
A Temporal Approach to Specification and
Verification of Pointer Data-Structures�

Marcin Kubica

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland

fax: +48 22 5544400
kubica@mimuw.edu.pl

Abstract. We present a formalism for specification of pointer data-
structures and programs operating on them, based on temporal specifi-
cations of dynamic algebras. It is an extension of first-order logic with
temporal branching-time combinators. The use of this formalism is illust-
rated by examples. We also propose a Hoare-style calculus for verification
of while-programs (operating on pointers) against specifications written
in the proposed formalism, which is sound and complete in the sense of
Cook.

1 Introduction

It is well known that pointer data-structures are widely used in implementation
of efficient algorithms [4]. It is also well known that they are one of the main
sources of programming errors. Therefore there is a need for formal verification
of programs operating on pointers. On the other hand, pointers seem to be di-
scriminated in the specification methods. There have been many attempts to
incorporate pointers into the framework of Hoare logic (e.g. [2,3,11]). However,
these cases are focused on verification of first-order specifications. They have
limited applicability since first-order logic cannot express such basic properties
as connectivity or existence of a cycle (cf. [17], Sect. 4). In case of [2], where the
assertion language is a variant of second-order logic, specifications of common
pointer data-structures are far from straightforward. We can also find specifica-
tion methods based on monadic second-order logic [12,13] (granting decidability
of many issues arising during verification), however their use concentrates on
trees and lists.

We exploit the same analogy between pointer data-structures, graphs and
transitive systems as in [10], where vertices are represented by sets of traces and
assertions are second-order formulae on sets of traces. However, the formalism
for specification of pointer data-structures proposed here is different. It is an
adaptation of temporal specifications of dynamic algebras [5]—an extension of
first-order logic with temporal branching-time combinators. In our approach we
� This research was supported by the Polish Scientific Research Committee (KBN)

under grant 8T11C 01515.

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 231–245, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

232 M. Kubica

interpret the notion of direct consequence in time as a pointer link. Hence, e.g.,
a possible history is an analog to a path of pointer links. We show on examples,
that the presented formalism is concise and comprehensive. We also show a
Hoare-style calculus for the verification of while-programs against specifications
written in the presented formalism, which is sound and complete in the sense of
Cook [14].

We assume that the reader is familiar with many-sorted algebras with partial
functions (in short partial algebras) [7,18]. We allow overloading of function
and variable names. Whenever it can cause ambiguities, the arity of a function
symbol, or the sort of a variable is indicated. Whenever we use equality it is a
strong equality, i.e. t1 = t2 is true iff both t1 and t2 are defined and their values
are equal. The following notational convention is also used. Formula t ↓ is an
abbreviation of t = t, and t1 ≡ t2 is an abbreviation of t1 = t2∨(t1 �= t1∧t2 �= t2).
In other words, t↓ means that the value of t is defined, and ≡ is a weak equality,
t1 ≡ t2 means that either both t1 and t2 are defined and their values are equal,
or they are both undefined. If f is a (partial) function, then f [a → b] denotes
such a (partial) function that f [a → b](a) = b and ∀x�=af(x) ≡ f [a → b](x).

In Sect. 2 we model states and changes of pointer data-structures by partial
many-sorted algebras. The formalism for specification of pointer data-structures
and programs operating on them is described in Sect. 3. Section 4 contains
definitions of syntax and semantics of while-programs. Hoare-style calculus for
verification of while-programs operating on pointer data-structures is presented
in Sect. 5. Section 6 contains final conclusions and remarks.

2 Modeling Data-Structures

In this section we describe how to model states and changes of states of pointer
data-structures, using many-sorted partial algebras. We use Pascal, as an exam-
ple programming language. Since we focus on common pointer data-structures,
we consider only built-in types, records and pointer types. Our approach can
be easily extended by arrays and enumeration types, however we omit them for
simplicity of presentation.

The starting point of our considerations is the declaration of data-types.
We do not allow complex declarations, i.e., data-type constructions cannot be
nested. It allows us to identify all declared types by their names. We avoid
type hiding. The interpretation of built-in types is not defined here, however we
assume that it is known. We assume also that type Boolean, with its standard
interpretation, is among built-in types. For the sake of simplicity we assume that
the only operations allowed on built-in types are functions (without side-effects)
and assignments. Let Σ B = 〈SB, FB〉 be a fixed signature and B be a fixed
partial Σ B-algebra. We assume that sorts from B represent values of built-in
types and functions from B model primitive operations on built-in types.

Definition 1. Let D be a Pascal declaration of data-types of the form

Type t1 = d1; ... tn = dn;

A Temporal Approach to Specification and Verification 233

For i = 1, . . . , n, if there exists such j that tj is a type of pointers to ti, then we
denote tj by ↑ ti (if there are several such j, then we chose the smallest one). If
D does not contain any type of pointers to ti, then we treat ↑ ti as a name of a
new sort of pointers to ti.

By Sig(D) = 〈S, F〉 we denote such a signature that:

S = SB ∪ {t1, . . . , tn,↑ t1, . . . ,↑ tn,↑b1, . . . ,↑bk} , F = FB ∪
⋃

i=1,...,n

fi ,

where SB = {b1, . . . , bk} and fi is defined in the following way:

– if ti is a type of pointers to a non-record type u, then

fi = { ↑: ti → u,Nil :→ ti} ,

– if ti is a type of pointers to a record type u composed of the fields p1 : u1, . . .,
pl : ul, then

fi = { ↑: ti → u,Nil :→ ti, |p1 : ti → ↑ u1, . . . , |pl : ti → ↑ ul} ,

– if ti is a record type composed of the fields p1 : u1, . . . , pl : ul, then

fi =
{

.p1 : ti → u1, . . . , .pl : ti → ul,
(p1 = , . . . , pl =) : u1 × . . .× ul → ti

}
.

We use partial Sig(D)-algebras to model states of data-structures declared by
D. Addresses of variables (of type t) are represented by values of an appropriate
pointer type (↑ t). If D does not contain declaration of such a type, then a new
sort named ↑ t is introduced. Function symbols in Sig(D) have the following
intuitive meaning:

– Nil is a constant representing a null pointer,
– ↑ returns value pointed to by a pointer; this function is defined for addresses

of allocated variables,
– .p returns the value of the field p of a record,
– (p1 = , . . . , pl =) constructs record values from values of record fields,
– |p returns the address of the field p of a given record.

Our intention is to model values of programming variables, by functions ↑.
From here on, let D be the fixed type declarations. By type we mean any of the
following sorts of Sig(D): b1, . . . , bk, t1, . . . , tn.

Example 1. Let us consider the type declaration of singly-linked lists:

Type list = ↑elem;
elem = record d: data; next: list end;

Let us denote these declarations by L. For the sake of simplicity we assume that
data is a built-in type. Sig(L) contains (among others):

– sorts: list, elem, data, ↑list, ↑data,

234 M. Kubica

– function symbols:

.d : elem → data

|d : list → ↑data
.next : elem → list

|next : list → ↑list

↑ : list → elem

↑ : ↑list → list

↑ : ↑data → data

(data = ,list =) : data × list → elem

Nil :→ list

Nil :→ ↑list
Nil :→ ↑data

We are not interested in all partial Sig(D)-algebras as models of states of
data-structures. We can restrict our considerations to partial algebras satisfying
some natural conditions regarding pointers and records.

Definition 2. By DStr(D) we denote a class of all partial Sig(D)-algebras A
satisfying the following conditions:

– for each record type t composed of fields p1 : u1, . . . , pl : ul, we have:
• functions returning values of fields (.pi) are total,
• function (p1 = , . . . , pl =) constructing record values is total,
• a set of record values is isomorphic with the Cartesian product of sets of

values of its fields,
– for each sort t of pointers to u the function ↑ : t → u is undefined for Nil,
– for each sort t of pointers to a record type r composed of fields p1 : u1, . . .,

pl : ul we have:
• function |pj : t → ↑ uj (for j = 1, . . . , l) is defined for all pointers

different from Nil,
• if x : t is an address of a record, then function ↑: ↑uj → uj (for j =

1, . . . , l) is defined for x|pj iff x is the address of an allocated record, i.e.
∀x:t(x↑)↓⇔ (x|pj ↑)↓,

• the value of a field of the record pointed to by a pointer is the same as
the value pointed to by the pointer to the field, i.e. ∀x:t(x↑)↓⇒ x↑.pj =
x|pj ↑,

• different fields of the same record, of the same type, have different ad-
dresses, i.e. for 1 ≤ j, k ≤ l, j �= k, uj = uk we have ∀x:tx|.pj �= x|.pk,

• fields (of the same type) of different records of the same type have dif-
ferent addresses, i.e. for 1 ≤ j, k ≤ l, uj = uk we have ∀x,y:tx �= y ⇒
x|pj �= y|pk,

– fields (of the same type) of records, whose addresses belong to different sorts,
have different addresses, i.e. for two different sorts t, u of pointers to record
types, respectively, r composed of fields p1 : r1, . . . , pl : rl, and s composed
of fields q1 : s1, . . . , qm : sm, and 1 ≤ j ≤ l, 1 ≤ k ≤ m, rj = sk we have
∀x:t,y:ux|pj �= y|qk.

Note that, for a given D, all conditions stated above can be expressed as a
first-order formula.

Partial algebras from DStr(D) can be used to model states of data-structures.
One should remember, that one partial algebra models a single state of a data-
structure. Our intention is to model such properties as data-structure invariants
and preconditions of programs operating on pointer data-structures, with sub-
classes of DStr(D). We should note, however, that the partial algebras from

A Temporal Approach to Specification and Verification 235

DStr(D) cannot model changes of data-structures, e.g. postconditions of pro-
grams. To do it, we need to express modification of ↑ functions. For this purpose,
we extend Sig(D) so that it contains two copies of ↑ functions—one related to
the state of a data-structure before modification, and one after modification. We
adopt here the notational convention of decorating symbols, similar to one used,
for example, in the specification method Z [15]. Undecorated functions ↑ refer
to the ‘current’ state of the data-structure, i.e. ‘after’ modification. Functions � ↑
refer to the ‘previous’ state of the data-structure, i.e. before modification. Later
on, we use also other, auxiliary, decorations ↑�, ↑�, etc. Let us denote by D a
fixed infinite set of all decorations. For sake of simplicity we sometimes consider
undecorated ↑ functions, as decorated with an empty word ε .

Definition 3. Let Σ be a signature and � be a decoration. By Σ � we denote
a signature obtained from Σ by replacing all function symbols ↑ by ↑�. By
convention Σ ε = Σ .

For a given Σ 1 ⊇ Σ � we can treat � as a signature morphism � : Σ → Σ 1

renaming all ↑ functions to ↑� and leaving all other function symbols and
sort names unchanged. If ϕ is a formula and t is a term then ϕ � = �(ϕ) and
t� = �(t).

Let Y ⊆ D ∪ {ε} be a set of decorations. By Σ Y we denote Σ Y =
⋃

δ∈Y Σ δ.
Let Σ 1 be a signature without � decoration. By ∆Σ 1 we denote the signature
Σ 1 ∪ �Σ 1. If � ∈ Y and A is a partial Σ Y -algebra, then A|� is a partial Σ -
algebra with ↑ functions equal to their ↑� equivalents from A.

Definition 4. Let Y ⊆ D ∪ {ε}, ε ∈ Y . We extend the definition of DStr
for Sig(D)Y —by DStr(Sig(D)Y) we denote the class of such partial Sig(D)Y -
algebras A, that for all decorations � ∈ Y we have A|� ∈ DStr(D).

Partial algebras from DStr(∆ Sig(D)) can be used to model changes of data-
structures declared by D. One should keep in mind, however, that one partial
algebra models one possible change of a data-structure. Our intention is to model
properties of programs operating on pointer data-structures with subclasses of
DStr(∆ Sig(D)).

Definition 5. Let Y ⊆ D∪{ε}, ε ∈ Y and A ∈ DStr(Sig(D)Y). By A we denote
the set of such partial algebras A1 ∈ DStr(Sig(D)Y) that A1 differs from A only
in interpretation of function symbols of the form ↑� (for � ∈ Y). By |A| we
denote |A|.
Intuitively, A determines the sorts and interpretation of function symbols not
representing states of data-structures.

Let A ∈ DStr(∆ Sig(D)). We can model such properties as postconditions of
programs by subsets of A. Data-structure invariants and possible changes of a
data-structure are modeled by subsets of A|�.

Dynamically allocated programming variables can be accessed only via poin-
ters. Static and local programming variables can also be accessed by their names.
We model allocation of these programming variables by variables valuations. For
this purpose we adopt the following convention.

236 M. Kubica

Definition 6. Let Sig(D) = 〈SΣ, FΣ〉, V be a declaration of ‘programming’
variables of the following form Var x1:t1;... xn:tn;. The set of variables in-
duced by V is a many-sorted set of ‘logical’ variable names X = 〈Xs〉s∈SΣ

,
Xs = {&xi | ↑ ti = s}. If the set of variables X is known from the context,
&x ∈ X↑s, then we write x as an abbreviation of &x↑.

Intuitively, if x is a programming variable, then &x denotes the address of x.
Note that the above convention allows us to describe the aliasing of programming
variables, while we can write the name of a programming variable to reference its
value. For the rest of this paper, let V be the fixed declaration of programming
variables.

3 Temporal Specifications

Let us now consider the problem of specification of pointer data-structures and
programs operating on them. It can be seen from Sect. 2, that this problem can
be reduced (for given D, V , A and v : X → |A|) to specification of a subset of
A. Note that the first-order logic is too weak for this purpose, since it is known
(cf. e.g. [17], Sect. 4) that we cannot express the notion of a path in it.

We often view pointer data-structures as graphs with labeled vertices and/or
edges—records can be seen as vertices and pointers as edges. The analogy bet-
ween such graphs, transitive systems and Kriepke models is obvious. Therefore
it arises a natural question of usability of temporal logics for specification of
pointer data-structures. The general idea of using temporal logics for the speci-
fication of abstract data-types is not new [5,8,16], however the idea of using it
for the purpose of the specification of a pointer data-structure is novel.

One of the main notions appearing both in the specification of pointer data
structures, and in transitive systems, is the notion of a path. In pointer data-
structures a path is a sequence of records, which can be traversed by following
pointer links. In transitive systems it represents a possible history of a compu-
tation. This analogy is also exploited in [10], where vertices are represented by
sets of traces leading to them, and specifications are formulae on sets of traces.

In classical temporal logics, satisfaction of a temporal formula depends on
the set of all possible paths (starting in a given state). In such a situation, it is
not important, for example, whether two diverging paths cross again or not. On
the contrary, in case of pointer data-structures, binary trees for example, it is
crucial that for each record in a tree there is only one path leading to it from
the root of the tree. Therefore classical temporal logics are of limited use for
the specification of pointer data-structures. However, the formalism presented
in [5] for the purpose of the specification of dynamic algebras does not have
described disadvantages. Here we present its slightly modified version, adapted
for our purposes.

Viewing a pointer data-structure as a graph, we often consider some of the
pointers, abstracting from the rest of them. Usually we focus on pointers linking
the records of a given type. In our approach, pointers are modeled by unary fun-
ctions. We can describe edges representing selected pointers by a set of ‘terms

A Temporal Approach to Specification and Verification 237

with a hole’. Formally, the term with a hole is a term which can contain an ad-
ditional, distinguished variable symbol ‘[]’ called the hole. Such a term describes
a set of edges in the following way: if we assign a source vertex to the hole and
the value of the term is defined, then it is equal to the destination vertex. Since
each record type is composed of a finite number of fields, there can be several,
but limited, number of edges coming out of a vertex. Therefore, we can represent
selected edges by a finite set of terms with a hole.

For the rest of this section, let Σ = 〈SΣ, FΣ〉 be a signature and X =
〈Xs〉s∈SΣ

be a many-sorted set of variables. (We assume [] �∈ X.)

Definition 7. Let s ∈ SΣ. Any finite set e of terms with a hole [] : s, e ⊆
TΣ(X ∪ {[] : s})s is called a description (over Σ) of edges between vertices of
sort s. We denote the set of all such descriptions by EΣ(X, s).

Definition 8. Let A be a partial Σ -algebra, s ∈ SΣ, v : X → |A| be a variables
valuation, and e ∈ EΣ(X, s). We denote by Path(A, s, v, e) such a set of (finite
or infinite) sequences p = 〈p0, p1, . . .〉 ∈ |A|+s ∪ |A|ωs (called paths) that:

– for all 0 ≤ k ≤ length(p) − 2 there exists such t ∈ e that (v[[] → pk])A(t) =
pk+1, and

– if p = 〈p0, . . . , pk〉, then, for all t ∈ e, (v[[] → pk])A(t) is undefined.

If p ∈ Path(A, s, v, e), p = 〈p0, . . . , pk, . . .〉, then by B(p) we denote the first
element of p, B(p) = p0, and by p|k we denote the result of removing the first k
elements from p, p|k = 〈pk, . . .〉.

We distinguish two kinds of formulae: dynamic formulae and path formulae. The
latter ones, however, are used only as parts of dynamic formulae.

Definition 9. Let s ∈ SΣ. The sets of dynamic formulae FΣ(X) and path for-
mulae PΣ(X, s) are defined by the mutual induction:

– if s1 ∈ SΣ, t1, t2 ∈ TΣ(X)s1
, then t1 =s t2 ∈ FΣ(X),

– if ϕ 1, ϕ 2 ∈ FΣ(X), then ϕ 1 ⇒ ϕ 2,¬ϕ 1 ∈ FΣ(X),
– if s1 ∈ SΣ, x is an identifier and ϕ ∈ FΣ(X ∪{x : s1}), then ∀x:s1

ϕ, ∃x:s1
ϕ ∈

FΣ(X),
– if t ∈ TΣ(X)s, {e1, . . . , ek} ∈ EΣ(X, s) and π ∈ PΣ(X, s), then At,e1,...,ek

π ,
Et,e1,...,ek

π ∈ FΣ(X),
– if π 1, π 2 ∈ PΣ(X, s), then π 1 ⇒ π 2,¬π 1 ∈ PΣ(X,),
– if s1∈SΣ, x is an identifier and π ∈ PΣ(X∪{x : s1}, s), then ∀x:s1

π, ∃x:s1
π ∈

PΣ(X, s),
– if ϕ ∈ FΣ(X ∪ {x : s}), then [λx. ϕ] ∈ PΣ(X, s),
– if π 1, π 2 ∈ PΣ(X, s), then π 1Uπ 2 ∈ PΣ(X, s),

The dynamic formulae are interpreted for a given variables valuation, and the
path formulae are interpreted for a given variables valuation and a path. Both
dynamic and path formulae can be build using first-order combinators (with
standard interpretation). Dynamic formula At,e1,...,ek

π represents universal, and

238 M. Kubica

Et,e1,...,ek
π represents existential quantification over paths starting in t and fol-

lowing edges from e1, . . . , ek. In a path formula [λx. ϕ] variable x is assigned the
first element of the path, over which it is interpreted. Operator U is a temporal
operator ‘until’, interpreted along a given path.

Definition 10. Let A be a partial Σ -algebra v : X → |A| be a variables va-
luation, s ∈ SΣ, {e1, . . . , ek} ∈ EΣ(X, s), σ ∈ Path(A, s, v,{e1, . . . , ek}), ϕ ∈
FΣ(X) and π ∈ FΣ(X, s). The satisfaction of ϕ in A under v (written A |=v ϕ),
and the satisfaction of π in A under v and σ (written A, σ |=v π) are defined by
mutual induction:

– A |=v t1 = t2 iff vA(t1) and vA(t2) are defined and vA(t1) = vA(t2),
– A |=v ϕ 1 ⇒ ϕ 2 iff A |=v ϕ 1 implies A |=v ϕ 2,
– A |=v ¬ϕ iff A �|=v ϕ ,
– A |=v ∀x:s1

(ϕ) (A |=v ∃x:s1
(ϕ)) iff A |=v[x→a] ϕ for all (some) a ∈ |A|s1

,
– A |=v At,e1,...,ek

π (A |=v Et,e1,...,ek
π) iff vA(t) is defined, and for all (for

some) paths σ ∈ Path(A, s, v,{e1, . . . , ek}) (where s is a sort of t) such that
B(σ) = vA(t) we have A, σ |=v π ,

– A, σ |=v π 1 ⇒ π 2 iff A, σ |=v π 1 implies A, σ |=v π 2,
– A, σ |=v ¬π iff A, σ �|=v π ,
– A, σ |=v ∀x:s1

π (A, σ |=v ∃x:s1
π) iff A, σ |=v[x→a] π for all (some) a ∈ |A|s1

,
– A, σ |=v [λx. ϕ] iff A |=v[x→B(σ)]] ϕ ,
– A, σ |=v π 1Uπ 2 iff there exists such j > 0 that σ |j is defined and A, σ |j |=v π 2,

and for all 0 < i < j we have A, σ |i |=v π 1.

We write A |= ϕ iff A |=v ϕ for all v : X → |A|.

We define boolean operators ∧, ∨ and ⇔ using ⇒ and ¬ in a standard way.
Similarly, we define temporal operators � (everywhere on the path), � (some-
where on the path) and O (next) using U . We should stress out again that while
using temporal analogies we do not consider possible histories, but we traverse
a pointer data-structure along pointer links.

Let us consider the simple example of singly-linked lists.

Example 2. Let us recall type definitions from Example 1.

Type list = ↑elem;
elem = record d:data; next:list end;

Heads of lists can be characterized by the following formula:

head(p) ⇔ (p↑)↓ ∧ ∀q:list(q↑ .next �= p) .

The invariant of a list data-structure can be described as follows:

– each head of a list is pointed to by some external pointer:

∀l:listhead(l) ⇒ ∃p:↑list(p↑= l ∧ ∀q:listq|next �= p) ,

A Temporal Approach to Specification and Verification 239

– each list terminates with a Nil pointer

∀p:listhead(p) ⇒ Ap,[]↑.next�[λx. x = Nil]) ,

– each allocated record appears on some list

∀p:list(p↑)↓ ⇒ ∃q:list(head(q) ∧ Eq,[]↑.next�[λx. x = p])) ,

– two separate lists do not intersect:

∀l1,l2:list(l1 �= l2 ∧ head(l1) ∧ head(l2) ⇒
Al1,[]↑.next�[λx. Al2,[]↑.next�[λy. x = y ⇒ x = Nil]]) .

Let us denote data-type invariant of lists, being the conjunction of the above
conditions, by list. Let us consider a program replacing all values x appearing on
a list p, with values y. We can specify this program by the following precondition:

list ∧ head(p) ∧ x↓ ∧y↓

and a postcondition:

E�p,[]�↑.next(�[λq. q � ↑.d = �x ⇒ q↑ .d = �y]∧
∀q:list((q� ↑.d �= �x ∨ �[λr. r �= q]) ⇒ q↑≡ q� ↑)∧
∀r:↑data(∀q:list q|d �= r) ⇒ r↑≡ r� ↑) ∧ ψ

where ψ is a formula stating that variables of any types other, then elem and
data do not change.

Example 3. Doubly-linked cyclic lists can have the following type-declarations:
Type list = ↑elem;

elem = record d: data; prev, next: list end;

The following data-type invariant describes possible shapes of lists, and expresses
the fact, that each list is pointed to by an external pointer:

∀p:list(p↑)↓ ⇒ (Ap↑.next,[]↑.next�[λx. x = p] ∧ Ap↑.prev,[]↑.prev�[λx. x = p] ∧
∃q:↑list∀r:list(q �= r|next ∧ q �= r|prev ∧
Eq↑,[]↑.next�[λx. x = p]) ∧
p↑ .next↑ .prev = p) .

Example 4. Binary directed acyclic graphs (in short: binary DAGs) can have the
following type declarations:

Type bdag = ↑ node;

node = record x: data; l, r: bdag end;

All possible shapes of binary DAGs can be described by the following formula:

bDAG ⇔ ∀p:bdag((p↑)↓ ⇒ Ap,[]↑.l,[]↑.r�[λx. x = Nil]) .

Binary trees can be seen as a sub-class of binary DAGs. Their possible shapes
describes the following formula:

bDAG ∧ ∀p,q,r:bdag(p↑)↓ ∧ (q↑ .r = p ∨ q↑ .l = p) ∧
(r↑ .r = p ∨ r↑ .l = p) ⇒ q = r ∧

∀p:bdag ((p↑)↓ ∧ p↑ .l = p↑ .p ⇒ p↑ .l = Nil)
.

240 M. Kubica

4 Programming Language

In this section we present a language of while-programs operating on pointer
data-structures, and its semantics. For this section, let X be the set of variables
induced by the declaration V .

Definition 11. We denote by ProgD(V) the set of Pascal blocks of instructions
(correct with respect to D and V) which can be derived from the following gram-
mar:

while-program → begin instructions end

instructions → instruction | instruction ; instruction
instruction → ε | begin instructions end | designator := expression |

New(designator) | while expression do instruction |
if expression then instruction else instruction

designator → identifier | designator . identifier | expression ↑ ,

where expression (after replacing each programming variable x by &x↑) is a term
of an appropriate type.

Designators are also called l-values. They represent addresses of variables. We
define a translation of designators to terms of appropriate pointer sorts. The
translation gives us the semantics of designators.

Definition 12. Let o be a designator of a variable of type s. By &(o) we denote
a term, of a sort of pointers to type s, defined inductively in the following way:

– if o is a name of a programming variable, then &(o) = &o,
– if o has a form o1.p, then &(o) = &(o1)|p,
– if o has a form o1 ↑, then &(o) = o1.

We can treat expressions appearing in a program as terms, and boolean expressi-
ons as logical formulae. However, we have to remember that if the value of a term
is undefined, then the evaluation of an expression aborts the program execution.
For this purpose we define a formula OK(α) which is true iff the evaluation of a
boolean expression α is defined.

Definition 13. Let α be a boolean expression. We denote by OK(α) a formula
defined inductively in the following way:

– if α = true or α = false, then OK(α) = true
– if α = (α 1 and α 2), then OK(α) = OK(α 1) ∧ (¬α 1 ∨ OK(α 2))—analogously

in case of other boolean operators,
– if α = (t1 = t2), then OK(α) = t1 ↓ ∧ t2 ↓,
– otherwise OK(α) = α ↓.

We define an auxiliary function returning a state of the data-structure obtained
by storing, in a given state, a given value under a given address.

Definition 14. Let A ∈ DStr(D), t1 be a sort of pointers to t2, a ∈ |A|t1 ,
b ∈ |A|t2 . We denote by Store(A, a, b) a partial algebra A1 ∈ DStr(D) obtained
from A by storing value b under address a.

A Temporal Approach to Specification and Verification 241

Note that ↑A1
t1→t2= ↑A

t1→t2 [a → b]. Moreover, if t is a record type containing
values of type t2 and u is a sort of pointers to t, then ↑: u → t is modified
accordingly. Also, if t2 is a record type containing values of type t, then ↑:↑ t → t
is modified accordingly, etc.

We define semantics of while-programs operationally, as a function returning,
for a given starting state of a data-structure and variables valuation, a set of
possible final states of the data-structure.

Definition 15. Let P ∈ ProgD(V), A ∈ DStr(D), v : X → |A| be a variables
valuation. We denote semantics of P by [[P]]v(A) and define it by induction on
the structure of P :

– [[begin P end]]v(A) = [[P]]v(A),
– [[Q;R]]v(A) =

−−→
[[R]]v([[Q]]v(A)),

– [[ε]]v(A) = {A},

– [[o := e]]v(A) =
{

{Store(A, vA(&(o)), vA(e))} if A |=v o↓ ∧ e↓
∅ otherwise ,

– [[New(o)]]v(A) =
{

A1

∣∣∣∣
A |=v o↓ ∧ ∃x∈|A|t2 ,y∈|A|t3 (¬(x↑A)↓ ∧
A1 = Store(Store(A, vA(&(o)), x), x, y))

}
where t1 is

a sort of &(o), t2 is a sort of o and t2 is a sort of pointers to t3,

– [[if e then Q else R]]v(A) =

[[Q]]v(A) if A |=v OK(e) ∧ e
[[R]]v(A) if A |=v OK(e) ∧ ¬e
∅ otherwise

,

– [[while e do P]]v(A) =

B

∣∣∣∣∣∣

∃〈A0,...,An〉∈A
+A0 = A ∧ An = B ∧∧

i=0,...,n−1(Ai |=v (OK(e) ∧ e)∧
Ai+1 ∈ [[P]]v(Ai)) ∧ An |=v OK(e) ∧ ¬e

 .

Note, that [[P]]v(A) ⊆ A, i.e. the execution of a program can change only the
contents of memory (represented by ↑ functions). All other functions and sorts
remain unchanged.

5 Hoare Logic

In this section we deal with the problem of verification of while-programs ope-
rating on pointer data-structures against their specifications. A while-program
specification can be expressed in the form of a precondition and a postcondi-
tion. We assume that these conditions are expressed in the formalism presented
in Sect. 3. We present a version of Hoare logic [1,6,9] of while-programs, with
dynamic formulae as assertions.

Usually, a postcondition is not only a condition on final states of the data-
structure, but a relation between starting and final states. In the classical Hoare
logic, this effect is achieved by the introduction of auxiliary (non-programming)
variables. The precondition can state that a given programming variable is equal
to an auxiliary one. Then the postcondition can refer to the previous value of
the programming variable through the auxiliary one. However, in case of pointer
data-structures, such auxiliary variables should store values of all dynamically

242 M. Kubica

allocated variables. That would mean that assertions are expressed in second-
order logic. Such an approach is presented in [2]. Note that these auxiliary va-
riables are not quantified. Therefore they do not have to be variables. Instead
of auxiliary variables, we allow the extension of the signature by introduction of
function symbols ↑ with various decorations. We adopt the following notational
convention:

– undecorated function symbols ↑ refer to the ‘current’ state of the data-
structure,

– function symbols � ↑ can appear in postconditions and refer to the ‘previous’
state of the data-structure,

– function symbols ↑ decorated with other symbols are auxiliary.

For this section, let Y ⊆ D \ {�} ∪ {ε}, ε ∈ Y , Σ = Sig(D)Y and X be a set of
variables induced by V .

Definition 16. Each such triple {ϕ }P{ψ } that ϕ ∈ FΣ(X), ψ ∈ F∆Σ(X),
P ∈ ProgD(V) is called a dynamic Hoare formulae (over Σ and V). We denote
the set of all such formulae (for a given D, Σ and V) by DHΣ(V).

In classical Hoare logic, satisfaction of a formula does not depend on (a single)
valuation of variables. In our approach, logical variables represent addresses of
programming variables and values of programming variables are represented by
(undecorated and decorated) ↑ functions. Therefore we define satisfaction of
dynamic Hoare formulae for the sets of partial algebras differing in interpretation
of (undecorated and decorated) ↑ functions, and variables valuations.

Definition 17. Let A ∈ DStr(∆Σ), v : X → |A| be a variables valuation,
ϕ ∈ FΣ(X), ψ ∈ F∆Σ(X), P ∈ ProgD(V). We denote by Post(A, v, ϕ, P) and
Pre(A, v, ψ, P) such sets of partial ∆Σ -algebras that:

Post(A, v, ϕ, P) = {A1 ∈ A | A1 |=v
�ϕ, A 1 |ε ∈ [[P]]v(A1 |�)} ,

Pre(A, v, ψ, P) = {A1 ∈ A | ∀A2∈A(A2 differs from A1 only in interpretation
of function symbols ↑, A2 |ε ∈ [[P]]v(A2 |�)) ⇒ A2 |=v ψ } .

Intuitively, Post defines a set of partial ∆Σ -algebras representing possible (ter-
minating) executions of P starting in states satisfying ϕ . Pre defines a set of
partial ∆Σ -algebras having such ‘starting’ states, that if P terminates, then ψ
is true.

Definition 18. We say that a dynamic Hoare formula {ϕ }P{ψ } ∈ DHΣ(V) is
satisfied for A (A ∈ DStr(∆Σ)) and variables valuation v : X → |A| (written
A |=v {ϕ }P{ψ }), when for all A1 ∈ Post(A, v, ϕ, P), we have A1 |=v ψ .

Proposition 1. Let us assume that A |=v {ϕ }P{ψ }, A1 ∈ A, then:

– if A1 |=v
�ϕ , then A1 ∈ Pre(A, v, ψ, P),

– if there exists such π ∈ FΣ(X) that Pre(A, v, ψ, P) = {A1 ∈ A | A1 |=v
�π },

then for all A1 ∈ A we have A1 |=v ϕ ⇒ π . ��

A Temporal Approach to Specification and Verification 243

Proposition 2. If π ∈FΣ(X) and ψ 1, ψ 2∈F∆Σ(X) such that Pre(A, v, ψ 1, P) =
{A1 ∈ A | A1 |=v

�π } and Post(A, v, π, P) = {A1 ∈ A | A1 |=v ψ 2}, then
∀A1∈AA1 |=v ψ 2 ⇒ ψ 1. ��

Let � be a decoration. By NChng(�) we will denote a first-order formula
stating that functions ↑ and ↑� are identical (for all pointer sorts).

Let p1, . . . , pk, s1, . . . , sk ∈ SΣ , pi be a sort of pointers to si, o1∈TΣ(X)p1
, . . .,

ok ∈ TΣ(X)pk
, t1 ∈ TΣ(X)s1

, . . . , tk ∈ TΣ(X)sk
be terms without decorations.

By Stored(o1, t1, . . . , ok, tk) we will denote a first-order formula describing the
results of storing the value of t1 at o1, t2 at o2, . . . , tk at ok, i.e.: for all A ∈
DStr(∆Σ), v : X → |A| we have A |=v Stored(o1, t1, . . . , ok, tk) iff

A|ε = Store(. . .(Store(A|�, vA(o1), vA(t1)), . . .), vA(ok), vA(tk)) .

Obviously, such a formula always exists, but its form depends on declarations of
record types. Note that if, for example, s is a record type, then Stored(o, t) has
to express appropriate changes of record fields (and if some of these fields are
also records, then changes of their fields, etc.). Therefore we do not give here a
general form of Stored.

Now we present a deduction system for a dynamic Hoare logic.

Definition 19. Let Λ ⊆ F∆Σ(X) be such a set of formulae (called assumpti-
ons), that for each signature morphism σ : ∆ Σ → ∆ Σ permuting decorations, if
α ∈ Λ , then σ (α) ∈ Λ . Let {ϕ }P{ψ } ∈ DHΣ(V). We denote by Λ � {ϕ }P{ψ } the
fact, that basing on assumptions from Λ and using the proof system described be-
low, we can prove {ϕ }P{ψ }. We will write � {ϕ }P{ψ } instead of ∅ � {ϕ }P{ψ }.

– Axioms:
� {ϕ }ε{�ϕ ∧ NChng(�)} , (1)

� {ϕ }o:=e
{ �ϕ ∧ (�o)↓ ∧ (�e)↓ ∧ Stored(�&(o), �e)

}
, (2)

� {ϕ }New(o)
{ �ϕ ∧ (�o)↓ ∧ ∃x:t1,y:t2(¬(x� ↑)↓ ∧ Stored(&(o), x, x, y))

}
,
(3)

where t1 is a sort of o and it is a sort of pointers to t2,
– Rules:

ϕ ⇒ ϕ 1 ∈ Λ, Λ 1 � {ϕ 1}P{ψ 1},(ψ 1 ∧ �ϕ) ⇒ ψ ∈ Λ
Λ � {ϕ }P{ψ } , (4)

where Λ 1 ⊆ Λ ,
Λ � {ϕ ∧ NChng(�)}P{ψ }

Λ � {ϕ }P{ψ } , (5)

where � is a decoration different from �, and not appearing in ϕ or ψ ,

Λ � {ϕ }P{ψ }
Λ � {ϕ }begin P end{ψ } , (6)

Λ � {ϕ }P{ξ}, Λ � { σ (ξ)}Q{σ (ψ)}
Λ � {ϕ }P ;Q{ψ } , (7)

244 M. Kubica

where σ : ∆Σ → ∆Σ is a signature morphism changing � decorations to �,
and � is a decoration different from � and not appearing in ϕ , ξ or ψ ,

Λ � {ϕ ∧ OK(α) ∧ α }P{ψ }, Λ � {ϕ ∧ OK(α) ∧ ¬α }Q{ψ }
Λ � {ϕ }if α then P else Q{ψ } , (8)

Λ � {ϕ ∧ OK(α) ∧ α }P{ϕ }
Λ � {ϕ }while α do P{ϕ ∧ OK(α) ∧ ¬α } . (9)

We denote the above proof system by DH.

Intuitively, Λ contains all known facts concerning data-structures, which does
not depend on the actual state. For example, we can instantiate Λ with the set
of dynamic formulae satisfied by all partial algebras from a given A (for a given
variables valuation v), i.e. Λ = Th∆Σ(A, v) = {ϕ ∈ F∆Σ(X) | ∀A1∈AA1 |=v ϕ }.

Theorem 1. The proof system DH is sound, i.e. if Λ � {ϕ }P{ψ }, A ∈ DStr(Σ)
and v : X → |A| are such, that for all α ∈ Λ and A1 ∈ A we have A1 |=v α ,
then A |=v {ϕ }P{ψ }
Proof of this theorem can be found in [14].

The proof system DH is also complete in the sense of Cook.

Definition 20. Let A ∈ DStr(∆Σ) and v : X → |A| be variables valuation. We
say that the set of dynamic formulae F∆Σ(X) is expressive, with respect to A,
v and ProgD(V), if for all ψ ∈ F∆Σ(X) and P ∈ ProgD(V) there exists such
π ∈ FΣ(X) that Pre(A, v, ψ, P) = {A1 ∈ A | A1 |=v

�π }.

Theorem 2. The proof system DH is complete in the sense of Cook, i.e. for
all A ∈ DStr(∆Σ) and v : X → |A|, if F∆Σ(X) is expressive, with respect to
A, v and ProgD(V), and A |=v {ϕ }P{ψ }, then, for ι being natural insertion
of ∆Σ into Sig(D)D and such A1 ∈ DStr(Sig(D)D) that A1 |ι = A, we have
ThSig(D)D (A1, v) � {ϕ }P{ψ }.

The proof of this theorem can be found in [14]. It follows the classical schema
presented e.g. in [1], with all the necessary adaptations.

6 Conclusions

This work is a step forward in merging specification methods with efficient algo-
rithms and data-structures. We have adopted temporal specifications of dynamic
algebras [5] for the purpose of specification of pointer data-structures and pro-
grams operating on them. In the proposed formalism temporal combinators have
been used to describe structure of pointer links. As it can be seen from examples,
this idea allows compact and relatively readable specification of pointer data-
structures. Its practical usefulness should be verified by thorough case-studies.

We have embedded the specification formalism within the framework of Ho-
are logic. Presented proof system satisfies standard properties of soundness and
completeness in the sense of Cook. This gives us an elementary tool for verifica-
tion of programs operating on pointer data-structures.

A Temporal Approach to Specification and Verification 245

References

[1] K.R. Apt. Ten years of Hoare’s logic: A survey — part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, Oct. 1981.

[2] H. Bickel and W. Struckmann. The Hoare logic of data types. Technical Report
95-04, Technische Universität Braunschweig, Deutschland, 1995.

[3] R. Cartwright and D. Oppen. The logic of aliasing. Acta Inf., 15:365–384, 1981.
[4] T.H. Cormen, C.E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The

MIT Press, 1990.
[5] G. Costa and G. Reggio. Specification of abstract dynamic-data types: A temporal

approach. Theoretical Comput. Sci., 173(2):513–554, 1997.
[6] O.-J. Dahl. Verifiable Programming. Prentice Hall, 1992.
[7] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specificaton 1. Number 6 in

EATCS MTCS. Springer-Verlag, 1985.
[8] Y. Feng and J. Liu. A temporal approach to algebraic specifications. In J. C. M.

Baeten and J. W. Klop, editors, CONCUR’90: Theories of Concurrency: Uni-
fication and Extension, number 458 in LNCS, pages 216–229. Springer-Verlag,
1990.

[9] C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12:576–583, 1969.

[10] C.A.R. Hoare and H. Jifeng. A trace model for pointers and objects. In
ECOOP’99, number 1628 in LNCS, pages 1–18. Springer-Verlag, 1999.

[11] T.M.V. Janssen and P. van Emde Boas. On the proper treatment of referen-
cing, dereferencing and assignment. In G. Goos and J. Hartmanis, editors, Auto-
mata, Languages and Programming, number 52 in LNCS, pages 282–300. Springer-
Verlag, 1977.

[12] N. Klarlund and M.I. Schwartzbach. Graph types. In Proceedings of the 20th
Symposium on Principles of Programming Languages, pages 196–205. ACM, 1993.

[13] N. Klarlund and M.I. Schwartzbach. Graphs and decidable transductions based
on edge constraints. In S. Tison, editor, Trees in Algebra and Programming —
CAAP’94. Proceedings, number 787 in LNCS, pages 187–201. Springer-Verlag,
1994.

[14] M. Kubica. Temporal-style specifications of pointer data-structures. Technical
Report TR 02–03 (268), Institute of Informatics, Warsaw University, 2002.

[15] J.M. Spivey. The Z notation, A Reference Manual. Second edition. Prentice-Hall,
1992.

[16] A. Sza�las. Towards the temporal approach to abstract data types. Fundamenta
Informaticae, XI:49–63, 1988.

[17] W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
volume 3, chapter 7. Springer-Verlag, 1997.

[18] M. Wirsing. Algebraic specifications. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 13, pages 676–788. Elsevier,
1990.

	A Temporal Approach to Specification and Verification of Pointer Data-Structures*
	Introduction
	Modeling Data-Structures
	Temporal Specifications
	Programming Language
	Hoare Logic
	Conclusions

