Model-Based Development of Web Applications
Using Graphical Reaction Rules

Reiko Heckel and Marc Lohmann

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn
D-33098 Paderborn, Germany
{reiko,mlohmann}Qupb.de

Abstract. The OMG’s Model-Driven Architecture focusses on the evo-
lution and integration of applications across heterogeneous middleware
platforms. Presently available instances of this idea are mostly limited
to static models.

We propose a model-driven approach to the development of web-enabled
applications, seen as reactive information systems on an HTTP-based
communication platform, which covers both static and dynamic aspects.
To support the separate change of both platform and functionality we
separate at model and implementation level the platform-independent
application logic from classes specific to technologies like HTML or
SOAP.

We discuss a notion of consistency between models at different abstrac-
tion levels based on a concept of graphical reaction rules, i.e., graph
transformation rules which integrate data state transformation and re-
active behavior.

1 Introduction

Most business applications developed today depend on a specific middleware
platform providing services for communication, persistence, security, etc. while
supporting interoperability across different kinds of hardware and operating sys-
tems. If such systems have to interact over the web, for example to provide in-
tegrated services, we face the problem of the interoperability of these platforms.
Solutions at different levels have been proposed to overcome this problem.

At implementation level, the approach of web services provides a collection
of languages and protocols to support interoperability at the level of text-based
HTTP by interchanging XML-documents representing, e.g., remote procedure
calls. At the level of design, the OMG has proposed the Model-Driven Archi-
tecture (MDA) [T6T7] to achieve interoperability through models. Starting from
standard UML models [12] specifying the intended functionality, the MDA ap-
proach is largely concerned with the vertical structure of the mappings required
to implement this functionality on any given platform. The idea is to distinguish
between platform-independent models (PIMs) that are refined into platform-
specific models (PSMs) which carry all relevant annotations for the generation
of platform-specific code.

M. Pezzé (Ed.): FASE 2003, LNCS 2621, pp. 1700I83, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Model-Based Development of Web Applications 171

The idea seems realistic (and has in part been implemented) for mappings
to data type or interface definition languages like SQL DDL, XML Schemata,
or CORBA IDL, and for static aspects of Java and EJB, thanks to the relative
simplicity and stability of these more mature languages. Siegel [15], for exam-
ple, describes the use MDA for applications based on web services, focussing on
the integration of service interfaces in applications developed with the MDA ap-
proach. However, the integration does not take into account dynamic information
about how the services should be used.

For behavioral models like statecharts and collaboration diagrams, transfor-
mations to code are more sophisticated, but largely platform-independent [3/J5].
If we want to use such diagrams to model the business logic of our application,
an integration with the platform-specific models and their mappings is required.

According to the OMG’s proposal this integration should be done by aug-
menting, throughout the platform-independent models, model elements with an-
notations in terms of stereotypes and tagged values. Then, in the likely case of
a change in the platform-independent model (induced, for example, by an evo-
lution of the functional requirements), the platform-specific annotations have
to be re-iterated for all relevant target platforms. This shows an imbalance of
the MDA proposal which focuses entirely on evolution and integration across
platforms, disregarding the evolution of the functional aspect.

In this paper, we discuss a model-driven approach to the development of web-
enabled applications which avoids the above obstacles by separating platform-
independent and platform-specific models. This separation of concerns is pre-
served at the implementation level as well as in the mapping.

The approach aims at both interactive (HTML-based) web applications
and web services which share the basic request-query/update-response pattern,
where an HTTP-request is answered (or causes further requests to other servers)
in combination with a query or update of the internal data state of the server
or its associated data base. Rather than with other kinds of reactive systems,
like in the embedded domain where data is often abstracted from at the level of
models, web-based business applications are primarily information systems, and
data state transformations are a crucial aspect of their behavior.

Our approach to integrate data state transformations and reactivity at the
level of models is based on a special format of graph transformation rules that
we call graphical reaction rules. Such a reaction rule is a transformation rule on
the internal object structure of the server which is triggered by a request, i.e., a
special kind of vertex modeling an incoming message that is consumed when the
rule is applied. This rule-based way of formalizing reactive behavior goes back
to actor grammars [10], a model of actor systems by graph transformation, and
has since then been adopted by several authors.

Based on this concept we outline a model-based development approach start-
ing from requirements expressed in terms of use cases and sequence diagrams
in Sect. 2] via architectural and detailed platform-independent design in Sect. Bl
to platform-specific design and implementation in Sect. @ Then, in Sect. B we
provide a discussion of the vertical consistency problems arising between these

172 R. Heckel and M. Lohmann

different levels and argue for the necessity of a model-driven testing approach in

Sect. [6l

2 Requirements Specification

Following the Unified Process [9], the functional requirements of web-enabled
applications are captured by use cases where interesting scenarios are detailed
by means of sequence diagrams.

As a running example throughout the paper we use the model of an online
shop. As shown by the use case diagram in Fig. [[] a client of the online shop
can query products, order a product, or pay for an order. If the client wants to
pay, for example by credit card, his credit card data has to be verified before he
gets an acknowledgement. Therefore, the online shop uses the service of a credit
card company to verify credit card data.

Sequence diagrams are used to model scenarios like this in a more formal
way as sequences of messages exchanged, in this case, between the client, the
online shop, and the credit card company. Variants can be expressed by differ-
ent sequence diagrams associated with the same use case. Figure [2] shows two
sequence diagrams detailing the use case pay order. The initial segments of both
scenarios are identical: The client who triggers the use case is asked by the online
shop to enter his preferred method of payment, e.g., by automatic debit from
the client’s bank account or by credit card. In our sample scenarios the client
chooses to pay by credit card, which requires the transmission of the credit card
data, e.g., the name of the credit card company, the credit card number, etc. The
online shop sends the data to a credit card company for validation. The client
gets a positive or negative feedback, depending on whether the credit card check
has been successful or not. That means, we have one success and one failure
scenario.

Online-Shop

query products
order product

pay order

Client CC Company

Fig. 1. Use case diagram of the shop example

Model-Based Development of Web Applications 173

i j Online Shop. CC Company. i i Online Shop CC Company
. . T
Cliknt ! i Cliént ! i
o -~ i L o~ i
payOrder() 1 payOrder 1
i I
i i
paymentMethod? H paymentMethod? H
selectPaymentMethod(byCCard) i selectPaymentMethod(byCCard) i
i i
creditCardData? i creditCardData? i
i i
enterCreditCardData(CCData) } enerCreditCardData{CCData) }
i i
validateCCData(CCData) | validateCCData(CCData) |
. L
validationResult ok validationResult notOk
feedback(success) feedback(fault)
Pay by credit card success Pay by credit card failure

Fig. 2. Two scenarios describing the use case pay order

3 Platform-Independent Design

The requirements specification presented in Sect.[2 focuses on specific scenarios
of the externally visible behavior of the application. In this section, we will com-
plement this view, first moving from specific examples to general specifications
and then from external requirements to the internal realization. The first step,
called architectural design, describes the involved components and their possible
interactions. This model is refined in the detailed design adding internal data
state transformations.

3.1 Architectural Design

The structural view of the architectural design describes the components and
interfaces of the online shop. We provide an interface for every use case, which
is later implemented by a control class to execute the use case. Figure B] shows
the three components of our online shop. The online shop itself is a component
with three interfaces for the three use cases in the diagram of Fig. [l For each
interface we can list the operations of the online shop that can be called by a
client through that interface. In Fig. [we have only detailed the interfaces for
the use case pay order and for the card validation use case of the credit card
company.

The data objects exchanged as parameters of operation calls between client
and online shop as well as between online shop and credit card company are
specified in a class diagram. We are qualifying the corresponding classes with
stereotypes, one of the extensibility mechanisms of UML. The general notation
for the use of stereotype is to enclose it in guillemots (<>>). We are using the
stereotype boundary defined within the Unified Process [9] which is intended to
designate GUI classes or forms that model the interaction between the system
and its actors.

174 R. Heckel and M. Lohmann

O queryProducts -
t «interface»
<<componen >>1 0 OrderProduct PayOrder
Online-Shop +PayOrder() : SelectPaymentData
O PayOrder +selectPaymentMethod(in p1 : SelectPaymentData) : CreditCardData
+enterCreditCardData(in p1 : CreditCardData) : FeedbackData
<<component>>]
Client
O CC-Interface -
«interface»
<<component>>] CC-Interface
CC-Company +validateCCData(in p1 : CreditCardData) : Boolean

Fig. 3. Components of the online shop example

«boundary» «boundary» «boundary»
SelectPaymentData| |[CreditCardData FeedbackData
-paymentMethod -company -proofResult

-number

Fig. 4. Boundary classes describing the exchanged data

ayOrder()
P paymentSelection feedbackData —b@

[validationResult=0k]

selectPaymentMethod

(byCCard)
enterCreditCardData

l creditCardData || (CCData) [validationResult=notOk]

Fig. 5. Protocol statechart for the component online shop

Whereas sequence diagrams are used to describe single scenarios from a global
point of view, protocol statecharts are used to specify the sequences of requests
individual components are willing to accept. Figure Bl shows the statechart for
the interface payOrder corresponding to the use case pay order. The states are
named according to the boundary classes whose instances are transferred to the
client in response to the previous request.

3.2 Detailed Design

After having described components from an outside perspective, in this section
their data structures and computations are modelled.

Class diagrams are used to represent static aspects. Figure [Blshows the result
of detailing the use case pay order. Beside the stereotype boundary introduced
above, control and entity stereotypes are used (cf. again [9]): Each of these

Model-Based Development of Web Applications 175

«control» «boundary»
PayOrder SelectPaymentData
paymentMethod
+PayOrder() SelectPaymentData
+selectPaymentMethod(in p1 SelectPaymentData) BoundaryData
+enterCreditCard(in p1 bankAccountForm) AcknowlegeData boundary»
L CreditCardData
01 0 company
01 01 number
«entity» «entity»
Order CreditCard «boundary»
number 0 01 company FeedbackData
prize number proofResult

«entity» 1
0 Client 0

name

1

Fig. 6. Platform-independent class diagram for online shop

stereotypes expresses a different role of a class in the implementation. Instances
of control classes coordinate other objects, encapsulating the control related to
a specific use case. Boundary classes are used to model interactions between the
system and its actors. Entity classes model long-lived or persistent information.

In addition to the static and dynamic diagrams of our models we now intro-
duce a functional view integrating the other two by describing the effect of an
operation on the data. This requires to move the focus both from sequences to
single operations and from the externally visible behavior to its internal real-
ization. To simplify this transition, we first take an operation-wise view on the
externally visible behavior. To this aim we introduce for each operation abstract
reaction rules, which are derived from the sequence diagrams. For example, Fig. [7]
shows the abstract reaction rules for the success scenario of Fig.[2l The left-hand
side of the rule contains the method call on the component as part of the pre-
condition of the operation. The right-hand side shows the visible effects, i.e., a
message sent to another component.

Next, the internal data state transformation associated with this operation
is described. Figure Bl shows the refinement of the lower right abstract reaction
rule of Fig. [l The left-hand side of the diagram represents the precondition
of the rule, i.e., that the validation of the credit card has been successful. The
right-hand side shows the desired effect of the execution: A new boundary object
with an acknowledgement is created.

One benefit of this form of specification integrating static and dynamic mod-
els is that it provides a detailed and precise enough specification to allow auto-
matic code generation (cf. [3]) which is an essential for the goal of model-driven
development.

To stick with standard UML notation, reaction rules can be expressed as
collaboration diagrams where pre- and post-conditions are jointly represented in
one diagram. In order to distinguish objects that are created or deleted, the stan-

176 R. Heckel and M. Lohmann

<<component>>
Client

<<component>>
:Client

<<component>>

<<component>>

? selectPaymentMethod .
| payOrder 4 paymentMethod? J yCrodiCard) 4 creditCardData?
<<component>> <<component>> <<component>> <<component>>
‘Online-Shop E> ‘Online-Shop ‘Online-Shop :Online-
<<component>> <<component>> <<component>> <<covnmm>>
Client :Client Client Client

<<component>>

<<component>>
«CC- n;

l enterCreditCardData(ccData)

<<component>>

l validateCCData
(ccData)

<<component>>
:CC-Company

<<component>>
:Online-Shop

1 validationResult=0k

Fig. 7. Abstract reaction rules

<<component>>

<<component>>

<<control>>

s:PayOrder

I

<<entity>>
9:Order

I

<<entity>>

<<entity>>
:CreditCar

T validationResult=0k

<<component>>

<<component>>

4 feedback(success)

<<component>> <<component>>
<<component>>
:Client
| 1 teedback(success)
<<component>>
:Onling-Shop
<<control>> <<boudary>>
s:PayOrder fd:FeedbackData
proofResult =
I success
<<entity>>
9:0rder
<<entity>>
I ced:CreditCard
<<entity>>
c:Client
<<component>>

Fig. 8. Refinement of lower right abstract reaction rule of Fig.[7]

dard constraints new and destroyed are used. As an example, Fig. [d shows the
corresponding representation of the reaction rule of Fig. [l This correspondence
between collaboration diagrams and graph transformation rules can be extended
to more sophisticated cases where complex scenarios are modelled within one di-
agram [6]. In this case, rather than a single rule, a graph process is required, i.e.,
a partially ordered set of interrelated rules each modeling a single step of the

interaction.

Model-Based Development of Web Applications 177

<<component>>
:Client

T 1: feedback(success)

<<component>>
:Online-Shop
<<control>> tnew) <<boudary>>
s:PayOrder fd.FeedbackData
{new}
proofResult =
success
<<entity>>
0:Order
<<entity>>
' | cod:CreditCard |
<<entity>>
c:Client
T validationResult=0k
<<component>>

:CC-Company

Fig. 9. Reaction rule of Fig. [§] expressed with collaboration diagram

4 Integrating Platform-Independent and
Platform-Specific Models

In the next two subsections we show how to map the platform-independent mod-
els developed in the previous section on platforms like HTML or SOAP which
realize the request-query/update-response pattern. Model information required
for this mapping is captured in the platform-specific design. The aim is to de-
ploy code generated from platform-independent models on a specific middleware
while keeping platform-independent and platform-specific models separated.

4.1 Platform-Specific Design

In many web-enabled applications a middleware serves as a link between clients
and back-end services. This middleware is normally responsible for the imple-
mentation of the chosen base technology. For example you can use a web server
which implements the Java Servlet technology [18] to implement an HTML ap-
plication or you can use a SOAP server to implement a SOAP-based [19] appli-
cation. In both cases a client doesn’t send a request directly to the application.
Instead a client addresses the middleware and this middleware requests the ap-
plication with pre-defined interfaces.

Figure [0 shows an abstract overview how a web application realized with
the Java Servlet technology works. A user normally fills in an HTML form on
the client and by clicking the Submit button the form data is send to the server
(1). The server locates the requested application, more exactly he locates an

178 R. Heckel and M. Lohmann

«abstract»
HTTPServiet

A
2: procedure i
1: request call
—p <<component> — H
<<cog?i;()e cr)1rt1ent> ———————— Webserver with === == === { — <<:gpr)rl1igra)tri1§:t>
A e Java Servlet Engine —
4: response 3: response to

procedure call

Fig. 10. Using a servlet (abstract overview)

«JavaServlet» «SOAP»
HttpBinding SOAPEnNvelope|
httpAddress httpAddress
encoding
«boundary» «boundary» «boundary»
FeedbackData SelectPaymentData CreditCardData
proofResult {display}/ paymentMethod {select} company {edit}
number {edit}

Fig. 11. Annotated boundary classes for interactive HTML application and for a SOAP
Service

application which implements the servlet interface. The application is called via
the servlet interface by a normal method call (2). The application processes the
data and calculates a response (3). The middleware (servlet engine) transfers this
response back to the client (4). That means to implement a Servlet, a servlet
API is used, especially the Servlet interface. The Servlet interface declares, but
does not implement, methods that manage the servlet and its communications
with clients. These interfaces have to be provided when developing a servlet [1§].
Other Internet-based communication platforms, like the SOAP implementation
Apache Axis [13], work in a similar way.

To use different kinds of middleware, we have to annotate the boundary
classes with information needed by the middleware. Figure [[T] shows how this
annotation could look like. For using the Java servlet technology we annotated
the boundary classes with an additional class HTTPBinding. This class contains
an attribute for the address where the application is to be found. Further, we have
to annotate the attributes of the boundary classes to show, which information
is displayed to the client and which information can be edited by the client.
Therefore, we use property strings, marked with curly brackets. Property strings
indicate property values that apply to an attribute and an attribute can contain
more than one property value. Edit means that the client can edit the data freely,
select that the client can choose one value from many and display that data is
only transferred to the client. To access the credit card institute via SOAP the

Model-Based Development of Web Applications 179

class CreditCardData also needs some SOAP specific annotations. Objects are
encoded in a special way in a SOAP message and the message has to be sent to
an appointed web address.

4.2 Implementation

In this section we describe the integration of the application logic generated from
the platform-independent model with the platform-specific technology.

Figure [[2 shows the integration for the Java Servlet technology. Classes that
are specific to the technology are shown in grey. Let us at first explain the changes
of the platform-independent models made during the code generation. In Fig-
ure[T2 a new platform-independent abstract class StatemachineHandler is shown
which has the task of an object controller. For every use case, an implementation
for the abstract method of this class is generated. The method implements the
statechart of the corresponding use case, filtering incoming requests according
to the protocol. As a result, the methods of the class PayOrder are never called
directly. Instead, every time a method of the class PayOrder has to be called, the
method executeMethod is called, which calls the correct method depending on
the state and the type of the incoming boundary data. This design is following
the Command design pattern [4], which allows a decoupling between the sender
and the receiver. Decoupling means that the sender has no knowledge of the
receiver’s interface.

R «abstract»
«interface» G icServiet HTTPServiet
StatemachineHandler e{m
+executeMethod(in event : BoundaryData) : BoundaryDat.
0.*
«control» «boundary»
PayOrder SelectPaymentDatal HTML-Generator|
-paymentMethod
+payOrder() : SelectPaymentData 1
+selectPaymentMethod(in p1 : SelectPaymentData) : BoundaryData
+enterCreditCard(in p1 : bankAccountForm) : AcknowlegeData
«boundary»
|— CreditCardData
0..1 0.* ~company
0.1 \L_ 0.1 number
«entity» «entity»
Order CreditCard
«boundary»
-number 0.* 0.1 |-company FeedbackData
-prize -number
-proofResult

«entity» 1
0 | Client 0

-name

1

Fig. 12. Integration of PIM and PSM on implementation level

180 R. Heckel and M. Lohmann

On the platform-dependent side the elementary class GenericServlet, which
has to be implemented by a software developer, inherits from an abstract class
HTTPServlet, to allow integration in a Java Servlet-based server. This platform-
dependent class calls the platform independent classes realizing the application
logic. The class GenericServlet is called when a client has filled in a form, for
example an HTML representation of the platform-independent boundary class
selectPaymentForm. It then calls the corresponding method of a control class of
the platform-independent model. Therefore, some auxiliary information has to be
encoded in the forms transmitted to the client, because no control information
of the application shall be encoded in the platform-dependent classes. In our
example, we need a sessionID to obtain the correct session object for each request
from a client.

In Fig. we have one more platform-specific class which has to be imple-
mented by a software engineer. The class HT'ML-generator is responsible for the
creation of an HTML form from the boundary classes, which is sent to the client.
To create an HTML form from a specific boundary class the platform specific
annotations (see Fig. [Il) are needed.

To use alternative platforms or other kinds of user interfaces, only the plat-
form specific classes of Fig. [2lhave to change. For example, to use XForms [20],
a new technology more powerful than HTML forms and based on XML, only
the HTML-Generator has to be changed to create this new kind of user inter-
face. Further you have to ensure, that the middleware calling the servlet is able
to evaluate XForms. For other middleware, one may have to replace the class
GenericServlet by another class which implements the required interface of the
technology.

5 Vertical Consistency

The quality of models is a prerequisite for the quality of the resulting system.
One important aspect of quality (and one of the few that can be sufficiently
formalized) is consistency. In general, consistency problems occur if different
views of the same system are redundant or dependent on each other. Depending
on whether the views are at the same or at different levels of abstraction, we
distinguish horizontal and vertical consistency problems, respectively.

Vertical consistency is a property of the transition from requirements to
design models and their implementation. As such, it is a property responsible
for the transition between platform independent and platform-specific models in
the MDA approach. Therefore, in this paper we concentrate on this aspect, and
in particular on the consistency of behavioral models. In this category we face
two vertical consistency problems.

1. Requirements expressed in terms of scenarios in Sect. 2] have to be consistent
with the contracts between service provider and client as specified by the
protocol statecharts of the architectural design in Sect. Bl

Model-Based Development of Web Applications 181

2. These contracts (protocols) have to be fulfilled (correctly implemented) by
the components providing the services, as described by the reaction rules of
the detailed design in Sect. [3.2]

The first consistency requirement relates the sequence diagrams in Fig. [and
the protocol statechart in Fig.[B: The sequence of requests (incoming messages)
received by the Online Shop component instance in any of the two diagrams
must be acceptable by the statechart diagram (or they must be subsequences
of an acceptable sequence if we want to allow for sequence diagrams showing
only a part of the possible behavior). This is the case in both examples, but if
we remove, e.g., the selectPaymentMethod(byCCard) message, the consistency
requirement is violated.

To validate this notion of consistency, it may be phrased as a model check-
ing problem by translating statecharts and sequence diagrams into a common
semantic domain, like CSP [7], which allows to express and check the condition
that every trace of requests to a service contained in a sequence diagram is (an
instance of) a subsequence of a trace of call events generated by the protocol
statechart of that service (cf. [1).

The second problem is concerned with the correct implementation of the
protocols by the internal data state transformations of reaction rules. Given an
initial data state for a component, we may ask if all sequences of requests are
indeed executable in the sense that the current internal data state satisfies the
precondition of all reaction rules that may be applied at this step according to
the protocol. For example, the rule in Fig. B requires in its precondition the
presence of an object of class CreditCardData. If this is not available, this rule
is not applicable and the execution of the whole sequence fails.

To make this notion of consistency precise, we need to exercise our reaction
rules in all possible ways prescribed by the protocol statechart. This is possible
because of the formal background of graph transformation which provides us with
an operational semantics for such rules, i.e., a notion of graph transformation
which, abstractly speaking, defines a binary relation on states induced by rule
applications. (See, e.g., [14] for different ways of formalizing this concept.)

To implement the protocol defined by the statechart of the component, the
transformation relation thus defined must be able to produce a superset of the
traces obtained from the statechart. This linear-time condition could be replaced
by more sophisticated notions, e.g., using the failure and divergence model [7]
or various notions of simulation on transition systems. A detailed study of what
is a semantically convincing and at the same time feasible approach is outside
the scope of this paper. One advantage of the simpler, linear condition is that it
can be validated by testing.

6 Towards Model-Driven Testing

In order to test the consistency between models, an execution of models is re-
quired either by a model interpreter or through a model compiler which trans-
lates models into executable code. Examples of the former include statechart

182 R. Heckel and M. Lohmann

simulators like [8], but also graph transformation engines like AGG [2]. Compil-
ers of statecharts can be found, for example, in the Rhapsody [5] and Fujaba [3]
CASE tools, while the latter also transforms graph transformation rules (denoted
as UML collaboration diagrams) into executable Java code.

In the context of MDA, a model shall be mapped on multiple platforms, thus
reusing the effort of coding and design, but not the amount of testing required
because implementations obtained from the same model may behave differently
on different platforms. Hence, we require what could be called an approach
to model-driven testing. By this we mean the testing of consistency properties,
among models or between models and code, while reusing the results of platform-
independent tests (or of tests performed on an “ideal” platform, like a single
Java virtual machine) for implementations of the same models on different or
heterogeneous target platforms. The idea is that recording platform-independent
test results, we determine the expected results of platform-specific tests, which
can then be automatically executed and compared. This idea is independent of
the question whether the original tests are performed automatically or by hand.

7 Conclusion

In this paper we have presented a model-driven approach to the development of
reactive information systems based on web technology which refines the OMG’s
MDA in order to separate better the technology-independent from the platform-
specific aspects. We have used graphical reaction rules to specify reactive behav-
ior in combination with data state transformation and discussed the consistency
issues arising with more abstract protocol specifications by means of statecharts
and requirements expressed by sequence diagrams.

Although graphical reaction rules are not part of the mainstream UML
methodology, our experience with the use of this concept in a course on web-
based application development at the University of Paderborn suggests that the
higher level of integration of static and dynamic aspects adds to the understand-
ability of models.

Future work shall include the development of tool support for automated
consistency checks based on the construction of labeled transition in the previous
section, as well as the exploration of the idea of model-driven testing.

References

1. G. Engels, J.M. Kiister, L. Groenewegen, and R. Heckel. = A methodology
for specifying and analyzing consistency of object-oriented behavioral mod-
els. In V. Gruhn, editor, Proc. FEuropean Software FEngineering Conference
(ESEC/FSE 01), Vienna, Austria, volume 1301 of Lecture Notes in Comp. Science
http://www.springer.de/comp/lncs, pages 327—-343. Springer Verlag, 2001.

2. C. Ermel, M. Rudolf, and G. Taentzer. The AGG approach: Language and tool
environment. In G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Handbook
of Graph Grammars and Computing by Graph Transformation, Volume 2: Appli-
cations, Languages, and Tools, pages 551-601. World Scientific, 1999.

http://www.springer.de/comp/lncs

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Model-Based Development of Web Applications 183

T. Fischer, J. Niere, L. Torunski, and A. Ziindorf. Story diagrams: A new graph
transformation language based on UML and Java. In H. Ehrig, G. Engels, H.-
J. Kreowski, and G. Rozenberg, editors, Proc. 6th Int. Workshop on Theory and
Application of Graph Transformation (TAGT’98), Paderborn, November 1998, vol-
ume 1764 of Lecture Notes in Comp. Science
http://www.springer.de/comp/lncs. Springer-Verlag, 2000.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
— Elements of Reusable Object-Oriented Software. Addsion-Wesley, 1994.

D. Harel and E. Gery. Executable object modeling with Statecharts. IEEE Com-
puter, 30(7):31-42, 1997.

R. Heckel and St. Sauer. Strengthening UML collaboration diagrams by state
transformations. In H. Huflmann, editor, Proc. Fundamental Approaches to Soft-
ware Engineering (FASE’2001), Genowva, Italy, volume 2185 of Lecture Notes in
Comp. Sciencehttp://www.springer.de/comp/lncs| Springer-Verlag, April 2001.
C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

B. Hoffmann and M. Minas. A generic model for diagram syntax and semantics.
In Proc. ICALP2000 Workshop on Graph Transformation and Visual Modelling
Techniques, Geneva, Switzerland. Carleton Scientific, 2000.

I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison Wesley, 1999.

D. Janssens and G. Rozenberg. Actor grammars. Mathematical Systems Theory,
22:75-107, 1989.

R. Milner. Bigraphical reactive systems. In Kim Guldstrand Larsen and Mo-
gens Nielsen, editors, Proc. 12th Intl. Conference on Concurrency Theory (CON-
CUR 2002), Aalborg, Denmark, volume 2154 of Lecture Notes in Comp. Science
http://www.springer.de/comp/lncs, pages 16-35. Springer-Verlag, August 2001.
Object Management Group. UML specification version 1.4, 2001.
http://www.celigent.com/omg/umlrtf/.

The Apache XML Project. Axis user’s guide. http://xml.apache.org/axis/,
2002.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, 1997.

Jon Siegel. Using omg’s model driven architecture (MDA) to integrate web services,
2002. http://www.omg.org/mda/mdafiles/MDA-WS-integrate-WP.pdf.

Jon Siegel and OMG Staff Strategy Group. Model driven architecture, revision
2.6, November 2001. ftp://ftp.omg.org/pub/docs/omg/01-12-01.pdf.

Richard Soley and OMG Staff Strategy Group. Model driven architecture, draft
3.2, November 2000. ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf.

Sun Microsystems Inc. Java(tm) servlet specification 2.3.
http:://java.sun.com/products/servlet, 2001.

W3C. Soap version 1.2 part 1: Messaging framework.
http://www.w3.org/TR/2002/WD-soapl2-part1-20020626/, 2002.

W3C. Xforms 1.0 W3C candidate recommendation.
http://www.w3.org/TR/2002/CR-xforms-20021112/, November 2002.

http://www.springer.de/comp/lncs
http://www.springer.de/comp/lncs
http://www.springer.de/comp/lncs
http://www.celigent.com/omg/umlrtf/
http://xml.apache.org/axis/
http://www.omg.org/mda/mdafiles/MDA-WS-integrate-WP.pdf
ftp://ftp.omg.org/pub/docs/omg/01-12-01.pdf
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf
http:://java.sun.com/products/servlet
http://www.w3.org/TR/2002/WD-soap12-part1-20020626/
http://www.w3.org/TR/2002/CR-xforms-20021112/

	Model-Based Development of Web Applications Using Graphical Reaction Rules
	Introduction
	Requirements Specification
	Platform-Independent Design
	Architectural Design
	Detailed Design

	Integrating Platform-Independent and Platform-Specific Models
	Platform-Specific Design
	Implementation

	Vertical Consistency
	Towards Model-Driven Testing
	Conclusion

