A Generic On-the-Fly Solver for
Alternation-Free Boolean Equation Systems*

Radu Mateescu

INRIA Rhone-Alpes / VASY, 655, avenue de ’Europe
F-38330 Montbonnot Saint Martin, France
Radu.Mateescu@inria.fr

Abstract. Boolean Equation Systems (BEss) offer a useful representa-
tion for various verification problems on finite-state concurrent systems,
such as equivalence/preorder checking and model checking. In particu-
lar, on-the-fly resolution methods enable a demand-driven construction
of the BEs (and hence, of the state space) during verification. In this
paper, we present a generic library dedicated to on-the-fly resolution of
alternation-free BESs. Four resolution algorithms are currently provided
by the library: A1, A2 are general, the latter being optimized to produce
small-depth diagnostics, and A3, A4 are specialized for handling acyclic
and disjunctive/conjunctive BESs in a memory-efficient way. The library
is developed within the CADP toolbox and serves as engine for on-the-fly
equivalence/preorder checking modulo five widely-used relations, and for
model checking of alternation-free p-calculus.

1 Introduction

Boolean Equation Systems (BEss) [I5] are a well-studied framework for the
verification of concurrent finite-state systems, by allowing to formulate model
checking and equivalence/preorder checking problems in terms of BES resolution.
Numerous algorithms for solving BESs have been proposed (see [15] chap. 6] for
a survey). They can be basically grouped in two classes: global algorithms, which
require the BES to be constructed entirely before the resolution, and local (or
on-the-fly) algorithms, which allow the BES to be generated dynamically during
the resolution. Local algorithms are able to detect errors in complex systems
even when the corresponding BESs are too large to be constructed explicitly.
Another feature is the generation of diagnostics (portions of the BEs explaining
the truth value of a variable), which provide considerable help for debugging
applications and for understanding temporal logic formulas [16].

However, as opposed to the situation in the field of symbolic verification,
for which a significant number of BDD-based packages are available [24], we are
not aware of any generic environment for BES resolution available for on-the-
fly verification. In this paper we present CESAR_SOLVE, a generic library for

* This research was partially funded by the IsT-2001-32360 Project “ArchWare” and
by Bull S.A.

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 81-08, 2003.
© Springer-Verlag Berlin Heidelberg 2003

82 R. Mateescu

BES resolution and diagnostic generation, created using the OPEN/C&ESAR envi-
ronment for on-the-fly verification [14]. CESAR_SOLVE provides an application-
independent representation of BESs as boolean graphs [I], much in the same
way as OPEN/CAESAR provides a language-independent representation of La-
beled Transition Systems (LTss). Four algorithms are currently available in the
library. Algorithms A1l and A2 are general (they do not assume anything about
the right-hand sides of the equations), A2 being optimized to produce small-
depth diagnostics. Algorithms A3 and A4 are specialized for memory-efficient
resolution of acyclic BESs and disjunctive/conjunctive BEss, which occur fre-
quently in practice. CESAR_SOLVE serves as engine for two on-the-fly verification
tools developed within the CADP toolbox [10]: the equivalence/preorder checker
BISIMULATOR, which implements five widely-used equivalence relations, and the
model checker EVALUATOR for regular alternation-free p-calculus [18].

The paper is organized as follows. Section [2 defines alternation-free BESs.
Section [presents algorithms A1-A4 and compares them according to three cri-
teria which aim at improving time complexity. Section B outlines the encodings
of various equivalence relations and temporal logics in terms of alternation-free
BESs, identifying the particular cases suitable for algorithms A3 and A4. Sec-
tion [@ shows the architecture of the library and some performance measures.
Section Bl summarizes the results and indicates directions for future work.

2 Alternation-Free Boolean Equation Systems

A Boolean Equation System (BEs) [IJT5] is a tuple B = (X, M, ..., M,,), where
X € X is a boolean variable and M; are equation blocks (i € [1,n]). Each block
M; = {X; & 0p; X j}jeii,m,) is a set of minimal (resp. maximal) fixed point
equations of sign o; = p (resp. 0; = v). The right-hand side of each equation
j is a pure disjunctive or conjunctive formula obtained by applying a boolean
operator op; € {V, A} to a set of variables X; C X. The boolean constants F
and T abbreviate the empty disjunction V() and the empty conjunction Af.
The main variable X must be defined in block M;. A variable X; depends
upon a variable X; if X; € X ;. A block M; depends upon a block M, if some
variable of M; depends upon a variable defined in Mj. A block is closed if it
does not depend upon any other blocks. A BES is alternation-free if there are
no cyclic dependencies between its blocks; in this case, the blocks are sorted
topologically such that a block M; only depends upon blocks M}, with k > 1.
The semantics [op;{ X1, ..., Xi}]d of a formula op,{ X1, ..., X} w.r.t. Bool =
{F, T} and a context § : X — Bool, which must initialize all variables Xy, ..., Xj,
is the boolean value op,;(6(X1),...,8(Xx)). The semantics [M;]d of a block M;
w.r.t. a context d is the o;-fixed point of a vectorial functional &;5 : Bool™" —
Bool™ defined as @;5(b1, ..., bim,) = ([op; X;]1(0@[b1/ X1, s b, / Xim.])) je[1,ma]»
where 6 @ [b1 /X1, ..., b/ X,] denotes a context identical to § except for variables
X1, ..., X, which are assigned values b1, ..., b,, respectively. The semantics of an
alternation-free BES is the value of its main variable X given by the solution of
M, i.e., 01(X), where the contexts §; are calculated as follows: §,, = [M,][] (the

A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems 83

context is empty because M, is closed), §; = ([M;]di+1) @ d;+1 for i € [1,n — 1]
(a block M; is interpreted in the context of all blocks My with k > 7).

A block is acyclic if the dependency graph induced by its equations is acyclic.
A variable X is called disjunctive (resp. conjunctive) if op; = V (resp. op; = A).
A block M; is disjunctive (resp. conjunctive) if each of its variables either is
disjunctive (resp. conjunctive), or it depends upon at most one variable defined
in M;, its other dependencies being constants or variables defined in other blocks.

The on-the-fly resolution of an alternation-free BES B = (X, My, ..., M},)
consists in computing the value of X by exploring the right-hand sides of the
equations in a demand-driven way, without explicitly constructing the blocks.
Several on-the-fly BES resolution algorithms are available [GIIIT5[7]. Here we
follow an approach proposed in [1], which proceeds as follows. To each block M;
is associated a resolution routine R; responsible for computing the values of M;’s
variables. When a variable X; of M; is computed by a call R;(X;), the values of
other variables X; defined in other blocks M} may be needed; these values are
computed by calls Ry (X)) of the routine associated to Mj,. This process always
terminates, because there are no cyclic dependencies between blocks (the call
stack of resolution routines has a size bounded by the depth of the dependency
graph between blocks). Since a variable X; of M; may be required several times
during the resolution process, the computation results must be kept persistent
between subsequent calls of R; to obtain an efficient overall resolution.

Compared to other algorithms like LMC [[7], which consists of a single routine
handling the whole BES, the scheme above presents two advantages: (a) the
algorithms used in the resolution routines of individual blocks are simpler, since
they must handle a single type of fixed point equations; (b) the overall resolution
process is easier to optimize, simply by designing more efficient algorithms for
blocks with particular structure (e.g., acyclic, disjunctive or conjunctive).

3 On-the-Fly Resolution Algorithms

This section presents four different algorithms implementing the on-the-fly res-
olution of individual equation blocks in an alternation-free BES. The algorithms
are defined only for p-blocks, those for v-blocks being completely dual. Algo-
rithms Al and A2 are general (they do not depend upon the structure of the
right-hand sides of the equations), whereas algorithms A3 and A4 are optimized
for acyclic blocks and for disjunctive or conjunctive blocks, respectively.

We develop the resolution algorithms in terms of boolean graphs [I], which
provide a graphical, more intuitive representation of BESs. Given an equation
block M; = {X; £ oijj}je[l)mi], the corresponding boolean graph is a tuple
G = (V,E,L), where: V. = {X, | j € [1,m,]} is the set of vertices (boolean
variables), E = {X; — X | j € [1,m;] A X} € X} is the set of edges (de-
pendencies between variables), and L : V' — {V, A}, L(X;) = op; is the vertex
labeling (disjunctive or conjunctive). The set of successors of a vertex x is noted
E(z). Sink V-vertices (resp. A-vertices) represent variables equal to F (resp. T).
During a call of the resolution routine R; associated to block M;, all variables

84 R. Mateescu

X defined in other blocks M}, and occurring free in M; can be seen as constants,
because their values are computed on-the-fly by calls to Ry.

As expected, the boolean graphs associated to acyclic blocks are acyclic.
The graphs associated to disjunctive (resp. conjunctive) blocks may contain A-
vertices (resp. V-vertices) having at most one successor (these vertices correspond
either to constants, or to variables having at most one non-constant successor in
the current block), the other vertices being disjunctive (resp. conjunctive).

The algorithms we present are all based upon the same principle: starting
at the variable of interest, they perform an on-the-fly, forward exploration of
the boolean graph and propagate backwards the values of the “stable” variables
(i.e., whose final value has been determined); the propagation of a T (resp.
a F) backwards to a V-variable (resp. A-variable) makes it T (resp. F). The
algorithms terminate either when the variable of interest becomes stable, or the
entire boolean graph is explored. To compare the different algorithms, we precise
below three requirements desirable for obtaining a good time complexity:

(R1) The resolution of a variable (vertex of the boolean graph) must be carried
out in a time linear in the size of the graph, i.e., O(|[V| + |E|). This is
necessary for obtaining a linear time overall resolution of a multiple-block,
alternation-free BES.

(R2) During the resolution of a variable, every new variable explored must be
related to the variable of interest by (at least) a path of unstable variables
in the boolean graph. This limits the graph exploration only to variables
“useful” for the current resolution.

(R3) When a call of the resolution algorithm terminates, the portion of the
boolean graph explored must be stable. This avoids that subsequent calls for
solving the same variable lead to multiple explorations of the graph (which
may destroy the overall linear time complexity).

3.1 Algorithm Al (DFS, General)

Algorithm A1l is based upon a depth-first search (DFs) of the boolean graph.
It satisfies all three aforementioned requirements: (R1) its worst-case time and
space complexity is O(|V| + |E|), because every edge in the boolean graph is
traversed at most twice: forwards, when its source variable is explored, and
backwards, when the value of its target variable (if it became stable) is back-
propagated; (R2) new variables, explored from the top of the DFs stack, are
related to the variable of interest, which is at the bottom of the Drs stack,
via the unstable variables present on the stack; (R3) the portion of boolean
graph explored after each call of the algorithm contains only stable variables,
i.e., depending only upon variables already explored.

The algorithm can be seen as an optimized version of the Avoiding 1’s al-
gorithm proposed in [I]: it is implemented iteratively rather than recursively, it
has a better average complexity because values of variables are back-propagated
as soon as they become stable, and it has a lower memory consumption because
dependencies between variables are discarded during back-propagation. Al was
initially developed for model-checking regular alternation-free p-calculus [I§].

A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems 85

3.2 Algorithm A2 (BFS, General)

Algorithm A2 (see Figure [) is based upon a breadth-first search (BFS) of the
boolean graph, starting from the variable of interest x. Visited vertices are stored
in a set A C V and visited but unexplored vertices are stored in a queue. To
each vertex y are associated two informations: a counter ¢(z), which keeps the
number of y’s successors that must become true in order to make y true (c(y)
is initialized to |E(y)| if y is a A-vertex and to 1 otherwise) and a set d(y)
containing the vertices that currently depend upon y. At each iteration of the
main while-loop (lines 4-34), the vertex y in front of the queue is explored. If
it is already stable (i.e., ¢(y) = 0), its value is back-propagated by the inner
while-loop (lines 8-20) along the dependencies d; otherwise, all successors E(y)
are visited and (if they are stable or new) are inserted at the end of the queue.

The algorithm satisfies requirement (R1), since each call has a complexity
O(|V]|+]|E]). It does not satisfy (R2), because the back-propagation may stabilize
vertices that “cut” all the paths relating z to vertices in the queue, and thus
at some points the algorithm may explore vertices useless for deciding the truth
value of x (however, the values of these vertices may be useful in later calls of
A2). Finally, it satisfies (R3), since at the end of the main while-loop all visited
vertices are stable (they depend only upon the vertices in A). These observations
are confirmed experimentally, A2 being slightly slower than Al.

However, as regards the ability of generating positive diagnostics (examples)
of small size, A2 performs better than Al. During the back-propagation carried
out by the inner while-loop, to each V-vertex w that becomes stable is associated
its successor s(w) that made it stable (line 14). This information can be used to
construct a diagnostic for x at the end of the algorithm, by performing another
traversal of the subgraph induced by A and keeping the successors given by s (for
V-vertices) or all successors (for A-vertices) [16]. Being BFs-based, A2 generally
produces examples of smaller depth than A1, and even of minimal depth when
the examples are sequences (e.g., in the case of disjunctive blocks). Of course, the
same situation occurs in the dual case, when A2 is used for producing negative
diagnostics (counterexamples) for v-blocks.

3.3 Algorithm A3 (DFS, Acyclic)

Algorithm A3 is based upon a DFS of the boolean graph and is specialized for
solving acyclic equation blocks. It is quite similar to algorithm A1, except that it
does not need to store dependencies between variables, since back-propagation
takes place only along the DFS stack (the boolean graph being acyclic, variables
become stable as soon as they are popped from the DFs stack). Therefore, al-
gorithm A3 has a worst-case memory consumption O(|V]), improving over the
general algorithms Al and A2.

Being DFs-based, algorithm A3 satisfies all requirements (R1)-(R3). A3 was
initially developed for model-checking p-calculus formulas on large traces ob-
tained by intensive simulation of a system implementation [17].

86 R. Mateescu

1. function A2 (z, (V,E, L)) : Bool is
2. c(z) := if L(x) = A then |E(x)| else 1 endif;
3. d(z) = 0; A := {z}; queue := put(x, nil);
4. while queue # nil do
5. y = head(queue); queue := tail(queue);
6. if ¢(y) = 0 then
7. B = {y};
8. while B # () do
9. let u € B; B := B\ {u};
10. forall w € d(u) do
11 if ¢(w) > 0 then
12 c(w) = c(w) — 1;
13 if ¢(w) = 0 then
14 if L(w) = V then s(w) := u endif;
15 B := BU{w}
16 endif
17 endif
18 end;
19 d(u) =10
20. end
21. else
22. forall z € E(y) do
23. if z € A then
24. d(z) == d(z) U{y};
25. if ¢(z) = 0 then
26. queue := put(z, queue)
27. endif
28. else
29. c(z) :=if L(z) = A then |E(z)| else 1 endif;
30. d(z) = {y}; A := AU{z}; queue := put(z, queue)
31. endif
32. end
33. endif
34. end;
35. return c¢(z) =0
36. end

Fig. 1. Algorithm A2: BFs-based local resolution of a p-block

3.4 Algorithm A4 (DFS, Disjunctive/Conjunctive)

Algorithm A4 (see Figure[2) is based upon a DFS of the boolean graph, performed
recursively starting from the variable of interest x. A4 is specialized for solving
disjunctive or conjunctive blocks; we show only its variant for disjunctive blocks,
the other variant being dual. For simplicity, we assume that all A-vertices of the
disjunctive block have no successors (i.e., they are T): since each A-vertex may
have at most one non-constant successor in the block, it can be assimilated

A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems 87

to a V-vertex if its other successors are evaluated first (possibly by calling the
resolution routines of other blocks). In this case, solving a disjunctive block
amounts to searching for a sink A-vertex, since a T value will propagate back to
x via V-vertices. This algorithm obviously meets requirements (R1) and (R2).

1. A:=0;n:=0; stack := nil;
2. function A4 (z, (V,E,L)) : Bool is
3. A:=AU{z};n(z) :=n;n:=n+1;
4. stack := push(z, stack); low(x) := n(x);
5. if |[E(z)| = 0 then
6. v(z) := if L(z) = A then T else F endif; stable(z) := T
7. else
8. v(x) := F; stable(z) :=F
9. endif;
10. forall y € E(z) do
11. if y € A then
12. val == v(y);
13. if —stable(y) A n(y) < n(z) then
14. low(x) := min(low(z),n(y))
15. endif
16. else
17. val := A4 (y, (V,E,L));
18. low(z) := min(low(z), low(y))
19. endif;
20. if val then
21. v(z) := T; stable(x) := T; break
22. endif
23. end;
24. if v(z) V low(z) = n(x) then
25. repeat
26. z := top(stack); v(z) := v(x); stable(z) := T,
27. stack := pop(stack)
28. until z =z
29. endif;
30. return v(z)
31. end

Fig. 2. Algorithm A4: Drs-based local resolution of a disjunctive u-block

However, in order to guarantee requirement (R3), we must ensure that all
visited vertices stored in A C V are stable when x has been evaluated. This
could be done by storing backward dependencies (as for algorithms Al and A2),
but for disjunctive blocks we can avoid this by computing the strongly connected
components (Sccs) of the boolean graph. When z is evaluated to T, all vertices
belonging to the ScC of x must become T (since they can reach x via a path of
V-vertices) and the other ones must be stabilized to F.

88 R. Mateescu

Algorithm A4 combines the search for T vertices with a detection of Scc
following Tarjan’s classical algorithm. It proceeds as follows: for each successor
y of vertex x (lines 10-23), it calculates its boolean value v(y), its “lowlink”
number low(y), and a boolean stable(y) which is set to F if y belongs to the
current SCC and to T otherwise. Then, if v(z) = T or z is the root of a Scc,
all vertices in the current Scc are stabilized to the value v(z) (lines 24-29).
In this way, algorithm A4 meets all requirements (R1)—(R3) and avoids to store
transitions of the boolean graph, having a worst-case memory complexity O(|V]).

4 Equivalence Checking and Model Checking

In this section we study two applications of BES resolution in the field of finite-
state verification: equivalence/preorder checking and model checking, both per-
formed on-the-fly. Various encodings of these problems in terms of BESs have
been proposed in the literature [GITJ15]. Here we aim at giving a uniform pre-
sentation of these results and also at identifying particular cases where the al-
gorithms A3 and A4 given in Sections and [34] can be applied.

4.1 Encoding Equivalence Relations

Labeled Transition Systems (LTss) are natural models for action-based languages
describing concurrency, such as process algebras. An LTS is a quadruple M =
(Q,A, T, qo), where: @ is the set of states, A is the set of actions (A, = AU{r}
is the set of actions extended with the invisible action 7), T' C @ x A, X @ is the
transition relation, and gy € @ is the initial state. A transition (qi,a,q2) € T
(also noted ¢ N g2) means that the system can evolve from state ¢; to state
g2 by performing action a. The notation is extended to transition sequences: if

I C A" is a language defined over A,, ¢ 4 q> means that from g; to ¢o there
is a sequence of transitions whose actions concatenated form a word of [.

Let M; = (Qi, A, T;,q0;) be two Ltss (i € {1,2}). The table below shows
the BES encodings of the equivalence between M; and Ms modulo five widely-
used equivalence relations: strong bisimulation [22], branching bisimulation [23],
observational equivalence [19], 7*. a equivalence [12], and safety equivalence [3].
These encodings are derived from the characterizations given in [12]. Each re-
lation is represented as a BES with a single v-block defining, for each couple
of states (p,q) € Q1 x Q2, a variable X, ;, which expresses that p and ¢ are
equivalent (a € A and b € A;). For each equivalence relation, the correspond-
ing preorder relation is obtained simply by dropping either the second con-
junct (for strong, 7*.a, and safety equivalence), or the third and fourth con-
juncts (for branching and observational equivalence) in the right-hand sides of
the equations defining X, , (e.g., the strong preorder is defined by the BES

{Xpq = A L \%
tion [2I] and n-bisimulation [2], can be encoded using a similar scheme. Note

that for all weak equivalences, the computation of the right-hand sides of equa-
tions requires to compute transitive closures of T-transitions in one or both LTsSs.

Xy ¢ }). Other equivalences, such as delay bisimula-

o

A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems 89

| RELATION | ENCODING |

Safety

Strong { Xp.q = (/\ \/q%q) (/\qaq V]Hp) }
B hi = /\pﬂp ((b—T/\Xp \q \/\/qﬂq b (poa’ N Xpr q“) A
ranchin,
¢ /\qiq ((b_T/\qu \/\/-rp,H (pq/\Xp”q’)
prqé(/\'r/\/f*) (/\ Vﬂ'aﬂ-* }
Observational PP =g P a
{ (/\q;q vpl*,p) (/\qﬂq v rrar”
{Xp,qé(/\f_*a/vf_a, p,q)A(/\,_*a/v o, Xow) |
p—p’ "~ g—gq q—q
Xp.q
Y,

Yo NYap
P,q *a_, T*a Yp’,q’)
p—p’ q—q

In order to apply the resolution algorithms given in Section[3, the BESs shown
in the table above must be transformed by introducing extra variables such that
the right-hand sides of equations become disjunctive or conjunctive formulas.
For example, the BES for strong bisimulation is transformed as follows:

Y / /\ Z ’
Xpq = /\ L T0Pa /\ng, b,p,q
l/
Y —_— X / !
b,p'.q \/qﬁq, p'q

v
Zypg = V b ,Xpﬁq’

p—p

[Is <
>
<

This kind of BESs can be solved by using the general algorithms Al and A2
(note that the encodings given above allow to construct both Lrss on-the-fly
during BEs resolution). However, when one or both Lrss M; and Ms have a
particular structure, the BESs can be simplified in order to make applicable the
specialized algorithms A3 or A4.

Acyclic case. When M; or M, is acyclic, the BESs associated to strong
bisimulation (and its preorder) become acyclic as well. This is easy to see for
strong bisimulation: since the two-step sequences X, ; — Y3 g — Xpr o and

Xp.g = Zypqg — Xp g of the boolean graph correspond to transitions p LA P’
and ¢ 2, ¢, acycle X, , — -+ X, , in the boolean graph would correspond to

cycles p LA ---pand q LA -++q in both M7 and M,. For 7*. a and safety equiva-
lence (and their preorders), acyclic BESs are obtained when M; or My contain no
cycles going through visible transitions (but may contain 7-cycles): since two-
step sequences in the boolean graph correspond to sequences of 7T-transitions
ended by a-transitions performed synchronously by the two LTss, a cycle in the
boolean graph would correspond to cycles containing an a-transition in both
M and M. For branching and observational equivalence (and their preorders),
both Lirss M; and Ms must be acyclic in order to get acyclic BESs, because
7-loops like p — p present in M; induce loops Xp.q — Xp,q in the boolean graph
even if Ms is acyclic.

If the above conditions are met, then the memory-efficient algorithm A3 can
be used to perform equivalence/preorder checking. One practical application

90 R. Mateescu

concerns the correctness of large execution traces produced by an implementation
of a system w.r.t. the formal specification of the system [17]. Assuming the
system specification given as an LTS M; and the set of traces given as an LTS
M, (obtained by merging the initial states of all traces), the verification consists
in checking the inclusion M; < M> modulo the strong or safety preorder.

Conjunctive case. When M; or M, is deterministic, the BESs associated to
the five equivalence relations considered and to their corresponding preorders
can be reduced to conjunctive form. We illustrate this for strong bisimulation,
the BESs of the other equivalences being simplified in a similar manner. If M,
is deterministic, for every state p € Q1 and action b € A, there is at most one

transition p LA p. Let ¢ LA ¢’ be a transition in Ms. If there is no corresponding

transition p LA p, in M, the right-hand side of the equation defining X, ,
trivially reduces to false (states p and ¢ are not strongly bisimilar). Otherwise,
the right-hand side of the equation becomes (\/ Iy Xyt DNA o X o),

b L
which reduces to /\ Iy Xpr g since the first conJunct is absorbed by thle second
one. The same smlphﬁcatlon applies when M5 is deterministic, leading in both
cases to a conjunctive BES.

For weak equivalences, further simplifications of the BESs can be obtained
when one LTS is both deterministic and 7-free (i.e., without 7-transitions). For
example, if M; is deterministic and 7-free, the BES for observational equivalence

becomes { X, , = /\qu Xp.qg N /\q oy Xpl, .o }- These simplifications have been

identified in [1 2] we believe they can be obtained in a more direct way by using
BEs encodings.

When one of the above conditions is met, then the memory-efficient algorithm
A4 can be used to perform equivalence/preorder checking. As pointed out in
[12], when comparing the Lrs M; of a protocol with the Lrs Ms of its service
(external behaviour), it is often the case that M5 is deterministic and/or 7-free.

4.2 Encoding Temporal Logics

Alternation-free BESs allow to encode the alternation-free p-calculus [GITIT5].
The formulas of this logic, defined over an alphabet of propositional variables
X € X, have the following syntax (given directly in positive form):

pu=F|T|lo1Vpa|oiApa|(a)e|lae| X [pX.p|vX.e

The semantics of a formula ¢ on an Lts M = (Q, A, T, qo) denotes the set of
states satisfying ¢: boolean operators have the standard interpretation; possi-
bility ({(a) ¢) and necessity ([a] ¢) operators denote the states from which some
(resp. all) transitions labeled by a lead to states satisfying ¢; minimal (uX.p)
and maximal (vX.p) fixed point operators denote the least (resp. greatest) so-
lution of the equation X = ¢ interpreted over 2%. Fixed point operators act as
binders for variables X in the same way as quantifiers in first-order logic. The

A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems 91

alternation-free condition means that mutual recursion between minimal and
maximal fixed point variables is forbidden.

Given an L1s M, the standard translation of an alternation-free formula
@ into a BES [6/1/I5] proceeds as follows. First, extra propositional variables
are introduced at appropriate places of ¢ to ensure that in every subformula
0 X.¢' (where o € {u,v}) of ¢, ¢ contains a single boolean or modal operator
(this is needed in order to obtain only disjunctive or conjunctive formulas in
the right-hand sides of the resulting BES). Then, the BES is constructed in a
bottom-up manner, by creating an equation block for each closed fixed point
subformula ¢X.¢" of ¢. The alternation-free condition ensures that once the
fixed point subformulas of 0 X.¢" have been translated into equation blocks, all
remaining variables in 0 X.’ are of sign o. Each closed fixed point subformula
0 X.¢' is translated into an equation block {X, & (¢'),}peq, where variables X,
express that state p satisfies X and the right-hand side boolean formulas (¢'),
are obtained using the translation shown in the table below.

L e T e [o | (@]
F F T T

01V pa|(1)p V (02)p1 A w2|(@1)p A (@2)p

(ayor |V o (01)q || laler | A\ o (¢1)q

pP—q pP—4q

X Xp o X.p1 Xp

This kind of BES can be solved by the general algorithms Al and A2 given
in Section Bl (note that the translation procedure above allows to construct the
Lts on-the-fly during BES resolution). However, when the Lts M and/or the
formula ¢ have a particular structure, the BES can be simplified in order to make
applicable the specialized algorithms A3 or A4.

Acyclic case. When M is acyclic and ¢ is guarded (i.e., every recursive call of
a propositional variable in ¢ falls in the scope of a modal operator), the formula
can be simplified in order to have only minimal fixed point operators, leading
to an acyclic, single-block BEs [17]. This procedure can be also applied when
© has higher alternation depth and/or is unguarded, in the latter case ¢ being
first translated to guarded form (with a worst-case quadratic blow-up in size).

If the above conditions are met, then the memory-efficient algorithm A3 can
be used to perform p-calculus model checking. One practical application consists
in verifying u-calculus formulas on sets of large execution traces (represented as
acyclic Ltss M by merging their initial states) produced by intensive random
execution of a system implementation [17].

Disjunctive/conjunctive case. When ¢ is a formula of CTL [4], ACTL
(Action-based CtL) [20] or PDL [13], the BES resulting after translation is in dis-
junctive or conjunctive form. The table below shows the translations of CTL and
PDL operators into alternation-free p-calculus [§] (here the ‘—’ symbol stands for
‘any action’ of the Lirs). For conciseness, we omitted the translations of PDL box
modalities [3] ¢, which can be obtained by duality. ACTL can be translated in a

92 R. Mateescu

way similar to CTL, provided action predicates (constructed from action names
and boolean operators) are used inside diamond and box modalities instead of
simple action names [9].

l Operator [Translation ‘
EXe (-
CTL | AXp (=) TA[-e

ElpiUpa] | X2V (01 A (=) X)

AlprUpa] [uX.p2 V(1 A (=) TA[-]X)
(@) ¢ (@) ¢
(p17) @2 01 A 2

PpL <ﬁ1,ﬂ2> (B1) (B2) @
Eﬂ

1UB2) | (B1)pV (B2) e
B7) e pX.oV(B) X

The translation of CTL formulas into BESs can be performed bottom-up,
by creating a V-block (resp. a A-block) for each subformula dominated by an
operator E[_U_] (resp. A[_U_]). For instance, the formula E[¢;Ugps] is translated,
via the p-calculus formula pX.po V (91 A (=) X), first into the formula pX.po vV
pY. (o1 A uZ.(—)X) by adding extra variables Y and Z, and then into the
equation block {X, £ (a2), V Yy, Yy £ (p1)p A Zp, Z, £ V,—q Xq}tpeq- This
block is disjunctive, because its only A-variables are Y}, and their left successors
(¢1)p correspond to CTL subformulas encoded by some other block of the BES.
The formula A[p;Ugpo] is translated, in a similar manner, into the equation block
(X £ (02)p VY, Yp £ (01)p A Zp A Nyy X Z £\, Thpeq- This block is
conjunctive, because its V-variables X, have their left successors (¢2), defined
in some other block of the BEs, and its V-variables Z, have all their successors
constant.

AcTL formulas can also be translated into disjunctive or conjunctive equa-
tion blocks, modulo their translations in p-calculus [9]. In the same way, the
translation of PDL formulas into BESs creates a V-block (resp. a A-block) for
each subformula (8) ¢ (resp. [5] ¢): normal boolean operators can be factor-
ized such that at most one of their successors belongs to the current block, and
the conjunctions (resp. disjunctions) produced by translating the test-modalities
(p1?) @2 (resp. [¢17] p2) have their left operands defined in other blocks of the
BES, resulting from the translation of the ¢ subformulas.

Thus, the memory-efficient algorithm A4 can be used for model checking
CtL, AcTL, and PDL formulas. This covers most of the practical needs, since
many interesting properties can be expressed using the operators of these logics.

5 Implementation and Experiments

We implemented the BES resolution algorithms A1-A4 described in Section [3 in
a generic software library, called CESAR_SOLVE, which is built upon the prim-
itives of the OPEN/CESAR environment for on-the-fly exploration of Ltss [I4].
CAESAR_SOLVE is used by the BISIMULATOR equivalence/preorder checker and

A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems 93

the EVALUATOR model checker. We briefly describe the architecture of these
tools and give some experimental results concerning the A1-A4 algorithms.

5.1 Architecture of the Solver Library

The CESAR_SOLVE library (see FigureB]) provides an Application Programming
Interface (API) allowing to solve on-the-fly a variable of a BES. It takes as input
the boolean graph associated to the BES together with the variable of interest,
and produces as output the value of the variable, possibly accompanied by a
diagnostic (portion of the boolean graph). Depending on its particular form,
each block of the BES can be solved using one of the algorithms A1-A4, which
were developed using the OPEN/CESAR primitives (hash tables, stacks, etc.).

other
OPEN/CESAR
libraries

= 5
=B =B
S CAESAR_SOLVE lib N =
S35 - ibrary: =5 . »
BEes @0, | on-the-fly algorithms for | %01~ diagnostic
(boolean = '8 | resolution & diagnostic | = '8 (boolean
o 1w ol®n
graph) =8 ==, % subgraph)
20 [Tt
g0 g'S
. o B=N
variable =z N value
[} [}
[} [}
[} [}
1 1

(TL)
ormula

(implicit boolean graph &
diagnostic generator (.c)

translator translator

BISIMULATOR
EVALUATOR

implicit boolean graph &
diagnostic generator (.c)

|

| |

C compiler }—*@xecutablﬂ
o
runtime environment

OPEN/CESAR yes / no
(2 CESAR_SOLVE)

libraries

Fig. 3. The CESAR_SOLVE library and the tools BISIMULATOR and EVALUATOR

Both the input boolean graph and the diagnostic are represented implicitly by
their successor functions, which allow to iterate over the outgoing edges (depen-
dencies) of a given vertex (variable) and hence to perform on-the-fly traversals of
the boolean graphs. This scheme is similar to the implicit representation of LTss
defined by the OPEN/C&SAR environment [14]. To use the library, a user must

94 R. Mateescu

provide the successor function of the BES (obtained by encoding some specific
problem) and, if necessary, must interpret the resulting diagnostic by traversing
the corresponding boolean subgraph using its successor function.

Two on-the-fly verification tools (see Figure [are currently using the
CESAR_SOLVE library: BISIMULATOR, an equivalence/preorder checker between
two LTSs modulo the five relations mentioned in Section BTl and EVALUATOR,
a model checker for regular alternation-free p-calculus [I8] over Lrss. Each tool
translates its corresponding verification problem into a BES resolution, identify-
ing the particular cases suitable for algorithms A3—-A4, and translates back the
diagnostics produced by the library in terms of its input LTs(s).

5.2 Performance Measures

We performed several experiments to compare the performances of the reso-
lution algorithms A1-A4. The applications selected were (several variants of)
three communication protocols@: an alternating bit protocol (ABP), a bounded
retransmission protocol (BRP), and a distributed leader election protocol (DLE).

The results are shown in the table below. The 1st series of experiments com-
pares Al with A2 as regards diagnostic depth; the 2nd and 3rd series compare
Al with A3, resp. Al with A4 as regards memory consumption (measured in
Kbytes). For each experiment, the table gives the measures obtained using Al
and A2-A4, and the corresponding difference ratios. Comparisons and inclusions
between LTss are performed using BISIMULATOR, and evaluations of temporal
logic properties on LTss are performed using EVALUATOR. All temporal proper-
ties are expressed using combinations of ACTL and PDL operators, which lead
to disjunctive/conjunctive BESs, therefore enabling the use of algorithm A4.

The 1st experiments compare each protocol LTs modulo strong bisimulation
with an erroneous LTS, and verify an invalid property on the protocol LTS.
The 2nd experiments check that an execution sequence of 100000 transitions is
included in each protocol LTs, and check a valid property on the sequence (both
problems yield acyclic boolean graphs, hence enabling the use of algorithm A3).
The 3rd experiments compare each protocol LTS modulo 7*. a equivalence with
its service LTs, which is deterministic (hence enabling the use of algorithm A4),
and verify a valid property on the protocol LTs. We observe important reductions
of diagnostic depth (up to 99%) whenever algorithm A2 can be used instead of
A1, and reductions of memory consumption (up to 63%) whenever algorithms
A3-A4 can be used instead of Al.

L All these examples can be found in the CADP distribution, available at the URL
http://www.inrialpes.fr/vasy/cadp.

A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems 95

A2 versus Al Diagnostic depth
App. Size BISIMULATOR EVALUATOR
States| Trans.| A1 | A2 [% [A1 A2 %
ABP (935000{3001594 235 19/91.9 50 12|76.0
BRP [355001| 471119| 1455 31|97.8 744 18(97.5
DLE |143309| 220176| 2565 25(99.0 147 14190.4

A3 versus Al Memory consumption

App. Size BISIMULATOR EVALUATOR
States]| Trans.| A1 | A3 [% [A1 A3 [%
ABP [935000(3001594 || 37472| 32152({14.1| 10592| 8224(22.3
Brp [355091| 471119 17656| 13664|22.6| 10240| 7432|27.4
DLE | 28710 73501|| 15480| 11504(25.6| 8480| 6248|26.3

A4 versus Al Memory consumption

App. Size BISIMULATOR EVALUATOR
States]| Trans.| A1 | A4 [% [A1 A4 [%
ABP [935000(3001594|[178744|152672(14.5/163800(60248|63.2
BRP |355091| 471119|| 35592| 23608(33.6| 26752|17432|34.8
DLE | 18281| 44368(|107592| 94584(12.0| 3904| 3224|17.4

6 Conclusion and Future Work

We presented a generic library, called CESAR_SOLVE, for on-the-fly resolution
with diagnostic of alternation-free BESs. The library was developed using the
OPEN/CA&ESAR environment [14] of the CADP toolbox [10]. It implements an
application-independent representation of BESs, precisely defined by an API.
The library currently offers four resolution algorithms A1-A4, A2 being opti-
mized to produce small-depth diagnostics and A3, A4 being memory-efficient
for acyclic and disjunctive/conjunctive BESss. CESAR_SOLVE is used at the
heart of the equivalence/preorder checker BISIMULATOR and the model checker
EVALUATOR [I8]. The experiments carried out using these tools assess the perfor-
mance of the resolution algorithms and the usefulness of the diagnostic features.

We plan to continue our work along three directions. Firstly, in order to in-
crease its flexibility, the C/ESAR_SOLVE library can be enriched with other BES
resolution algorithms, such as LMC [7] or the Gauss elimination-based algorithm
proposed in [I5]. Due to the well-defined API of the library and the availabil-
ity of the OPEN/CAESAR primitives, the prototyping of new algorithms is quite
straightforward; from this point of view, C/ESAR_SOLVE can be seen as an open
platform for developing and experimenting BES resolution algorithms. Another
interesting way of research is the development of parallel versions of the algo-
rithms A1-A4, in order to exploit the computing resources of massively parallel
machines such as PcC clusters. Finally, other applications of the library can be
envisaged, such as on-the-fly generation of test cases (obtained as diagnostics)
from the LTS of a specification and the LTS of a test purpose, following the
approach put forward in [11].

96

R. Mateescu

References

1.
2.

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

H. R. Andersen. Model checking and boolean graphs. TCS, 126(1):3-30, 1994.

J. C. M. Baeten and R. J. van Glabbeek. Another Look at Abstraction in Process
Algebra. In ICALP’87, LNCS 267, pp. 84-94.

A. Bouajjani, J-C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for
Branching Time Semantics. In ICALP’91, Lncs 510.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications. ACM Trans. on
Prog. Lang. and Systems, 8(2):244-263, April 1986.

R. Cleaveland and B. Steffen. Computing behavioural relations, logically. In
ICALP’91, LNCS 510, pp. 127-138.

R. Cleaveland and B. Steffen. A Linear-Time Model-Checking Algorithm for the
Alternation-Free Modal Mu-Calculus. In CAV’91, LNCS 575, pp. 48-58.

X. Du, S. A. Smolka, and R. Cleaveland. Local Model Checking and Protocol
Analysis. Springer STTT Journal, 2(3):219-241, 1999.

E. A. Emerson and C-L. Lei. Efficient Model Checking in Fragments of the Propo-
sitional Mu-Calculus. In LICS’86, pp. 267-278.

A. Fantechi, S. Gnesi, and G. Ristori. From ACTL to Mu-Calculus. In FRCIM’92
Ws. on Theory and Practice in Verification (Pisa, Italy), IEI-CNR, pp. 310, 1992.
J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP (CESAR/ALDEBARAN Development Package): A Protocol Valida-
tion and Verification Toolbox. In CAV’96, LNcS 1102, pp. 437-440.

J-C. Fernandez, C. Jard, Th. Jéron, L. Nedelka, and C. Viho. Using On-the-Fly
Verification Techniques for the Generation of Test Suites. In CAV’96, LNcs 1102.
J-C. Fernandez and L. Mounier. “On the Fly” Verification of Behavioural Equiv-
alences and Preorders. In CAV’91, LNCS 575.

M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs.
J. of Comp. and System Sciences, (18):194-211, 1979.

H. Garavel. OPEN/CAESAR: An Open Software Architecture for Verification,
Simulation, and Testing. In TACAS’98, LNcs 1384, pp. 68-84.

A. Mader. Verification of Modal Properties Using Boolean Equation Systems. VER-
SAL 8, Bertz Verlag, Berlin, 1997.

R. Mateescu. Efficient Diagnostic Generation for Boolean Equation Systems. In
TACAS’ 00, LNcs 1785, pp. 251-265.

R. Mateescu. Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled
Transition Systems. In TACAS’02, LNcs 2280, pp. 281-295.

R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Comp. Programming, 2002. To appear.
R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Transition
Systems. In Semantics of Concurrency, LNCS 469, pp. 407—419.

R. De Nicola, U. Montanari, and F. Vaandrager. Back and Forth Bisimulations.
CS R9021, CWI, Amsterdam, May 1990.

D. Park. Concurrency and Automata on Infinite Sequences. In Th. Comp. Sci.,
Lncs 104, pp. 167-183.

R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in
Bisimulation Semantics. In Proc. IFIP 11th World Computer Congress, 1989.

B. Yang, R.E. Bryant, D. R. O’Hallaron, A. Biere, O. Condert, G. Janssen, R.K.
Ranjan, and F. Somenzi. A Performance Study of BDD-Based Model-Checking.
In FMCAD’98, LNCS 1522, pp. 255-289.

	Introduction
	Alternation-Free Boolean Equation Systems
	On-the-Fly Resolution Algorithms
	Algorithm A1 (DFS, General)
	Algorithm A2 (BFS, General)
	Algorithm A3 (DFS, Acyclic)
	Algorithm A4 (DFS, Disjunctive/Conjunctive)

	Equivalence Checking and Model Checking
	Encoding Equivalence Relations
	Encoding Temporal Logics

	Implementation and Experiments
	Architecture of the Solver Library
	Performance Measures

	Conclusion and Future Work

