
Optimistic Synchronization-Based State-Space
Reduction

Scott D. Stoller1� and Ernie Cohen2

1 State University of New York at Stony Brook
Computer Science Dept., SUNY at Stony Brook, Stony Brook, NY 11794-4400.

stoller@cs.sunysb.edu, http://www.cs.sunysb.edu/˜stoller
2 Microsoft Research, Cambridge, UK, ernie.cohen@acm.org

Abstract. Reductions that aggregate fine-grained transitions into
coarser transitions can significantly reduce the cost of automated ver-
ification, by reducing the size of the state space. We propose a reduction
that can exploit common synchronization disciplines, such as the use of
mutual exclusion for accesses to shared data structures. Exploiting them
using traditional reduction theorems requires checking that the discipline
is followed in the original (i.e., unreduced) system. That check can be
prohibitively expensive. This paper presents a reduction that instead re-
quires checking whether the discipline is followed in the reduced system.
This check may be much cheaper, because the reachable state space is
smaller.

1 Introduction

For many concurrent software systems, a straightforward model of the system
has such a large and complicated state space that automated verification, by
automated theorem-proving or state-space exploration (model checking), is in-
feasible. Reduction is an important technique for reducing the size of the state
space by aggregating transitions into coarser-grained transitions.

When exploring the state space of a concurrent system, context switches be-
tween threads are typically allowed before each transition. A simple example of a
reduction for concurrent systems is to inhibit context switches within sequences
of transitions that access only unshared variables. This effectively increases the
granularity of transitions. Thus, one can regard this and similar reductions as
defining a reduced system, which is a coarser-grained version of the original sys-
tem. The reduced system may have dramatically fewer states than the original
system. A reduction theorem asserts that certain properties are preserved by the
transformation.

We consider a more powerful reduction that exploits common synchroniza-
tion disciplines. For example, in a system that uses mutual exclusion on accesses
to some shared variables—called protected variables—our reduction inhibits con-
text switches within sequences of transitions that access only unshared variables
� The author gratefully acknowledges the support of NSF under Grant CCR-9876058

and the support of ONR under Grants N00014-01-1-0109 and N00014-02-1-0363.

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 489–504, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

490 S.D. Stoller and E. Cohen

and protected variables. The model-checking experiments reported in [Sto02] are
based on a similar reduction, which decreased memory usage (which is propor-
tional to the number of states) by a factor of 25 or more. Such reductions can also
significantly decrease the computational cost of the automated theorem-proving
needed for thread-modular verification [FQS02].

Traditional reduction theorems, such as [Lip75,CL98,Coh00], can also exploit
such synchronization disciplines. However, a hypothesis of these traditional the-
orems is that the allegedly protected variables are indeed protected (by synchro-
nization that enforces mutual exclusion) in the original (i.e., unreduced) system.
How can we establish this? Static analyses like [BR01,FF01] can automatically
provide a conservative approximation but sometimes return “don’t know”. For
general finite-state systems, it might seem that the only way to automatically
obtain exact information about whether selected variables are actually protected
is to express this condition as a history property and check it by state-space ex-
ploration of the original system. If this were the case, then the reduction would
be almost pointless.

Our reduction theorem implies that one can determine exactly during state-
space exploration of the reduced system whether the synchronization discipline
is followed in the original system.

Our reduction theorem is designed to be used together with traditional re-
duction theorems. Suppose a traditional reduction theorem asserts that some
property φ is preserved by the reduction if the original system follows the syn-
chronization discipline. After checking that the reduced system follows the dis-
cipline and satisfies φ, one can use our reduction theorem to conclude that the
original system follows the discipline, and then use the traditional reduction
theorem to conclude that the original system satisfies φ.

The reduction in [Sto02] is similar in spirit to the one in this paper. The
main contributions of this paper relative to [Sto02] are: (1) a reduction that
applies to systems that use arbitrary synchronization mechanisms to achieve
mutual exclusion (the results in [Sto02] apply only when monitors are used);
(2) separation of a general reduction theorem that justifies checking hypotheses
of traditional reduction theorems in the reduced system from the application
of this technique to mutual-exclusion synchronization disciplines; (3) allowing
non-determinism in invisible transitions (in the notation of Section 3, [Sto02]
requires that u be deterministic); (4) significantly shorter and cleaner proofs,
based on ω-algebra. The first author initially tried to prove similar results in a
transition-system framework, like the one in [God96]; that should be possible,
but our experience suggests that the algebraic framework facilitates the task.

Operations on monitors are not analyzed specially in this paper. As a result,
for systems that mainly use monitors for synchronization, this reduction is not
as effective as the one in [Sto02]. It should be possible to integrate the specialized
treatment of monitor operations in [Sto02] into this paper’s broader framework.

Our method and traditional partial-order methods (e.g., ample sets [CGP99],
stubborn sets [Val97], and persistent sets [God96]) both exploit independence
(commutativity) of transitions, but our method can establish independence

Optimistic Synchronization-Based State-Space Reduction 491

of transitions—and hence achieve a reduction—in many cases where tradi-
tional partial-order methods cannot. Traditional partial-order methods, as im-
plemented in tools such as Spin [Hol97] and VeriSoft [God97], use two kinds
of information to determine independence of transitions: program-specific infor-
mation about which processes may perform which operations on which objects
(e.g., only process P2 sends messages on channel C1), and manually supplied
program-independent information about dependencies between operations on
selected datatypes (e.g., a send operation on a full channel is disabled until
a receive operation is performed on that channel). Our method also exploits
more complicated program-specific information to determine independence of
transitions, e.g., the invariant that a particular variable is always protected by
particular synchronization constructs.

Traditional partial-order methods rely on static analysis to conservatively
determine dependencies between transitions. As a result, those methods are less
effective for programs that contain references (or pointers) and arrays, because
static analysis cannot in general determine exactly which locations are accessed
by each transition, and the static analysis of dependencies between transitions
is correspondingly imprecise. Our method does not rely on conservative static
analysis of dependencies and has no difficulty with references, etc.

2 Omega Algebra

An omega algebra is an algebraic structure over the operators (in order of in-
creasing precedence) 0 (nullary), 1 (nullary), + (binary infix), · (binary infix,
usually written as simple juxtaposition), � (binary infix, same precedence as ·),
∗ (unary suffix), and ω (unary suffix), satisfying the following axioms1:

(x+ y) + z = x+ (y + z) x ≤ y ⇔ x+ y = y
x+ y = y + x
x+ x = x x∗ = 1 + x+ x∗ x∗

0 + x = x x y ≤ x⇒ x y∗ = x (* ind)
x (y z) = (x y) z x y ≤ y ⇒ x∗ y = y (* ind)

0 x = x 0 = 0
1 x = x 1 = x x � y = xω + x∗ y
x (y + z) = x y + x z xω = x xω

(x+ y) z = x z + y z x ≤ y x+ z ⇒ x ≤ y � z (� ind)

In parsing formulas, · and � associate to the right; e.g., u v � x � y parses to
(u · (vω + v∗ · (xω + x∗ · y))). In proofs, we use the hint “(dist)” to indicate
application of the distributivity laws, and the hint “(hyp)” to indicate the use
of hypotheses. If xi is a finite collection of terms, we write (+i : xi) and (·i : xi)
for the sum and product, respectively, of these terms.

These axioms are sound and complete for the usual equational theory of
omega-regular expressions. (Completeness holds only for standard terms, where
1 The axioms are equivalent to Kozen’s axioms for Kleene algebra [Koz94], plus the

three axioms for omega terms.

492 S.D. Stoller and E. Cohen

the first arguments to ·, ω, and � are regular.) Thus, we make free use, without
proof, of familiar equations from the theory of (omega-)regular languages (e.g.,
x∗ x∗ = x∗).

y is a complement of x iff x y = 0 = y x and x + y = 1. It is easy to show
that complements (when they exist) are unique and that complementation is
an involution; a predicate is an element of the algebra with a complement. In
this paper, p and q range over predicates, with complements p and q. It is easy
to show that the predicates form a Boolean algebra, with + as disjunction, ·
as conjunction, 0 as false, 1 as true, complementation as negation, and ≤ as
implication. Common properties of Boolean algebras (e.g., p q = q p) are used
silently in proofs, as is the fact x p y = 0 =⇒ x y = x p y.

The omega algebra axioms support several interesting programming models,
where (intuitively) 0 is magic2, 1 is skip, + is chaotic nondeterministic choice, · is
sequential composition, ≤ is refinement, x∗ is executed by executing x any finite
number of times, and xω is executed by executing x an infinite number of times.
The results of this paper are largely motivated by the relational model, where
terms denote binary relations over a state space, 0 is the empty relation, 1 is the
identity relation, · is relational composition, + is union, ∗ is reflexive-transitive
closure, ≤ is subset, and xω relates an input state s to an output state if there is
an infinite sequence of states starting with s, with consecutive states related by
x. (Thus, xω relates an input state to either all states or none, and xω = 0 iff x
is well-founded.) Predicates are identified with the set of states in their domain
(i.e., the states from which they can be executed). We define � = 1ω; it is easy
to see that � is the maximal element under ≤, and in the relational model, it
relates all pairs of states.

In addition to equational identities of regular languages, we will use the fol-
lowing two standard theorems (proofs of these theorems and more sophisticated
theorems of this type appear in [Coh00]):

x y ≤ y z =⇒ x∗ y ≤ y z∗ (1)
y x ≤ x y =⇒ (x+ y)∗ ≤ x∗ y∗ (2)

3 A Reduction Theorem

We consider systems composed of a fixed, finite set of concurrent processes (each
perhaps internally concurrent and nondeterministic). Variables i and j range
over process indices. Each process i has a visible action vi and an invisible
action ui3, where the invisible action is constrained to neither receive information
from other processes nor to send information to other processes so as to create
a race condition in the recipient. This constraint is guaranteed only so long
as some global synchronization policy is followed. For example, in a system
2 magic is the program that has no possible executions (and so satisfies every possible

specification). Of course, it cannot be implemented.
3 Note that ui and vi can be sums of nondeterministic actions that correspond to

individual transitions of process i.

Optimistic Synchronization-Based State-Space Reduction 493

where processes are synchronized using locks, either visible or invisible actions
of process i might modify variables that are either local to process i or protected
by locks held by process i, or send asynchronous messages to other processes;
but only visible actions can acquire locks or wait for a condition to hold. Note
that violation of the synchronization discipline (e.g., an action accessing a shared
variable without first obtaining an appropriate lock) might cause a race condition
between an invisible action and the actions of another process, violating the
constraint on invisible actions.

To avoid introducing temporal operators, we introduce a Boolean history
variable q that records whether the synchronization discipline has been violated
at some point in the execution. Predicate pi means that process i cannot perform
an invisible action, i.e., that ui is disabled. Let p be the conjunction of the pi’s,
i.e., p = (·i : pi). A state satisfying p is called visible; thus, in a visible state, all
invisible transitions are disabled.

We now define several actions, formalized in the definitions (3)–(9) below.
An Mi action consists of a visible action of process i followed by a sequence of
invisible actions of process i. An Ni action is an Mi action that is “maximal”
(i.e., further ui actions are disabled) and that finishes in a state where the
synchronization discipline has not been violated. Ni is effectively the transition
relation of thread i in the reduced system. (Additional conditions will imply that
executing an N action in a visible state results in a visible state; thus, in the
reduced system, context switches occur only in visible states.) A u (respectively
v, M , N) action is a ui (respectively, vi, Mi, Ni) action of some process i. Finally,
an R action is executable iff (i) the discipline has been violated, or (ii) such a
violation is possible after execution of a single M action. (Like xω, R relates
each initial state to either all final states or none.)

Mi = vi u
∗
i (3)

Ni = Mi pi q (4)
u = (+i : ui) (5)
v = (+i : vi) (6)
M = (+i : Mi) (7)
N = (+i : Ni) (8)
R = (1 +M) q � (9)

Our reduction theorem says that if the original system can reach a violation of
the synchronization discipline starting from some visible state, then the reduced
system can also reach a violation starting from the same initial state, except
that the violation might occur partway through the last transition of the reduced
system (i.e., the last transition might be an M action rather than an N action).
The transition relations of the original and reduced systems are u + v and N ,
respectively. Thus, the conclusion of the reduction theorem, (19), is

p (u+ v)∗ q ≤ N∗ R (10)

The hypotheses of our reduction theorem are as follows, formalized in for-
mulas 11–(18) below. It is impossible to execute invisible actions of a single

494 S.D. Stoller and E. Cohen

process forever without violating the discipline (11). An action cannot enable or
disable an invisible action of another process (12),(13), and in the absence of a
discipline violation, it commutes to the right of such an action (14),(15). Visible
and invisible actions of a process cannot be simultaneously enabled (16). ui is
enabled whenever pi is false (17). Invisible actions cannot hide violations of the
discipline (18).

(ui q)ω = 0 (11)
i �= j =⇒ uj pi = pi uj (12)
i �= j =⇒ vj pi = pi vj (13)
i �= j =⇒ uj ui ≤ ui (q �+ uj + uj q �) (14)
i �= j =⇒ vj ui ≤ ui (q �+ vj + vj q �) (15)

pi vi = 0 = pi ui (16)
1 ≤ pi + ui � (17)
q ui ≤ ui q (18)

Our reduction theorem can be used to check not only the synchronization dis-
cipline, but also the invariance of any other predicate I such that violations of
I cannot be hidden by invisible actions. To see this, note that, except for (18),
the conditions above are all monotonic in q. Thus, if all the conditions above
(including (18)) are satisfied for a predicate q, and there is a predicate I such
that I ui ≤ ui I for each i, then all the conditions are still satisfied if q is replaced
with q + I.

The proof below can be viewed as formalizing the following construction,
which starts from an execution that violates the discipline and produces an
execution of the reduced system that also violates the discipline. First, we try to
move invisible ui actions to the left of uj and vj actions, where i �= j, starting
from the left (i.e., from the leftmost ui action that immediately follows a uj or
vj action). The ui action cannot make it all the way to the beginning of the
execution (since p ui = 0), so it must eventually run into either another ui or a
vi. Repeating this produces an execution in which a sequence of M actions leads
to a violation of the discipline.

Next, we try to turn all but the last of these M actions into N actions,
starting from the next to last M action. In general, we will have done this for
some number of M actions, so we will have an execution that ends with N∗ R.
Now try to convert the last Mi before the N∗ R suffix into an N action. Suppose
this Mi action ends with ui enabled. ui must then also be enabled later when
the discipline is first violated (because (12) and (13) imply Nj does not affect
enabledness of ui, and (16) implies Ni is disabled when ui is enabled), so we add
a ui action just after the violation and try to push it backward (through the
N∗ (1 +M)). This may create additional violations of the discipline, but there
will always be an N∗ R to the right of the new ui. Eventually, ui makes it back
to the Mi, extending Mi with another ui. By (11), ui’s cannot continue forever
without violating the discipline, so repeating this extension process eventually
either gives us a violation right after Mi (in which case we have produced a

Optimistic Synchronization-Based State-Space Reduction 495

new N∗ R action, so we can discard everything after it) or lead to the ui’s
being disabled, in which case we have succesfully turned the Mi action into
an N action and again turned the extended execution into an execution that
ends with N∗ R. Repeating this for each Mi action, moving from right to left,
produces the desired execution of the reduced system.

We now turn to the formal proof of the reduction theorem (19). We push u’s
left (lines 1-2) where they are eliminated by the initial p (line 3), push M ’s to
the left of R’s (line 4), condense the R’s to a single R (lines 5-6), and finally
turn the M ’s into N ’s (lines 7-8):

p (u+ v)∗ q ≤ N∗ R (19)

p (u+ v)∗ q ≤ {v ≤M ≤M +R }
p (u+M +R)∗ q ≤ {(M +R) u ≤ (1 + u) (M +R) (20); (2)}
p u∗ (M +R)∗ q ≤ {p u = 0 (16); p ≤ 1 }
(M +R)∗ q ≤ {R M ≤ R; (2) }
M∗ R∗ q ≤ {R R ≤ R, so R∗ = (1 +R) }
M∗ (1 +R) q ≤ {(1 +R) q = R }
M∗ R ≤ {1 ≤ N∗ }
M∗ N∗ R = {M N∗ R ≤ N∗ R (21); (* ind) }
N∗ R

(20) says that a u moves to the left of an M or R (but may disappear in the
process): (M +R) u ≤ (1 + u) (M +R) (20)

(M +R) u ≤ {(dist) }
M u+R u ≤ {R = R �, so R u = R � u ≤ R � = R}
M u+R = {(7), (5), (dist) }
(+i, j : Mj ui) +R ≤ {Mj ui ≤ (1 + ui) (Mj +R)) (25) }
(+i, j : (1 + ui) (Mj +R)) +R ≤ {(7), (5), (dist) }
(1 + u) (M +R)

(21) shows that N∗ R actions act as a factory for ui actions until they either
produce a discipline violation (q) or until they produce enough ui’s to turn the
Mi to their left into an N .

Mi N
∗ R ≤ N∗ R (21)

Mi N
∗ R ≤ {N∗ R ≤ (ui q)N∗ R+ (pi + ui q)N∗ R }

{(22); (� ind) }
Mi (ui q) � (pi + ui q) N∗ R ≤ {(ui q)ω = 0 (11) }
Mi (ui q)∗ (pi + ui q) N∗ R ≤ {q ≤ 1; Mi u

∗
i = Mi (3) }

Mi (pi + ui q) N∗ R = {(dist) }
(Mi pi +Mi ui q) N∗ R ≤ {Mi ui ≤Mi (3); Mi pi ≤Mi pi q +Mi q}
(Mi pi q +Mi q) N∗ R ≤ {Mi pi q = Ni (4); Ni ≤ N(8) }
(N +Mi q) N∗ R ≤ {(dist) }
N N∗ R+Mi q N

∗ R ≤ {Mi q N
∗ R ≤Mi q � ≤ R (9) }

N N∗ R+R ≤ {N N∗ ≤ N∗, 1 ≤ N∗ }
N∗ R

496 S.D. Stoller and E. Cohen

(22) and (23) show that N∗ R generates a ui (unless pi already holds, or the
discipline has already been violated).

N∗ R ≤ (ui q) N∗ R+ (pi + ui q) N∗ R (22)

N∗ R ≤ {N∗ R ≤ (pi + ui) N∗ R(23)}
(pi + ui) N∗ R ≤ {ui = ui q + ui q }
(pi + ui q + ui q) N∗ R ≤ {(dist) }
(ui q) N∗ R+ (pi + ui q) N∗ R

N∗ R ≤ (pi + ui) N∗ R (23)

N∗ R = {(9) }
N∗ (1 +M) q � ≤ {1 ≤ pi + ui � (17) }
N∗ (1 +M) q (pi + ui) � ≤ {q pi = pi q; q ui ≤ ui q (18) }
N∗ (1 +M) (pi + ui) q � ≤ {M (pi + ui) ≤ (pi + ui) (M +R), (25)}
N∗ (pi + ui) (1 +M +R) q � ≤ {(1 +M +R) q � ≤ R (9) }
N∗ (pi + ui) R ≤ {N (pi + ui) ≤ (pi + ui) (N +R) (24); }

{(1) }
(pi + ui) (N +R)∗ R ≤ {R N ≤ R; (2) }
(pi + ui) N∗ R∗ R = {R R ≤ R; (* ind) }
(pi + ui) N∗ R

Finally, (24) and (25) show that (pi+ui) commutes left past an N or M (possibly
changing them into R’s).

Nj (pi + ui) ≤ (pi + ui) (N +R) (24)

Nj (pi + ui) ≤ {Nj ≤Mj pj (4) }
Mj pj(pi + ui) ≤ {pj pi = pi pj ; pj ui ≤ ui pj (12)(16) }
Mj (pi + ui) pj ≤ {Mj (pi + ui) ≤ (pi + ui) (Mj +R), (25)}
(pi + ui) (Mj +R) pj ≤ {1 = q + q }
(pi + ui) (Mj +R) pj (q + q) ≤ {Mj pj q ≤ N (4)(8); Mj q ≤ R (9) }
(pi + ui) (N +R)

Mj (pi + ui) ≤ (pi + ui) (Mj +R) (25)

i = j :
Mi (pi + ui) ≤ {pi ≤ 1; Mi ui ≤Mi (3) }
Mi ≤ {vi = pi vi (16), so Mi = pi Mi (3)}
(pi + ui) (Mi +R)

i �= j :
Let [x] = x+ x q �+ q �; then
Mj (pi + ui) = {(3) }
vj u

∗
j (pi + ui) ≤ {uj (pi + ui) ≤ (pi + ui) [uj] (12)(14); (1)}

vj (pi + ui) [uj]∗ = {[uj]∗ = [u∗j] (2) }
vj (pi + ui) [u∗j] ≤ {vj (pi + ui) ≤ (pi + ui) [vj] (13)(15) }
(pi + ui) [vj] [u∗j] ≤ {[vj] [uj]∗ ≤Mj +R }
(pi + ui) (Mj +R)

Optimistic Synchronization-Based State-Space Reduction 497

4 System Model and Synchronization Discipline

We define a simple model of concurrent systems that use mutual exclusion for
access to selected variables, and we prove that our reduction theorem applies
to these systems. This model is intended to be the simplest one that retains all
relevant aspects of concurrent programming languages, such as Java. It can be
modified and generalized in various ways with little effect on our results.

Each shared variable is classified as protected or unprotected. There are no
constraints on how unprotected variables are accessed. The synchronization dis-
cipline requires that mutual exclusion be used for access to protected variables.
Any combination of synchronization mechanisms (locks, condition variables,
semaphores, barriers, etc.) can be used to provide the mutual exclusion, pro-
vided the scheme can be captured by exclusive access predicates. For each pro-
tected variable x and each thread i, there is an exclusive access predicate exi .
The synchronization discipline requires that exi hold in states from which thread
i can execute a transition that accesses x. Mutual exclusion is expressed by the
requirement that, for every variable x and every two distinct threads i and j, exi
and exj are mutually exclusive (i.e., cannot hold simultaneously).

Formally, a system is a tuple 〈Θ, Vunsh , Vprot , Vunprot , T, I, e〉 where

Θ is a set of threads (thread identifiers). i and j range over Θ.
Vunsh is a set of unshared variables, i.e., variables that appear in transitions of

at most one thread.
Vprot is a set of variables declared (possibly incorrectly) to be “protected”,

i.e., there are synchronization mechanisms that ensure mutual exclusion for
accesses to these variables. For each variable x ∈ Vprot and each thread i,
there is an exclusive access predicate exi .

Vunprot is a set of (possibly shared) variables, called “unprotected variables”.
No assumptions are made regarding synchronization for accesses to them.

T =
⋃
i Ti is a set of transitions, where Ti is the set of transitions of thread i.

Let V = Vunsh ∪Vprot ∪Vunprot and Vguard = Vunsh ∪Vunprot . A transition t is
a guarded command g → c, where the guard g is a predicate over Vguard , and
c is built from assignments over V , sequential composition, and conditionals
(if-then and if-then-else).

I is a predicate over V . I characterizes the initial states.
e is a family of (possibly incorrect) exclusive access predicates exi over V .

Guards are used for synchronization (blocking). Conditionals in commands
are used for sequential control flow. For convenience of analysis, protected vari-
ables cannot appear in guards. This is reasonable because the synchronization
mechanisms that protect the variables, not the protected variables themselves,
should be used to achieve the necessary synchronization. The value of a pro-
tected variable v can be copied into an unshared or unprotected variable, and
the latter variable can be used in a guard, or v can be moved from Vprot to
Vunprot and then used in a guard directly.

Fix a system. A state is a mapping from variables to values. Let Σ be the set
of states. We also use states as maps from expressions to values, with the usual
meaning (homomorphic extension).

498 S.D. Stoller and E. Cohen

A transition t is enabled in state s if its guard is true in s. An execution is a
finite or infinite sequence σ of states such that σ(0) satisfies I and every pair of
consecutive states in σ is in [[t]] for some transition t.

A transition is visible if it (i) contains an occurrence of a variable in Vunprot
or (ii) might change the value of an exclusive access predicate. Other transitions
are invisible. This classification of transitions determines the transition relations
ui and vi and the predicates pi.

A system is well-formed if the following conditions hold.

WF-initVis. The initial transitions of each thread are visible, i.e., I ⇒ p. (This
ensures that the conclusion of the reduction theorem applies to all reachable
states of the original system.)

WF-sep. Visible and invisible transitions of each thread are separate, i.e.,
cannot be executed from the same state. Formally, (∀i : domain(ui) ∩
domain(vi) = ∅).

WF-acc. Internal non-determinism in a transition (i.e., non-deterministic
choices that do not affect the ending state) does not affect the set of vari-
ables accessed by the transition or the order in which those variables are
first accessed. (This ensures well-definedness of acc in Section 4.1 and of x
in case 2 of the proof of (15) in Section 5.)

WF-finiteInvis. No thread has an infinite execution sequence containing only
invisible transitions. Formally, (∀i : uωi = 0).

WF-initExcl. For each protected variable x, the exclusive access predicates for
x are initially disjoint, i.e., I ⇒ disjoint(ex), where disjoint(ex) = ¬(∃i, j :
i �= j ∧ exi ∧ exj).

WF-endExcl. A thread cannot take away another thread’s exclusive access to a
variable. Formally, for an exclusive access predicate exi and j �= i, transitions
of thread j cannot falsify exi .

4.1 Mutual-Exclusion Synchronization Discipline

The synchronization discipline requires that, for every variable x ∈ Vprot , (i) a
transition of thread i executed from a state s may access x only if s |= exi , and
(ii) disjoint(ex) holds in every reachable state.

Let acc(s1, t, s2) denote the set of variables accessed by execution of transition
t from state s1 to s2. The set of accessed variables may depend on which branches
of conditionals are taken. The ending state s2 is included as an argument to acc
because t may be non-deterministic. WF-acc ensures that acc is well-defined.
Since guards do not contain protected variables, acc(s1, t, s2) = ∅ if t is disabled
in s1 (otherwise, acc(s1, t, s2) would be the set of protected variables in t’s guard).

We augment the system with a predicate q that holds iff the synchronization
discipline has been violated. Formally, q is the least predicate that satisfies

∀i : ∀x ∈ Vprot : ∀t ∈ Ti : ∀〈s1, s2〉 ∈ [[ti]] : s2 |= q ⇐⇒
((x ∈ acc(s1, t, s2) ∧ s1 �|= exi) ∨ s2 �|= disjoint(ex) ∨ s1 |= q).

(26)

The third disjunct in (26) implies that q is monotonic, i.e., it can be truthified
but not falsified.

Optimistic Synchronization-Based State-Space Reduction 499

Maintaining q involves accesses to q and accesses to variables that occur
in exclusive access predicates. These accesses are ignored when determining
acc(s1, t, s2).

5 Proof That the Reduction Theorem Applies to the
Mutual-Exclusion Synchronization Discipline

We prove in [SC02] that well-formed systems satisfy the hypotheses (11)–(18) of
the reduction theorem. Most of the proofs are straightforward. Here we consider
only the most interesting one.

Proof of (15). Let ti be an invisible transition of thread i, and let tj be a visible
transition tj of thread j, and let s1, s2, and s3 be states such that 〈s1, s2〉 ∈ tj and
〈s2, s3〉 ∈ ti. Let ti = gi → ci and tj = gj → cj . tj does not enable ti, because cj
and gi access disjoint sets of variables (because ti is invisible and hence does not
access unprotected variables, and protected variables do not appear in guards).
ti does not disable tj , for analogous reasons. Thus, there exist states s′2 and s′3
such that 〈s1, s

′
2〉 ∈ ti and 〈s′2, s′3〉 ∈ tj . Transitions may be non-deterministic,

so s′2 and s′3 are not uniquely determined by these conditions. It suffices to show
that s′2 and s′3 can be chosen so that one of the following conditions (which
correspond to the summands in (15)) holds: (i) s′2 |= q, (ii) s′3 = s3 (i.e., ci
left-commutes with cj), or (iii) s′3 |= q. Let A = acc(s1, tj , s2) ∩ acc(s1, ti, s

′
2).

case 1: A = ∅. This implies that
acc(s1, tj , s2) = acc(s′2, tj , s

′
3) ∧ acc(s2, ti, s3) = acc(s1, ti, s

′
2), (27)

because the same branches of conditionals will be executed from either source
state. This and A = ∅ imply that (∀x ∈ acc(s2, ti, s3) : s1(x) = s2(x)) and
(∀x ∈ acc(s1, tj , s2) : s1(x) = s′2(x)). Thus, by resolving non-determinism (if
any) in the transitions in the same way when executing ti followed by tj as when
executing tj followed by ti to reach s3, we obtain s′3(v) = s3(v) for all variables
v ∈ V \ {q}. We must exclude q here because acc does not reflect accesses used
to update q, as stated in Section 4.1.

case 1.1: s3 |= q̄. If s′3 |= q̄, then s′3 = s3, i.e., condition (ii) holds. If s′3 |= q,
then condition (iii) holds.

case 1.2: s3 |= q. We show that s′2 |= q or s′3 |= q.
case 1.2.1: s1 |= q. This and monotonicity of q imply s′3 |= q.
case 1.2.2: s1 |= q̄. This and s3 |= q imply that the synchronization discipline

is violated either by execution of tj from s1 or by execution of ti from s2. The
violation corresponds to the first or second disjunct in (26) being true (the third
disjunct just makes q monotonic). Thus, there are 2× 2 cases to consider.

case 1.2.2.1: (∃x ∈ Vprot : x ∈ acc(s1, tj , s2) ∧ s1 �|= exj). (27) implies x ∈
acc(s′2, tj , s

′
3). ti is invisible, so it cannot truthify exj , so s′2 �|= exj . Thus, the

definition of q implies s′3 |= q.
case 1.2.2.2: (∃x ∈ Vprot : x ∈ acc(s2, ti, s3) ∧ s2 �|= exi). (27) implies x ∈

acc(s1, ti, s
′
2). WF-endExcl implies tj did not falsify exi , so s1 �|= exi . Thus, the

definition of q implies s′2 |= q.

500 S.D. Stoller and E. Cohen

case 1.2.2.3: (∃x ∈ Vprot : s2 �|= disjoint(ex)). ti is invisible, so it cannot
falsify any exclusive access predicate, so s3 �|= disjoint(ex). s3 and s′3 have the
same values for all variables except q, so s′3 �|= disjoint(ex). Thus, the definition
of q implies s′3 |= q.

case 1.2.2.4: (∃x ∈ Vprot : s3 �|= disjoint(ex)). s3 and s′3 have the same values
for all variables except q, so s′3 �|= disjoint(ex). Thus, the definition of q implies
s′3 |= q.

case 2: A �= ∅. Let x be the variable in A first accessed by execution of tj
from s1 to s2.

case 2.1: s1 |= exj . By definition of A, x ∈ acc(s1, ti, s
′
2).

case 2.1.1: s1 |= disjoint(ex). The hypotheses of cases 2.1 and 2.1.1, together
with i �= j, imply s1 �|= exi . This and x ∈ acc(s1, ti, s

′
2) imply s′2 |= q.

case 2.1.2: s1 �|= disjoint(ex). This and the definition of q imply s1 |= q. This
and monotonicity of q imply s′2 |= q.

case 2.2: s1 �|= exj . The definitions of A and x imply that x ∈ acc(s′2, tj , s
′
3),

because the first access to x by tj precedes execution of conditionals in tj whose
conditions could be affected by execution of ti from s1. ti is invisible, so it cannot
truthify exj , so s′2 �|= exj . Thus, the definition of q implies s′3 |= q.

6 Examples

This section contains examples of systems for which the current reduction is effec-
tive (i.e., it reduces the number of reachable states) and the reduction in [Sto02]
is not effective. In general, our method is effective whenever some variables can
be classified as protected. These examples are based mainly on descriptions in
[SBN+97] of code in real systems.

Semaphores. A user thread sends a request to a device driver thread, asking
the device driver to store data in a buffer b, and then waits for the result by
invoking sem.down(), where sem is a semaphore, initialized to zero. The device
driver thread receives the request, waits for the device to supply the data, stores
the data in b, and then calls sem.up(). The buffer b can be classified as protected.
For example, ebuser holds when the program counter of the user thread points to
a statement after the call to sem.down(), and ebdriver holds when the program
counter of the device driver thread points to a statement before the call to
sem.up(). The semaphore ensures disjointness of ebuser and ebdriver .

Memory Re-use. Some systems re-use objects (or structures) by placing them on
a free list when they are not in use. These objects may be protected by different
locks each time they are re-used, violating the locking discipline of [Sto02]. For
example, consider a file system in which blocks in a file are protected by the lock
associated with (the i-node of) that file, and blocks on the free list are protected
by the lock associated with the free list. A block may be in a different file, and
hence protected by a different lock, each time it is re-used. Let mF denote the
lock associated with the free list. Let mf denote the lock associated with file f .
The exclusive access predicate ebi for a block b might be

Optimistic Synchronization-Based State-Space Reduction 501

(onFreeList(b) ∧mF .owner = i) ∨ (∃ file f : allocatedTo(b, f) ∧mf .owner = i)

Master-Worker Paradigm. In the master-worker paradigm, a master thread as-
signs tasks to worker threads. Typically, each task is represented by an object
created by the master thread and passed to a worker thread. The master thread
does not access a task object after passing it to a worker. Task objects can be
classified as protected. Suppose each worker thread w has a field w.task that
refers to the worker’s task. For a task object x, the exclusive access predicate
exmaster holds before x has been passed to a worker thread, and exw holds when
w.task = x.

7 Comparison to Traditional Partial-Order Methods

This section demonstrates that our method has advantages over traditional
partial-order methods even for some simple systems for which precise static anal-
ysis of transition dependencies is feasible. Consider a system with two threads
that use monitors m0 and m1 as locks and use an integer variable y to implement
a barrier. Let uppercase letters denote control points. Let guard → stmt denote
a transition that blocks when guard is false and can execute stmt when guard is
true. For i ∈ {0, 1}, the code for thread i is

Am0.acquire(); Bx0 := i; Cm0.release();Dm1.acquire(); Ex1 := i;
Fm1.release(); Gy + +; Hy = 2→ skip; Ixi = i J

(28)

In the initial state, xj = j and y = 0, and both threads are at control point A.
xj is a protected variable, with exclusive access predicate exji = (mj .owner =
i) ∨ (y = 2 ∧ i = j). y is not protected.

This system has 106 reachable states. With the reduction in this paper,
transitions that update x0 or x1 are invisible; other transitions are visible. The
reachable states of the reduced system are the reachable states of the original
system in which every thread is ready to perform a visible transition or is at its
final control point. There are 62 such states.

Traditional partial-order methods based on persistent sets [God96] (or ample
sets [CGP99]) can also significantly reduce the number of explored states but
do not achieve the same benefits as our reduction. For concreteness, we compare
our method to selective search using the conditional stubborn set algorithm
(CSSA) [God96]. We always resolve non-determinism in CSSA in a way that
yields a minimum-size persistent set. CSSA is parameterized by dependency
relations on operations. For acquire and release, we use the might-be-the-first-
to-interfere-with relation in [Sto02, Fig. 3]. For accesses to y, we use the minimal
might-be-the-first-to-interfere-with relation, based on the dependency relation on
operations in which an increment to y is dependent with the condition y = 2
only in states in which the increment changes the truth value of the condition.

The selective search (using CSSA) explores 77 states. To illustrate why it
explores more than the 62 states explored by our method, consider the reach-
able state s in which thread 0 is at control point D and thread 1 is at control

502 S.D. Stoller and E. Cohen

point B. With the reduction in this paper, the transitions that update x0 or x1
are invisible, so the system passes through this invisible state by executing the
enabled transition of thread 1; the enabled transition of thread 0 is not executed
in s. In contrast, the selective search explores both enabled transitions in s, as
explained in detail in [SC02].

This example can be generalized to show our method outperforming the
selective search by an arbitrary amount: simply insert additional transitions
that access x0 before the transition m0.release() in thread 0.

The selective search exploits some independence that our method does not,
in particular, independence of release with acquire and release, and indepen-
dence of acquire with acquire in some states. One way to obtain the benefits
of both methods is to apply selective search to the reduced system. This works
for systems for which sufficiently precise static analysis of dependencies between
transitions is feasible (cf. Section 1). Another approach is to extend our method,
e.g., to incorporate the specialized treatment of monitor operations in [Sto02]
that allows release to be classified as invisible.

8 How to Use the Reduction

The intended methodology for using the reduction is as follows.
1. Guess the set Vprot of protected variables and the exclusive access pred-

icates exi . These guesses determine visibility of transitions and hence define a
reduced system, in which the transition relation of thread i is Ni, defined in (4).

2. Augment the reduced system with a predicate q, as described in Section
4.1.

3. Check whether q̄ holds in all reachable states of the reduced system. Check
this using your favorite technique: model checking, theorem proving, hand wav-
ing, etc.

4. If so, then the reduction theorem implies that q̄ holds in all reachable
states of the original system, i.e., the guesses in Step 1 are correct. Traditional
reduction theorems can now be used to infer other properties of the original
system from properties of the reduced system.

5. If not, then for some variable x in Vprot , the reduced system has a reachable
state in which the mutual-exclusion synchronization discipline for x is violated.
Revise the guess for ex (using the path to the violation as a guide) or re-classify
x as unprotected, and then return to Step 1.

9 How to Use the Reduction Automatically for Systems
with Monitors

The methodology in Section 8 is automatic except that the user must guess
Vprot and the exclusive access predicates. For systems that use monitors for
synchronization, this step, too, can be automated, based on the observation
that the exclusive access predicates typically have the form exi = eapx,mi , where

Optimistic Synchronization-Based State-Space Reduction 503

eapx,mi = initxi ∨ (i = m.owner ∧ ¬initx) (29)
initx = (∃i ∈ Θ : initxi). (30)

and where the initialization predicate initxi holds while thread i is executing code
that initializes x. Note that the lock protecting a variable does not need to be
held while the variable is being initialized.

Initialization predicates for variables in systems that correspond to Java pro-
grams can be guessed automatically: the initialization predicate holds when the
thread’s program counter is in the appropriate class initializer (for static fields)
or the appropriate constructor invocation (for instance fields).

To use (29), we need to identify, for each variable x in Vprot , a monitor m that
protects x. This can be done automatically by running a variant of the lockset
algorithm [SBN+97] during state-space exploration of the reduced system.

10 Experimental Results

We implemented the similar reduction of [Sto02] in Java PathFinder (JPF)
[BHPV00] and measured the benefit of the reduction for several programs
with monitor-based synchronization. HaltException and Clean [BHPV00, Fig-
ure 1] are small “synchronization skeletons” supplied by the developers of JPF.
Xtango-DP and Xtango-QS are animations of a dining philosophers algorithm
and quicksort, respectively, from http://www.mcs.drexel.edu/˜shartley/; we re-
placed java.awt methods with methods having empty bodies, due to limitations
of JPF. The lockset algorithm was used in all experiments. With negligible man-
ual effort (to write a few lines of config files), the reduction decreases memory us-
age by a factor of 1.4MB/0.77MB ≈ 1.8 for HaltException, 4.3MB/2.2MB ≈ 2.0
for Clean, 609MB/236MB ≈ 2.6 for Xtango-DP, and 344MB/101MB ≈ 3.4 for
Xtango-QS, compared to model checking with JPF’S default granularity, which
executes each line of source code atomically. In a real JVM, bytecode instruc-
tions execute atomically. Our reduction preserves that semantics. JPF’s source-
line granularity does not: it can miss errors. Compared to bytecode granularity,
our reduction decreases memory usage by a factor of 13.9MB/0.77MB ≈ 18 for
HaltException and at least 1800MB/101MB ≈ 18 for Xtango-QS (“at least”
reflects an out-of-memory exception).

Acknowledgements. We thank Shaz Qadeer for telling us about exclusive
access predicates, Liqiang Wang for doing the experiments with JPF, and Patrice
Godefroid for comments about partial-order methods.

References

[BR01] C. Boyapati and M. C. Rinard. A parameterized type system for race-
free Java programs. In Proc. 16th ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), volume
36(11) of SIGPLAN Notices, pages 56–69. ACM Press, November 2001.

504 S.D. Stoller and E. Cohen

[BHPV00] G. Brat, K. Havelund, S. Park, and W. Visser. Model checking programs.
In IEEE Int’l. Conference on Automated Software Engineering (ASE),
pages 3–12, September 2000.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[CL98] E. Cohen and L. Lamport. Reduction in TLA. In Proc. 9th Int’l. Confer-
ence on Concurrency Theory (CONCUR), volume 1466 of Lecture Notes
in Computer Science, pages 317–331. Springer-Verlag, 1998.

[Coh00] E. Cohen. Separation and reduction. In Proc. 5th Int’l. Conference on
Mathematics of Program Construction, volume 1837 of Lecture Notes in
Computer Science. Springer-Verlag, 2000.

[FF01] Cormac Flanagan and Stephen Freund. Detecting race conditions in large
programs. In Workshop on Program Analysis for Software Tools and En-
gineering (PASTE), pages 90–96. ACM Press, June 2001.

[FQS02] Cormac Flanagan, Shaz Qadeer, and Sanjit Seshia. A modular checker
for multithreaded programs. In Proc. 14th Int’l. Conference on Computer-
Aided Verification (CAV), volume 2404 of Lecture Notes in Computer Sci-
ence, pages 180–194. Springer-Verlag, 2002.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concur-
rent Systems, volume 1032 of Lecture Notes in Computer Science. Springer-
Verlag, 1996.

[God97] Patrice Godefroid. Model checking for programming languages using
VeriSoft. In Proc. 24th ACM Symposium on Principles of Programming
Languages (POPL), pages 174–186. ACM Press, 1997.

[Hol97] Gerard J. Holzmann. The Spin model checker. IEEE Transactions on
Software Engineering, 23(5):279–295, May 1997.

[Koz94] D. Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. Information and Computation, 110(2):366–390, 1994.

[Lip75] R. J. Lipton. Reduction: A method of proving properties of parallel pro-
grams. Communications of the ACM, 18(12):717–721, 1975.

[SBN+97] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson.
Eraser: A dynamic data race detector for multi-threaded programs. ACM
Transactions on Computer Systems, 15(4):391–411, November 1997.

[SC02] S. D. Stoller and E. Cohen. Optimistic synchronization-based state-space
reduction. Technical Report DAR-02-8, SUNY at Stony Brook, Computer
Science Dept., August 2002. Available at
www.cs.sunysb.edu/˜stoller/optimistic.html.

[Sto02] S. D. Stoller. Model-checking multi-threaded distributed Java programs.
International Journal on Software Tools for Technology Transfer, to ap-
pear.

[Val97] Antti Valmari. Stubborn set methods for process algebras. In D. Peled,
V. R. Pratt, and G. J. Holzmann, editors, Proc. Workshop on Partial
Order Methods in Verification, volume 29 of DIMACS Series, pages 213–
231. American Mathematical Society, 1997.

[WR99] J. Whaley and M. C. Rinard. Compositional pointer and escape analysis
for Java programs. In Proc. ACM Conf. on Object-Oriented Systems, Lan-
guages and Applications (OOPSLA), pages 187–206. ACM Press, October
1999.

	Introduction
	Omega Algebra
	A Reduction Theorem
	System Model and Synchronization Discipline
	Mutual-Exclusion Synchronization Discipline

	Proof That the Reduction Theorem Applies to the Mutual-Exclusion Synchronization Discipline
	Examples
	Comparison to Traditional Partial-Order Methods
	How to Use the Reduction
	How to Use the Reduction Automatically for Systems with Monitors
	Experimental Results

