
An Information-Based View of Representational
Coupling in Object-Oriented Systems

Pierre Kelsen�

Luxembourg University of Applied Sciences, Department of Applied Computer
Science, L-1359 Luxembourg-Kirchberg

Abstract. In this paper we investigate a special type of coupling in
object-oriented systems. When a method of a class C invokes a method
of a class D, the method of C becomes dependent on the representa-
tional details of D: the more low-level the service provided by D is the
higher the dependency of C on D. This dependency is known as repre-
sentational coupling. Coupling in general, and representational coupling
in particular, are important because they influence the extensibility of a
system, that is, the ease with which software can be adapted to changing
requirements: the higher the coupling the harder it is to make changes
since any changes local to one module are likely to affect many other
modules.
We propose a qualitative measure of representational coupling (as
opposed to quantitative measures provided by metrics) that is based
on partial orders over equivalence relations on the state space. We
also introduce the notion of intrinsic representational coupling that
expresses the amount of representational coupling that is inherent to the
system. Finally, we show that despite its non-quantitative nature our
measure can be useful in identifying candidate methods for refactoring.
We demonstrate this by applying our measure to several examples
in the literature, showing in each case how an implementation with
non-minimal representational coupling can be transformed using a
few simple refactorings into a solution with minimal representational
coupling (equal to the intrinsic representational coupling).

Keywords. coupling, object-oriented, extensibility, refactoring,
metrics

1 Introduction

Coupling is a well-known quality factor of software. It expresses how strongly
individual software modules depend on each other. Coupling has a major impact
on the extensibility of software, that is, on the ease with which software can be
modified to adapt to changing requirements. The lower the coupling the easier
it is to change individual modules since changes local to one module are likely
� Work supported by the Luxembourg Ministry of Culture, Higher Education and

Research under grant IST/02/03

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 216–230, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



An Information-Based View of Representational Coupling 217

to have a lower impact on other modules. There exists a similar relationship
between coupling and fault-proneness, that is, the likelihood of detecting a fault
in a class: the higher the coupling in a system, the higher the fault-proneness.
The relationship between coupling and external quality attributes such as fault-
proness has been demonstrated by defining metrics for various types of coupling
and performing empirical studies on the relevance of these metrics (e.g., [BBM96,
Bri97,LH93]).

In this paper we consider representational coupling, a fundamental type
of coupling ubiquitous in object-oriented systems. Whenever an object calls a
method of another object, this method call reveals something about the callee:
in the worst case (resulting in high representational coupling) it discloses im-
plementation level information, in the best case (low representational coupling)
it provides high-level information that reveals little about the internal structure
of the object. The term representational coupling was first used in [Cha93] and
discussed in some detail in [Rich99].

For example if the invoked method is simply the accessor function for an
attribute, we have a high degree of representational coupling since these accessor
functions are close to the implementation level (and thus likely to change). On
the other hand if the method that is invoked provides a much higher-level service,
then implementation changes in that method‘s class are less likely to affect this
service, thus resulting in a lower degree of representational coupling.

As we shall explain later in this paper existing coupling metrics (such as
[ChiKem91,ChiKem94,LH93,Lee95,Bri97,Yac99,Ari02]) do not capture repre-
sentational coupling. One reason for this is that they are based on counting dif-
ferent types of interactions. The resulting quantitative measures are too coarse-
grained to evaluate the level of abstraction of method calls, something that is
needed for evaluating representational coupling.

In this paper we develop a ”qualitative measure” for representing represen-
tational coupling: rather than simply assigning an ordinal number to a given
design, we base our measure on the refinement ordering over equivalence rela-
tions on the state space. We also develop the notion of intrinsic representational
coupling, which is a measure for the minimum amount of representational cou-
pling inherently contained in a system. We shall prove that no design can have
representational coupling less than the intrinsic representational coupling.

Because of the qualitative nature of our measure it cannot be directly used
as an indicator to make predictions on external quality factors (such as fault-
proneness or extensibility). It can however be used to compare the representa-
tional coupling with the minimum representational coupling possible as given by
the intrinsic representational coupling. In this manner our measure allows us to
detect possible candidates for refactoring. We shall exemplify this application by
considering three examples from the literature. For each of these examples we
describe an ad-hoc solution that displays non-optimal representational coupling.
By using a few simple refactoring techniques we are able to transform each of
these implementations into a solution with representational coupling equal to
the intrinsic representational coupling.



218 P. Kelsen

In Sect. 2 we introduce basic object-oriented terminology. In Sect. 3 we derive
a mathematically precise definition of representational coupling. In Sect. 4 we
define the notion of intrinsic representational coupling. In Sect. 5 we show by
means of examples how we can achieve optimal coupling using simple refactor-
ings. In the final section we present some conclusions of our work.

2 Object-Oriented Terminology

An object-oriented system is made up of objects which are instances of classes.
Each class consists of methods and attributes. We consider only non-static meth-
ods. The allowed data types of attributes depend on the programming language.
We shall simplify the following definitions by basing ourselves on Java. These
definitions can easily be adapted to other languages (such as C++, Eiffel or
Smalltalk).

Since we attempt in this paper to establish a sound mathematical basis for
representational coupling, we need to exercise some care in defining the basic
terms unambiguously. An object is really a triplet (identifier, type, value) where
the identifier is from a set of identifiers I and the value - which we also call the
state of the object - is a tuple [A1 : v1, ..., Ak : vk] where each vi is the value
of attribute named Ai. The value of an attribute is defined as follows: if the
attribute is of a primitive type then vi is the primitive value, if it is of a class
type then the value is either null or an identifier in I, and finally, if it is of an array
type, then its value is the tuple of values of the individual elements (recursive
definition!). An object set consists of a set of objects such that different objects
have distinct identifiers in I and each identifier of I occurs as identifier of an
object in the set.

We refer to the pair (identifier set, object set) as the system state. The system
starts out in an initial state. Any system state that can be reached from this
initial state is called a reachable state. From here on whenever we talk about a
state we imply that the state must be reachable.

3 Towards a Formal Definition of Representational
Coupling

3.1 Related Work on Coupling

Much research effort has been spent on coupling in the field of software met-
rics. Several types of coupling in object-oriented systems have been investigated.
In [Bri99a] three frameworks ([Eder94,HiMo95,Bri97]) for describing coupling
are investigated and an attempt is made to unify those frameworks according
to certain criteria. One of these criteria is the type of connection, that is, the
mechanisms that may contribute to coupling. The following classification of con-
nections is given (assume m is a method of class C and D denotes another class):



An Information-Based View of Representational Coupling 219

1. D is the type of an attribute of C
2. D is the type of a parameter or a return type of m
3. D is the type of a local variable of m
4. D is the type of a parameter of a method invoked by m
5. m references an attribute of D
6. m invokes a method of D
7. high-level dependency of C on D such as “uses”

Representational coupling corresponds to connection type 6. Connection
types 1-4 involve class D as a type being used in C. Connection type 7 only
measures coupling at a very high level. Of the two remaining types connection
type 6 is in fact the only type of coupling that takes into account the methods
of the server class. In [Bri99a] a list of metrics developed for each connection
type is also given: from that list one can see that the largest number of metrics
was indeed developed for connection type 6, thus underscoring its central role in
coupling measurement.

Let us take a closer look at those metrics:

1. Coupling between Objects ([ChiKem91,ChiKem94]): counts the number of
other classes to which a class is coupled.

2. Response for class ([ChiKem91,ChiKem94]): the number of methods that
can be potentially executed in response to a message received by an object
of that class.

3. Message passing coupling ([LH93]): number of send statements in a class.
4. Information-flow-based coupling([Lee95]): counts for a method of a class the

number of polymorphically invoked methods, weighed by the number of pa-
rameters of the invoked method.

5. In [Bri97] a suite of measures is proposed that count various types of inter-
actions (e.g., class-attribute, class-method, method-method,...).

6. More recently dynamic (runtime) metrics where developed ([Yac99,Ari02]):
these are based on counting the number of messages sent (or received) by
an object during runtime.

Without going into the details of the definitions of these measures we observe
that they are all based on counting certain types of interactions. They are do
not permit a deeper analysis of the interaction between a method and a specific
class, something that is needed to ”measure” the abstraction level of an interface
used by a method.

3.2 Example: An Elevator Control System

En route to a more rigorous approach to representational coupling a concrete ex-
ample will be of great help. The following example, taken from [Rich99] describes
an elevator control system. The system contains two classes: ElevatorControl and
Elevator. The class Elevator represents an elevator in a building. Each elevator
has a direction and a position, yielding two methods direction() and position() in
the Elevator class. The ElevatorControl class has a single responsibility, namely



220 P. Kelsen

handling requests. Thus, if somebody pushes a button on a certain floor this class
has to dispatch an elevator to take care of that request. Accordingly Elevator-
Control maintains a list of elevators and has a single method, handleRequest()
that has as argument an object of class Request.

In the first implementation the handleRequest() function polls each elevator,
asking for its direction and position. Based on this information the method
computes the closest elevator and assigns the request to that elevator. Note that
the information the ElevatorControl class asks from the Elevator class, namely
direction and position, is rather low-level.

Here is the pseudo-code describing the first implementation:

Implementation 1 Method ElevatorControl.handleRequest(Request r)
1. float minDist = infty;// positive infinity
2. Elevator ec = null; // reference to closest elevator
2. for each elevator e do {
3. compute d=distance(e,r) using e.direction() and e.position();
4. if (d< minDist) {
5. ec = e;
6. minDist = d;
7. }
8. }
9. if (ec!= null)
10. ec.addRequest(r);

In a second implementation the Elevator class offers a higher-level interface:
it provides a single public function computeDistance(Request r) which computes
the distance of this elevator to the request. In this implementation the han-
dleRequest method simply asks each elevator to compute its distance from the
request and then assigns, as before, the request to the closest elevator. All that
changes in the implementation is that the pseudo-code on line 3 above is replaced
by

d=e.computeDistance(r);

Intuitively in the second implementation the handleRequest method has
lower representational coupling with respect to the Elevator class since it accesses
a higher-level interface. This intuition is seconded by analyzing how changes to
the Elevator class affect the system design. For instance suppose we want to take
into account the fact that an elevator may be out of order. In this case we have
to add some attribute to the ElevatorClass as well as a method outOfOrder().
In the first implementation we also have to adapt the implementation of the
handleRequest function. In the second implementation it suffices to let the com-
puteDistance return a very large number (e.g., positive infinity) to indicate that
an elevator is out of order without affecting the ElevatorControl class.

Similarly if we want to consider service elevators that move more slowly or
elevators that can only stop on certain floors, both the ElevatorControl and the



An Information-Based View of Representational Coupling 221

Elevator class need to be changed in Implementation 1 while the changes are
restricted to the Elevator class in Implementation 2. (See [Rich99] for details.)

3.3 An Information-Based View

We take the previous example as the starting point towards a more formal def-
inition. Recall that in Implementation 1 the method handleRequest() invokes
the direction() and position() methods of the Elevator class while in the sec-
ond implementation handleRequest() only uses the computeDistance() method
of Elevator.

Let us compare the two implementations from an information-theoretic
standpoint. The reason we can replace the calls to direction() and position()
by a call to computeDistance() is that method handleRequest() does not actu-
ally need all the information conveyed by the first two low-level functions. Indeed
we do not need to distinguish the two cases where an elevator has a different
position and direction but the same distance to the request. This observation
allows us to use the computeDistance() method since it conveys just enough
information to the handleRequest() method.

Since a formalization based on the abstraction level of an interface seems
difficult and since the informal notion of representational coupling appears to be
related to the information exchanged between a method and a class, we put our
measure of representational coupling on an information-theoretic base.

The concept of message is central to our analysis since it is the vehicle by
which information between a method and a class is exchanged.

Definition 1 A message is a 4-tuple (a, b, methodName, args) where a and b
are object identifiers, methodName is the name of a method of object b and
args denotes the argument values for that method. Note that args may itself
be a tuple if the method takes several arguments. This notation means that the
message is sent from object a to object b and invokes method b.methodName()
with arguments args.

A method call may return a result. For the sake of uniformity, we shall assume
that for every message that corresponds to a method call, there is a special
return message. Thus, the return message for a message
(a, b, methodName, args) is a message (b, a, return, result) where return is a
reserved name and result is the result value of the function, or void if the
function does not return a value.

For the following discussion we shall assume that a method m is executed
on an object of class C. We shall analyze the information exchanged between
method m and a second class D by examining the sequence of messages that
enter or leave an object of D. For a given implementation of m this sequence
depends on

– the system state s (see Sect. 2),
– the choice of an object c of class C (= object on which method m will be

executed),



222 P. Kelsen

– the choice of an object d of class D (at which we observe the sequence of
messages).

Here we assume that c and d are identifiers in the identifier set of system state s
(see Sect. 2). We call the sequence of messages obtained for a given choice of s,
c and d the actual message sequence. We shall call the function that assigns to
each triplet (s, c, d) an actual message sequence the message sequence function.
We also say that m interacts with class D through message sequence function q.

To illustrate these notions consider the elevator control system. In the first
implementation the actual message sequence of an Elevator object consists of
four messages: the position and direction query messages together with their re-
turn messages. In the second implementation the actual message sequence com-
prises only two messages: the computeDistance request and the return message
with the result. Note that in both cases the actual message sequence depends
on the system state and on the choice of the Elevator object since for different
system states the Elevator object may have a different position and/or direction
possibly resulting in different return messages (having different result fields). In
neither case is the message sequence function a constant function.

To evaluate the amount of information exchanged between method m and
object d, we could simply take into account the total size of all messages in the
actual message sequence but such a measure would be highly dependent on the
particular encoding chosen. Another problem with this approach is the necessity
to deal with object references: how does one measure the information contained
in an object reference?

We use a different approach based on examining the dependency of the actual
message sequence on the internal state of the object d (at which we observe the
sequence of messages).

Definition 2 A message sequence function q induces an equivalence rela-
tion on S(D), the set of possible states of an object of class D as follows: for
s, s′ ∈ S(D) we define s ≡q s′ if and only if q(s0, c, d) = q(s′0, c, d) (ie, q yields
the same actual message sequence) for any choice of c and d (of types C and D)
and for any two system states s0 and s′0 that differ only in the state of object d
where they have values s and s′, respectively.

Intuitively, two states of an object of D are equivalent if they cannot be dis-
tinguished by method m (since they produce the same actual message sequence
regardless of the states of the other objects).

As noted earlier, in the elevator example the distance from the request can
be computed from the position and direction of the elevator. We can express this
in terms of the induced equivalence relations: the message sequence function for
the first implementation induces an equivalence relation on the state space of
the Elevator class that is a strict refinement of that induced by the message
sequence function for the second implementation. We conclude that the elevator
class reveals less information in the second implementation. (Recall that an
equivalence relation is a refinement of another equivalence relation defined over



An Information-Based View of Representational Coupling 223

the same ground set if the equivalence classes of the former equivalence relation
are subsets of the equivalence classes of the latter relation.)

Method m can be implemented in many different ways. In each case m in-
teracts with class D through a possibly different message sequence function. We
need to be able to compare these functions.

Definition 3 Let q and q′ be two message sequence functions. Message sequence
function q is weaker than message sequence function q′, written as q ≺ q′ if
q′ induces an equivalence relation over S(D) that is a strict refinement of the
equivalence relation induced by q.

We observe that this ordering on message sequence functions is not a par-
tial order (since it is not anti-symmetric) but the refinement ordering on the
corresponding equivalence relations is indeed a partial order.

We can apply this definition to representational coupling as follows: consider
two implementations m and m′ with ”the same behavior” in a class C. (Two
methods have the same behavior if from any possible initial state they produce
the same final state.) Then we say that m has lower representational coupling
than m′ with respect to a class D if m interacts with D through a weaker message
sequence function than m′.

4 Intrinsic Representational Coupling

Let Sm,c be the function that maps any system state to another system state
based on the action of m invoked on object c. In a sense Sm,c describes the
semantics of method m. That is, if we call c.m() on initial system state s0, then
the system will be in state Sm,c(s0) after m terminates. We call the function
Sm,c the state mapping for method m. In this section we take the view that
the same method may have different implementations yielding the same state
mapping and thus having the same behavior. In this context it makes sense to
speak of a method interacting with a class through different message sequence
functions (corresponding to different implementations with the same behavior).

Suppose a method m interacts with class D through a certain message se-
quence function. How can we tell whether there is an implementation for m that
yields an even weaker message sequence function? Or maybe even a weakest pos-
sible message sequence function. This would imply in a sense that m has some
intrinsic degree of representational coupling.

In this section we give some answers to these questions. For a system state
s and an object b of s, let s − b denote the system state with the same object
set as s, but without the state information for b (the states given for all other
objects are the same as those in s).

Definition 4 Method m induces an equivalence relation on the set S(D) of
possible states of d as follows: for s, s′ ∈ S(D) we set s ≡m s′ if and only
if for any two system states s1 and s′1 that differ only on d where they have
states s and s′, respectively, we have, for any choice of object c (of type C),
Sm,c(s1) − d = Sm,c(s′1) − d.



224 P. Kelsen

Loosely expressed this means that s and s′ cannot affect the state outside d in
different ways.

Theorem 1. Suppose that m interacts with class D through message sequence
function q. Then the equivalence relation induced by q (see definition 2) is a (not
necessarily strict) refinement of the equivalence relation induced by m.

Proof. Assume for a contradiction that this is not the case. Then there exist two
states s and s′ in S(D) such that s ≡q s′ but s �≡m s′. In other words, there exist
two system states s1 and s′1 that differ only on d where they have values s and s′,
respectively, and having the following two properties: (1) they produce the same
actual message sequence, and (2) they yield a different state for an object other
than d. But this is not possible: if the actual message sequence is the same then
the states of objects other than d must remain the same also since the system
looks exactly the same in both system states for any object other than d. QED

Lemma 1. Suppose that m interacts with D through message sequence function
q and that the equivalence relation induced by q on the state space of D is equal
to the equivalence relation induced by m. Then m cannot interact with D through
a message sequence function that is weaker than q.

Proof. If m interacts with D through a weaker message sequence function, then
the equivalence relation induced by that message sequence function is not a re-
finement of the equivalence relation induced by m thus contradicting the previous
theorem. QED

If a message sequence function for an implementation satisfies the condition
of the lemma, then we will say that the underlying implementation has minimal
representational coupling with respect to class D equal to the intrinsic represen-
tational coupling of method m with respect to class D (implying that no other
implementation can yield a weaker message sequence function).

5 Reducing Representational Coupling via Refactorings

The technique for reducing coupling is in principle quite simple: find a method in
a class that interacts with another class through a non-optimal message sequence
function; replace the method’s implementation by a new implementation that
has the same behavior but lower coupling.

More precisely we view the transformation as a 3-step process:

1. Find a method m of a class C that interacts with a class D using a non-
optimal message sequence function q. For this it suffices to find two states
s1 and s2 – which we shall call witness states – of an object d of D that are
equivalent under the equivalence relation induced by m but not equivalent
under the equivalence relation induced by q. In other words the two states
yield different message sequences for d but they cannot affect the states of
other objects differently. We may view such a pair of witness states as an
indication that the coupling can be improved.



An Information-Based View of Representational Coupling 225

2. The second step consists in transforming the current implementation into
one with lower coupling. The actual transformation will be done via simple
refactorings. Which refactorings apply will depend on the case at hand but
it will require manual inspection of the code.

3. The third step is optional: it consists in proving that the representational
coupling of the new implementation is optimal. It assumes that the solution
obtained through the transformation process has indeed optimal representa-
tional coupling equal to the intrinsic representational coupling.

We shall demonstrate this 3-step process by applying it to three examples
from the literature. We use the following refactorings (in step 2):

– ExtractMethod: applied when a fragment of code can be grouped together;
consists in turning the fragment into a method whose name explains the
purpose of the method.

– DecomposeConditional: applied when there is a complicated conditional (if-
then-else) statement; consists in extracting methods from the condition, then
part, and else parts. Note: this refactoring may be viewed as a special case
of the ExtractMethod refactoring where the code fragment is part of a con-
ditional instruction.

– MoveMethod: applied when a method is using more features of another class
than the class on which it is defined; consists in creating a new method with
a similar body in the class it uses most and either turning the old method
into a simple delegation, or removing it altogether.

Before we examine the examples, let us consider the relationship of the trans-
formation process with existing work on refactoring. Most tools available for
refactoring automate the process of safely applying a refactoring step; an exam-
ple of such a tool is the Smalltalk Refactoring Browser ([RBJ97]). The problem
of detecting candidates for refactoring is more difficult. The usual approach is
based on manual inspection of the code to detect ”bad smells” ([Fow99]). Only
recently has a tool been developed that directly assists the developer in find-
ing refactoring candidates; it is based on detecting invariants ([KEGN01]). Our
method provides another way of finding candidates of refactoring that is based
on a mathematically precise condition (see Lemma 1). In this sense we consider
our approach to be complementary to existing approaches for finding refactor-
ing candidates. Note however that we do not know at this point whether our
condition for refactoring can be tested in an automated fashion.

5.1 Example 1: The Elevator Control System

We claim that in the first solution (Implementation 1) the handleRequest()
method has non-optimal representational coupling with the Elevator class. To
prove this we look for a pair of witness states for an elevator object: if a request
is for a floor r other than the first or the last floor, then elevators at position
r − 1 going up and at position r + 1 going down will be at the same distance



226 P. Kelsen

from the request. The position() and direction() queries will return different re-
sults but the states of other objects will not be affected differently. Thus the
representational coupling is indeed non-optimal.

To obtain a solution with lower coupling, we first apply the ExtractMethod
refactoring to the line of pseudo-code that computes the distance. The result-
ing computeDistance() method only uses features of the Elevator class. We can
therefore apply a second refactoring step, the MoveMethod refactoring, to move
this method to the Elevator class and delete the original method. By applying
these two simple refactoring steps in sequence we arrive at the improved solution
(given in Sect. 3.2).

We claim that in this second implementation the handleRequest() method
has optimal representational coupling with respect to the Elevator class. We first
show that the equivalence relation induced by handleRequest() has as equiva-
lence classes the sets of states that yield the same distance to the request. This
can be proven as follows: if two states yield the same distance, then they are
treated the same by the state mapping. Conversely, two states with different
distances d1 < d2 from the request can easily be distinguished: simply set the
other states to a value that yields minimal distance d1. Setting the state of the
first elevator such that the distance is d1 will result in it being closest (assume
that in case of a tie the first elevator is chosen) and setting it to a state with
distance d2 will result in another elevator being closest.

Finally we observe that the message sequence function in the second imple-
mentation (yielding an actual message sequence consisting of the single com-
puteDistance() query and its return value) induces exactly the same equivalence
relation as the handleRequest() method. Thus we can apply Lemma 1, proving
that the second implementation has indeed optimal representational coupling
with respect to the Elevator class.

5.2 Example 2: The Heating System

This example is taken from [Rich99,Riel96] (in slightly adapted form). In a build-
ing a number of rooms are controlled by a central heating system. Each room
has a current temperature, a desired temperature and an indication of whether
it is occupied. The heating system will poll the rooms at regular time intervals
and open the valve for the room thus providing it with heat if it is occupied and
the current temperature is below the desired level.

In the first implementation there are three classes HeatControl, Room and
Valve. The HeatControl class has a single method checkRooms() that performs
the previously described polling process. The class Room has three methods
temperature(), desiredTemperature() and occupied() returning the current tem-
perature, the desired temperature and an occupancy flag. Finally the Valve class
has a single method command(c) with an argument c that is either CLOSE or
OPEN.

The checkRooms method works as follows: for each room it determines
whether the room is occupied and whether the temperature is below the de-
sired temperature by invoking the corresponding methods of the Room class. If



An Information-Based View of Representational Coupling 227

this condition is satisfied then HeatControl sends a open message to the valve
for this room, otherwise it sends a close message to the valve.

Here is the pseudo-code for the checkRooms() method in the first implemen-
tation:

Implementation 2 Method HeatControl.checkRooms()
1. for each room r do {
2. Valve v = r.getValve();
3. if (r.temperature()<r.desiredTemperature() and r.occupied())
4. v.command(OPEN);//send heat
5. else
6. v.command(CLOSE);//cut off heat
7. }

Let C denote the condition of the if-statement. Consider two states of a Room
object that have different values for the individual queries in C but yield the
same value for C. Two such states form a pair of witness states, showing that the
checkRooms() method has non-optimal representational coupling with respect
to the Room class.

How do we transform the first solution into one with lower representational
coupling? We apply the DecomposeConditional refactoring to extract the condi-
tion in the if-then-else statement into a method needsHeat(). This method uses
only features of the Room class and is therefore moved into that class using the
MoveMethod Refactoring. This leads us to the second implementation in which
the function checkRooms() asks each room whether it needs heat:

Implementation 3 Method HeatControl.checkRooms()
1. for each room r do {
2. Valve v = r.getValve();
3. if (r.needsHeat())
4. v.command(OPEN);
5. else
6. v.command(CLOSE);
7. }

We note that the second implementation is more flexible than the first one:
we can for instance change the rules under which a room is heated (e.g., heat
only during certain time periods) by modifying only the Room class; in the
first implementation both the Room class and the HeatControl class need to be
modified.

We can apply Lemma 1 to show that the second implementation has minimal
representational coupling w.r.t the Room class: indeed the equivalence relation
induced by checkRooms on the state space of the Room class is the same as
that induced by the message sequence function.



228 P. Kelsen

5.3 Example 3: A Stock Trading System

Both of the previous examples are control-oriented systems. This last example
taken from [Rich99] is of a different kind. It represents a stock trading sys-
tem. The system contains four classes of interest to us: ServiceRepresentative,
TradingSystem, Order and OrderRegistry. For this discussion we assume that
the ServiceRepresentative can cancel an order by invoking the cancelOrder()
method of TradingSystem with the order number as argument. The Order class
contains a method getStatus() that returns the current status of the order: open
or not open (the latter choice applying when the order has been executed, it has
expired or has been previously canceled). It also contains a cancel() method. The
trading system can only cancel the order if it is open. In the first implementation
the TradingSystem.cancelOrder()method first checks the status of the order; if
it is open, it issues a cancel() message to the proper order.

Here is this implementation for the cancelOrder() method (we assume that
OPEN is a constant of the Order class and TradingSystem.getOrderRegistry()
returns a unique object of class OrderRegistry):

Implementation 4 Method TradingSystem.cancelOrder(orderNumber)
1. Order o = getOrderRegistry().getOrder(orderNumber);
2. if (o.getStatus()==Order.OPEN)
3. o.cancel();

Consider two states of an order object: open and not open. These two states
yield different message sequences for the order object but yet they cannot affect
the states of objects other than itself! It follows that the cancelOrder() method
has non-optimal representational coupling w.r.t. the Order class.

To arrive at a solution with lower coupling, we first apply DecomposeCon-
ditional to extract the condition of the if-then-else statement into a separate
method canBeCanceled(). That method uses only features of the Order class
and is therefore moved to that class. Here is the resulting code:

Implementation 5 Method TradingSystem.cancelOrder(orderNumber)
1. Order o = getOrderRegistry.getOrder(orderNumber);
2. if (o.canBeCanceled())
3. o.cancel();

This second implementation is more flexible than the first one: indeed we
can change the rule under which an order can be canceled. In Implementation 2
this only requires the implementation of canBeCanceled() to be modified in the
Order class while in Implementation 1 the TradingSystem class is also affected
since the method TradingSystem.cancelOrder() has to modified.

One thing has not changed though: the open and non-open states are still
witnesses to the non-optimality of the implementation. Thus we need to look
further for an optimal solution.

To achieve minimal representational coupling, we observe that line 2 and line
3 both use only features of the order object and can thus be moved using the
ExtractMethod and MoveMethod refactorings to the Order class.



An Information-Based View of Representational Coupling 229

In other words lines 2 and 3 get replaced by a single line

o.cancel();

The cancel() method of the Order class is changed accordingly. The resulting
implementation has obviously minimal representational coupling since the actual
message sequence is independent of the state of the Order object.

6 Conclusions

In this paper we have proposed a mathematically precise definition of represen-
tational coupling based on the information exchanged between a method and a
class via messages. We have also defined the notion of minimal representational
coupling which expresses the minimal amount of representational coupling in-
herent in an implementation. Finally we explain, using several examples, how
these notions can be used to identify candidate methods for refactoring and how
they can guide us in the refactoring process.

There are quite a few open questions that need to be examined:

– Can we apply the transformation process described in the previous section to
real-life examples consisting of several hundred or even thousands of classes?
For this it would be helpful to automate the process (as it is done for software
metrics). Because of the non-quantitative nature of our measure it is not clear
whether this is possible.

– So far we have only considered the representational coupling with a single
class. Can our approach be generalized to analyzing the representational
coupling with several classes at once? Since a method of a class interacts
typically with several other classes to perform its function, this is of course
highly relevant if we want to apply our process to large software systems.

– What is the exact relationship with refactoring? Can a method with non-
optimal coupling always be refactored to one with minimal coupling?

References

[Ari02] Erik Arisholm, Dynamic Coupling Measures for Object-Oriented Soft-
ware, Proc. of the Eighth International Symposium on Software Metrics
(Metrics’02), Ottawa, Canada, pp. 33–42.

[BBM96] V.R. Basili, L.C. Briand, W.L. Melo, A Validation of Object-Oriented
Design Metrics as Quality Indicators, Transactions on Software Engi-
neering 22(10), pp. 751–761, 1996.

[Bol95] T. Bollinger, “What Can Happen When Metrics Make the Call,” Trans-
actions IEEE Software, vol. 12, no. 1, Jan 1995.

[Bri97] L.C. Briand, P. Devanbu, and W. Melo, An investigation into cou-
pling measures for C++, Proc. 19th Int’l Conf. Software Eng., ICSE’97,
Boston, pp. 412–421, May 1997. .

[Bri99a] L.C. Briand, J.W. Daly, J.K. Wüst, A Unified Framework for Coupling
Measurement in Object-Oriented Systems, IEEE Transactions on Soft-
ware Engineering, vol. 25, No. 1, Jan/Feb 1999.



230 P. Kelsen

[Bri99b] L.C. Briand, J.K. Wüst, H. Lounis, Investigating quality factors in
object-oriented designs: an industrial case study, Proceedings of the 21st
international conference on Software engineering, pp. 345–354, 1999, Los
Angeles, California, United States.

[Cha93] D. de Champeaux, D. Lea, P. Faure, Object-Oriented Systems Develop-
ment, Reading, Mass.; Addison Wesley, 1993.

[ChiKem91] S.R. Chidamber and C.F. Kemerer, Towards a metrics suite for Object
Oriented Design, Proc. Conf. Object-Oriented Programming: Systems,
Languages and Applications, OOPSLA’91, Oct. 1991. Also published in
SIGPLAN Notices, vol. 26, No. 11, pp. 197–211, 1991.

[ChiKem94] S.R. Chidamber and C.F. Kemerer, A metrics suite for Object Oriented
Design, IEEE Trans. on Software Engineering, vol. 20, No. 6, pp. 476–
493, 1994.

[Eder94] J. Eder, G. Kappel, and M. Schrefl, Coupling and Cohesion in Object-
Oriented Systems, Technical Report, Univ. of Klagenfurt, 1994.

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[HiMo95] M. Hitz and B. Montazeri, Measuring Coupling and Cohesion in Object-
Oriented Systems, Proc. Int’l Symp. Applied Corporate Computing,
Monterrey, Mexico, Oct. 1995. A version of this paper (focusing on cou-
pling only) has been published in Object Currents, vol. 1, No. 4, SIGS
publications, 1996.

[Jon99] C. Jones, “Software Metrics: Good, Bad, and Missing,” Computer, vol.
27, no. 9, Sept 1994.

[KEGN01] Y. Kataoka, M.D. Ernst, W.G. Griswold, and D. Notkin, Automated
support for program refactoring using invariants, ICSM 2001, Proceed-
ings of the International Conference on Software Maintenance, Florence,
Italy, November 6–10, 2001, pp. 736-743.

[Lee95] Y.S. Lee, B.-S. Liang, S.-F- Wu, and F.-J. Wang, Measuring the Coupling
and Cohesion of an Object-Oriented Program based on information flow,
Proc. Int’l Conf. Software Quality, Maribor, Slovenia, 1995.

[LH93] W. Li and S. Henry, Object-Oriented Metrics that Predict Maintanabil-
ity, J. Systems and Software, vol. 23, no. 2, pp. 111–122, 1993.

[Rich99] C. Richter, Designing Flexible Object-Oriented Systems with UML,
Macmillan Technical Publishing, 1999.

[Riel96] A. Riel, Object-Oriented Design Heuristics, Reading, Mass.: Addison-
Wesley, 1996.

[RBJ97] D. Roberts, J. Brant and R. Johnson, A Refactoring tool for Smalltalk,
Theory and Practice of Object Systems, 3(4), pp. 253–263, 1997.

[Yac99] Sherif M. Yacoub, Hany H. Ammar, and Tom Robinson, Dynamic Met-
rics for Object-Oriented Designs, Proc. of the sixth International Sympo-
sium on Software Metrics (Metrics’99), Boca Raton, Florida, USA, pp.
60–61.


	An Information-Based View of Representational Coupling in Object-Oriented Systems
	Introduction
	Object-Oriented Terminology
	Towards a Formal Definition of Representational Coupling
	Related Work on Coupling
	Example: An Elevator Control System
	An Information-Based View

	Intrinsic Representational Coupling
	Reducing Representational Coupling via Refactorings
	Example 1: The Elevator Control System
	Example 2: The Heating System
	Example 3: A Stock Trading System

	Conclusions




