
Symbiosis of Static Analysis and Program
Testing

Michal Young

University of Oregon, Dept. of Computer Science
michal@cs.uoregon.edu

1 Introduction

The fundamental fact about verifying properties of software, by any means, is
that almost anything worth knowing is undecidable in principle. The limita-
tions of software testing, on the one hand, and static analysis on the other, are
just different manifestations of this one basic fact. Because both approaches to
verification are ultimately doomed, neither is likely to supplant the other in
the foreseeable future. On the other hand, each can complement the other, and
some of the most promising avenues of research are in combinations and hybrid
techniques.

2 Limits of Dynamic Testing

The basic theory underlying testing is almost entirely negative. One can of course
resort to randomized testing if the objective is to measure rather than to im-
prove the product, but the number of test cases required to obtain high levels
of confidence is astronomical [5]. Moreover, statistical inferences are valid only
if one has a valid statistical model of use, which is rare. More often testing is
systematic, not random, and aimed at finding faults rather than estimating the
prevalence of failures.

Systematic testing exercises divides the set of possible executions into a finite
number of classes, and inspects samples from each class on the hope that classes
are sufficiently homogeneous to raise the likelihood of fault detection. Thus sys-
tematic testing, whether based on program structure or specification structure
or something else, is based on a model of software and a hypothesis that faults
are somehow localized by the model. This hypothesis is not verifiable except in-
dividually and after the fact, by observing whether some test obligation induced
from the model was in fact effective in selecting fault-revealing test cases.

3 Limits of Static Analysis

The unsatisfying foundations of testing make exhaustive, static analyses seem
more attractive. Isn’t it better to achieve some kind of result that is sound, even
if we must accept some spurious error warnings, or restrict the class of programs

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 1–5, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 M. Young

to be analyzed, or check properties that are simpler than those we really want to
analyze? Indeed, some properties can be incorporated into the syntax or static
semantics of a programming language and checked every time we compile a
program, like Java’s requirement to initialize each variable before use and to
explicitly declare the set of exceptions that can be thrown or propagated by a
program unit.

Exhaustive static analyses are necessarily based on abstract models of the
software to be checked. The static checks that have been built into Java are
based on simple models derived from program syntax. The “initialize before
use” rule is based on a simple, local control flow model, and crucially it side-
steps the fundamental limitation of undecidability by not distinguishing between
executable and unexecutable program paths. It is acceptable for a Java compiler
to reject a program with a syntactic path on which the first use of a variable
appears before it is assigned a variable, even if that path can never be taken,
because the restriction is easy to understand and the “fault” is easy to repair.
The rule regarding declaration of exceptions is likewise based on a simple, easily
understandable call-graph model. Because the rules can be understood in relation
to these models, we accept them as being rather strict but precise, rather than
viewing them as producing spurious error reports.

More sophisticated program checks – for example, checking synchronization
structure to verify absence of race conditions – place much heavier demands on
extraction of an appropriate model. If the model is too simple, the analysis is
apt to be much too pessimistic, and unlike the Java rules mentioned above there
may be no reasonable design rule to prevent spurious error reports. If the model
is sufficiently expressive to avoid spurious error reports, an exhaustive analysis is
likely to be unacceptably expensive. The remaining option is to use an expressive
model, but limit analysis effort by other means, such as using a non-exhaustive
(and unsound) analysis, in which case the “static” analysis becomes a kind of
symbolic testing.

Sometimes the model is produced by a human, and in that case again the
limits on analysis are not too onerous if failures are reported in the form of
counter-examples whose cause is easily diagnosed. Crafting a model with ap-
propriate abstractions to efficiently verify properties of interest is a challenging
design task, but arguably at least the effort is recouped in establishing a clearer
understanding of the software system [16]. A remaining problem is that one can-
not be certain of the correspondence between the model and the actual software
system it represents. Verifying their correspondence has, roughly speaking, the
same difficulty as extracting models directly from software, and raises essentially
the same issues.

Despite the surge of interest in static analysis of models derived directly (with
varying degrees of automation) from actual software source code [8,14,11,2], the
fundamental limitation imposed by undecidability ensures that static analysis
will not supplant dynamic testing anytime soon. In some application domains,
it may be possible to impose enough restrictions on programs that testing is
relegated to a minor role. One can imagine severe restrictions on programming



Symbiosis of Static Analysis and Program Testing 3

style in software destined for medical devices, for example. In the larger world
of software development, the trends are in the wrong direction. Dynamically
reconfigurable systems, programs that migrate across a network, end-user pro-
grammable applications, and aspect-oriented programming (to pick a few) all
widen the gap between the kinds of programs that developers write, and the
kinds of programs that are amenable to strong static analysis.

4 Symbiotic Interactions

Testing has limitations, and static analysis has limitations, but it does not follow
immediately that some combination or hybrid of testing and analysis should be
better than either one independently. One could imagine that, while neither is
perfect, one dominates the other. But this does not turn out to be the case,
and there are many current examples of symbiotic interactions between static
analysis and testing as well as additional opportunities for fruitful combinations.

One interesting class of combination is an individual technique that combines
aspects of both, exploring selected scenarios like testing but using a symbolic rep-
resentation of program state more like a pure static analysis technique. Symbolic
testing techniques have the same ultimate limitation as conventional testing, but
using symbolic representations they can more effectively search for particular
classes of program fault. Howden developed a symbolic testing technique more
than 25 years ago [13], but program analysis technology and computing power
was perhaps not ready for it then. Lately the technique has been revived and
elaborated, notably in Pincus’ Prefix [4] and Engler’s Metal [7].

Symbolic testing, like conventional testing, is not sound: If we fail to find a
violation of some property of interest, that does not constitute a proof of the
property. Exhaustive static analyses, on the other hand, are typically designed
to be sound, at least with respect to the abstract model on which they operate.
As we noted above, this leaves the problem of discrepancies between the model
and the underlying program. Relegating the problem of model conformance to
dynamic testing, as in communication protocol conformance testing, is an at-
tractive option. Separating analysis of the model from dynamic testing of model
conformance makes each simpler. It makes diagnosing problems in the model
much easier, and provides much more flexibility (e.g., in the use of pointers and
other dynamic structures) than insisting that the programmer use only idioms
that can be automatically (and soundly) abstracted to a model.

Dynamic testing often divides the execution space of a program into puta-
tive equivalence classes based on the results of some form of static analysis of
program text, e.g., data flow testing based on def-use associations produced by
a data flow analysis. To date, most such testing techniques have been based on
conservative analyses. For example, points-to analysis typically overestimates
the set of pointers that can point to the same object, resulting in spurious def-
use associations; this in turn can lead to test obligations that cannot be met.
While conservative analysis can be justified when used directly to find faults, it



4 M. Young

makes more sense to use a precise but unsafe analysis to provide guidance for
testing [12].

One could take this a step further: It is easy to imagine static program
analyses that are unsound, but which produce as a by-product a set of unverified
assumptions to be checked by dynamic testing. For example, one might choose
to perform a static analysis that ignores exceptions or some aliasing relations,
except for those that have been observed in dynamic tests. Or, one could produce
static analysis results in which “maybe” results are distinguished from definite
faults, as Chechik and Ding have done with model checking [6], and use “maybe”
results as guidance to testing.

Even a simple, intraprocedural control flow graph mode model is overly con-
servative in that it includes program paths that cannot actually be executed,
so systematic testing typically ends with a residue of unmet coverage obliga-
tions. This residue itself can be considered as a kind of model or hypothesis
about behavior in actual use. If we release a product with some unmet coverage
obligations, we are hypothesizing that they are either impossible to execute (an
artifact of an overly conservative model) or at least so rarely executed as to
be insignificant. This hypothesis can be tested in actual use, through program
instrumentation [15,3].

Increased computational power and clever algorithms benefit dynamic test-
ing and program monitoring, just as they have benefited static analysis and par-
ticularly finite-state verification techniques. One of the techniques that would
have seemed implausible a decade ago is dynamically gathering “specifications”
(more precisely, hypothetical properties) during program execution, as in Ernst’s
Daikon [9] and the “specification mining” technique of Ammons, Bodik, and
Larus [1]. These can be applied directly to testing [10]. An interesting possibility
is to make these highly likely but unproven properties available to static analysis
techniques, again giving up soundness (when necessary) to achieve more precise
analysis. It is also possible that, once identified, some of them might be statically
verified.

Many years ago, a battle raged between the partisans of program verification
and of dynamic testing. Thankfully, that battle is long over, and static and
dynamic analysis techniques (as well as other aspects of formal methods, such as
precise specification) are almost universally regarded as complementary. Models
are the common currrency of static analysis and dynamic testing. By accepting
the inevitability of imperfect models, we open many opportunites for synergistic
combinations.

References

1. Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 4–16. ACM Press, 2002.

2. T. Ball and S. Rajamani. Checking temporal properties of software with boolean
programs. In Proceedings of the Workshop on Advances in Verification, 2000.



Symbiosis of Static Analysis and Program Testing 5

3. Jim Bowring, Alessandro Orso, and Mary Jean Harrold. Monitoring deployed
software using software tomography. In Proceedings of the 2002 ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering, pages
2–9. ACM Press, 2002.

4. William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer
for finding dynamic programming errors. Software – Practice and Experience,
30(7):775–802, 2000.

5. Ricky W. Butler and George B. Finelli. The infeasibility of quantifying the reliabil-
ity of life-critical real-time software. IEEE Transactions on Software Engineering,
19(1):3–12, 1993.

6. M. Chechik and W. Ding. Lightweight reasoning about program correctness. Tech-
nical Report CSRG Technical Report 396, University of Toronto, 2000.

7. Benjamin Chelf, Dawson Engler, and Seth Hallem. How to write system-specific,
static checkers in Metal. In Proceedings of the 2002 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, pages 51–60.
ACM Press, 2002.

8. James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Păsăreanu, Robby, and Hongjun Zhenga. Bandera: Extracting finite-state models
from Java source code. In International Conference on Software Engineering, pages
439–448, 2000.

9. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution. In
International Conference on Software Engineering, pages 213–224, 1999.

10. Michael Harder. Improving test suites via generated specifications. Master’s thesis,
M.I.T., Dept. of EECS, May 2002.

11. Gerard J. Holzmann and Margaret H. Smith. An automated verification method
for distributed systems software based on model extraction. IEEE Transactions
on Software Engineering, 28(4):364–377, 2002.

12. J. Horgan and S. London. Data flow coverage and the C language. In Proceed-
ings of the Fourth Symposium on Testing, Analysis, and Verification, pages 87–97,
Victoria, Oct 1991. ACM Press.

13. William E. Howden. Symbolic testing and the DISSECT symbolic evaluation
system. IEEE Transactions on Software Engineering, SE–3(4):266–278, July 1977.

14. D. Park, U. Stern, and D. Dill. Java model checking. In Proceedings of the First
International Workshop on Automated Program Analysis, Testing and Verification,
Limerick, Ireland, June 2000.

15. Christina Pavlopoulou and Michal Young. Residual test coverage monitoring. In
International Conference on Software Engineering, pages 277–284, 1999.

16. Wei Jen Yeh and Michal Young. Redesigning tasking structures of Ada programs
for analysis: A case study. Software Testing, Verification, and Reliability, 4:223–
253, December 1994.


	Symbiosis of Static Analysis and Program Testing
	Introduction
	Limits of Dynamic Testing
	Limits of Static Analysis
	Symbiotic Interactions




