
Banana – A Tool for Boundary Ambients
Nesting ANAlysis �

Chiara Braghin1, Agostino Cortesi1, Stefano Filippone1, Riccardo Focardi1,
Flaminia L. Luccio2, and Carla Piazza1

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia,
{braghin,cortesi,sfilippo,focardi,piazza}@dsi.unive.it
2 Dipartimento di Scienze Matematiche, Università di Trieste,

luccio@dsm.univ.trieste.it

1 Introduction

Banana is a tool for the analysis of information leakage in mobile agent specifi-
cations. The language considered is Mobile Ambient calculus, initially proposed
by Cardelli and Gordon with the main purpose of explicitly modeling mobil-
ity [5]. Sites and agents (i.e., processes) are modeled as nested boxes (i.e., ambi-
ents), provided with capabilities for entering, exiting and dissolving other boxes.
This specification language provides a very simple framework to reason about
information flow and security when mobility is an issue [1].

The main features of Banana are:

– A textual and graphical editor for Mobile Ambients, to specify and modify
the process by setting ambient nesting capabilities and security attributes
in a very user-friendly fashion.

– A parser which checks for syntax errors and builds the syntax tree out of
the Mobile Ambient process.

– An analyzer which computes an over approximation of all possible nestings
occurring at run-time. The tool supports two different control flow analyses,
namely the one of Nielson et al. [6] and the one by Braghin et al. [1].

– A post-processing module, that interprets the results of the analysis in terms
of the boundary-based information-flow model proposed in [1], where infor-
mation flows correspond to leakages of high-level (i.e., secret) ambients out
of protective (i.e., boundary) ambients, toward the low-level (i.e., untrusted)
environment.

– A detailed output window reporting both the analysis and the security re-
sults obtained by the post-processing module, and some statistics about the
computational costs of the performed analysis.

� Partially supported by MIUR Project “Modelli formali per la sicurezza”, the EU
Contract IST-2001-32617 “Models and Types for Security in Mobile Distributed
Systems”, and project “Matematica per le scienze e la tecnologia”, Università di
Trieste.

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 437–441, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

438 C. Braghin et al.

Banana is implemented in Java and strongly exploits the modularity of
object-oriented technology, thus allowing scalability to other analyses (e.g., the
one in [3]) and extensions of the target language (e.g., [7]). Moreover, Banana
is conceived as an applet based on AWT and thus compatible with the majority
of current web browsers supporting Java.

2 Security of Mobile Ambients

The Mobile Ambient calculus has been introduced in [5] with the main purpose of
explicitly modeling mobility. Indeed, ambients are arbitrarily nested boundaries
which can move around through suitable capabilities. The syntax of processes is
given as follows, where n ∈ Amb denotes an ambient name.

P,Q ::= (νn)P restriction | n�a [[P]] ambient
| 0 inactivity | in�t n.P capability to enter n
| P | Q composition | out�

t

n.P capability to exit n
| !P replication | open�

t

n.P capability to open n

Intuitively, the restriction (νn)P introduces the new name n and limits its scope
to P ; P | Q is P and Q running in parallel; replication provides recursion and
iteration. By n�

a

[[P]] we denote the ambient named n with the process P run-
ning inside it. The capabilities in�

t

n and out�
t

n move their enclosing ambients
in and out ambient n, respectively; the capability open�

t

n is used to dissolve a
sibling ambient n. Labels on ambients and on transitions are introduced as it is
customary in static analysis to indicate “program points”.

The operational semantics of a process P is given through a suitable reduction
relation→ and a structural congruence ≡ between processes. Intuitively, P → Q
represents the possibility for P of reducing to Q through some computation (see
also [5]).
For instance, let P1 be a process modeling an envelope sent from venice to
warsaw:

venice[[envelope[[out venice.in warsaw.0]] | Q]] | warsaw[[open envelope.0]]

Initially, envelope is in site venice. Then, it exits venice and enters site warsaw
by applying its capabilities out venice and in warsaw, respectively. Once site
warsaw receives envelope, it reads its content by consuming its open envelope
capability. Finally, process P1 reaches the state: venice[[0]] | warsaw[[Q]] .

To deal with security issues, information is classified into different levels of
confidentiality. This is obtained by exploiting the labelling of ambients. In par-
ticular, the set of ambient labels is partitioned into three disjoint sets: high, low
and boundary labels. Ambients labelled with boundary labels (boundary ambi-
ents) are the ones responsible for confining confidential information. Information
leakage occurs if a high level ambient exits a boundary, thus becoming possibly
exposed to a malicious ambient attack. For instance, let P2 be an extension
of process P1, in which the envelope contains confidential data hdata (labelled
high) which needs to be safely sent from venice to warsaw.

Banana – A Tool for Boundary Ambients Nesting ANAlysis 439

veniceb1 [[envelopeb2 [[outc1 venice.inc2 warsaw.0 | hdatah[[inc3 translator.0]]]]]] |
warsawb3 [[openc4 envelope.0]] | translatorm[[inc5 envelope.0]] | openc6 translator

In this case, venice, warsaw and send must be labelled boundary to protect
hdata during the whole execution. (See [1,2] for more detail.)

The tool verifies that in every execution of process P no direct information
leakage occurs, by implementing the control flow analyses described in [6] and [1].
Both analyses aim at modeling the possible nesting of processes occurring at run-
time. The analysis presented in [1] is a refinement of [6]: it separately considers
nestings inside and outside boundaries, thus leading to a more accurate result
with respect to security issues.

3 Tool Overview

A screen-shot of the Banana tool is shown in Figure 1, while Figure 2 gives an
overview of the architecture of the tool.

Fig. 1. Screen-shot of the Banana tool.

A user can edit the process to be analyzed by using either the Textual or the
Graphical Editor. The security labelling (i.e., the labels denoting untrusted, confi-
dential, and boundary ambients) can be inserted directly by the user, or automat-
ically derived by the tool during the parsing phase. In the latter case, ambients
starting with letter ’b’ are labelled boundaries, while ambients starting with ’h’
are labelled high. By selecting an item in the Project Explorer window, the user
can check/modify the properties of the ambient/capability. The user can also
check the syntax correctness of the process by selecting the Parsing button.

The user can then choose to launch either the Nielson or the Braghin et
al. analysis. Once the analysis has started the tool parses the process, builds a

440 C. Braghin et al.

Editor

Mobile Ambient
process

Parser Start

Proc

parProc Proc

AmbProc AmbProc

Ident [Proc] Ident [Proc]

venice warsaw NullProcNullProc

00

Data
Structures

Analysis

Post−processing
Security Results

Statistics

Analysis
Results

Editing Parsing Analysis

Syntax Tree

Output

Security Labeling

Textual Editor

Security Labeling

Graphical Editor

Lexical Analyzer

Syntax Checker

Security Labels
Checking

Braghin et al.

Nielson

Fix Point
Computation

Fix Point
Computation

Fig. 2. Overview of the Banana tool.

syntax tree and computes the fix point algorithm yielding an over-approximation
of all possible ambient nestings. The result of the analysis is reported in the
Output Console as a list of pairs of labels.

By post-processing the analysis results, Banana reports in the filed Protec-
tive the sure absence of information leakages.

The Banana tool has been accurately tested using a suite of use cases con-
sisting of processes differing in the size and number of capabilities. It is available
on-line at the following address:
http://www.dsi.unive.it/∼dbraghin/banana/

4 Conclusion

Banana is a very user-friendly tool for the analysis of information leakage in
Mobile Ambient specifications.

It allows to compare two different control flow analyses, i.e., the one by
Nielson et al. and the one by Braghin et al., run on non-trivial examples. This
also shows the feasibility of these analyses, that have polynomial time and space
complexities.

Another interesting issue is the scalability of this tool: as an on-going work
we are currently extending Banana to computationally more efficient analyses,
as the one in [3] that has improved time and space complexities. This task
is particularly simple, because of the modularity of the object-oriented Java
technology.

The scalability is also possible toward variants of the Mobile Ambient calculus
and extensions of the analysis, such as the one of [4] where a minimal set of
security boundaries is inferred.

References

1. C. Braghin, A. Cortesi, and R. Focardi. Security Boundaries in Mobile Ambients.
Computer Languages, Elsevier, to appear, vol. 18, 2002.

2. C. Braghin, A. Cortesi, and R. Focardi. Control Flow Analysis of Mobile Am-
bients with Security Boundaries. In B. Jacobs and A. Rensink, editors, Proc. of
Fifth Int. Conf. on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’02), pages 197–212, Kluwer Academic Publisher, 2002.

Banana – A Tool for Boundary Ambients Nesting ANAlysis 441

3. C. Braghin, A. Cortesi, R. Focardi, F.L. Luccio, and C. Piazza A New Algorithm for
Control Flow Analysis of Mobile Ambients. In Proc. of The 4th International Con-
ference on Verification, Model Checking and Abstract Interpretation (VMCAI’03),
LNCS, to appear, 2003.

4. C. Braghin, A. Cortesi, R. Focardi, and S. van Bakel. Boundary Inference for
Enforcing Security Policies in Mobile Ambients. In Proc. of The 2nd IFIP Int.
Conf. on Theoretical Computer Science (TCS’02), pages 383–395. Kluwer Aca-
demic Publisher, August 2002.

5. L. Cardelli and A.D. Gordon. Mobile Ambients. Theoretical Computer Science
(TCS), 240(1):177–213, 2000.

6. R. R. Hansen, J. G. Jensen, F. Nielson, and H. Riis Nielson. Abstract Interpretation
of Mobile Ambients. In Proc. of Static Analysis Symposium (SAS), volume 1694
of Lecture Notes in Computer Science, pages 134–148. Springer-Verlag, September
1999.

7. Francesca Levi and Davide Sangiorgi. Controlling Interference in Ambients. In
Proc. 28th ACM Symposium on Principles of Programming Languages (POPL’01),
pages 352–364, 2000.

	Introduction
	Security of Mobile Ambients
	Tool Overview
	Conclusion

