By proposition [ it is guaranteed that we can assign copies such that the above
constraints are met.

7 Again, by proposition H this procedure is guaranteed to terminate with all ports
connected.
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systems or the deployment of dynamic systems. We also believe that an auto-
mated procedure can result to significant cost savings, both by speeding-up the
assembly process and by facilitating component re-use.

One question about our work might be, what is the behavior of the composite
module and how is it ensured that this behavior is correct? It has been our
conscious decision not to associate detailed semantics with our model. We could,
for instance, specify the behavior of a module by an automaton and define the
composition of modules in terms of automata composition. This would permit
us to express desirable properties of the global system in a formal specification
language (e.g., temporal logic) and use formal verification techniques (e.g., model
checking) to check whether the property holds or not. Instead of doing this, we
opted for a more “light-weight” approach, where modules are “black boxes” with
no internal semantics and composition only guarantees local port compatibility.
The motivations behind our choice have been the following;:

1. We care about scalability of our method. State-of-the-art formal verification
techniques cannot cope with more than in the order of tens of modules, thus
are not sufficient for large systems.

2. We argue that (local) port compatibility can be made as expressive as nec-
essary, thereby capturing the intended semantics and ensuring that systems
that “compose well” are also “correct by construction” to a certain degree.
(See Remark Bl for examples of compatibility relations.)

3. Even in the case where the semantics of ports are not strong enough to
capture all necessary global properties, we believe that our algorithms are
still useful as a “first pass” of module composition, which is automated,
therefore fast. After this first pass, the designer can examine the result using
more sophisticated techniques in order to verify all properties of interest.
The first pass is still useful since it has relieved the designer from the tedious
process of composing a large number of components “by hand”.

Regarding future work, we intend to apply our methods in the particular con-
text of embedded software development for cars. In order to make the approach
more usable, we plan to develop techniques to automate the resolution of the
compatibility relation: deciding whether two ports are compatible can be done
automatically based on a set of rules such name matching, type matching, match-
ing of sampling rates, etc. Finally, we intend to investigate the power of local
port compatibility with respect to global properties of the composite system.
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