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Abstract. In this paper, we present a generic approach to integrate datatypes
expressed using formal specification languages within state diagrams. Our main
motivations are (i) to be able to model dynamic aspects of complex systems
with graphical user-friendly languages, and (ii) to be able to specify in a formal
way and at a high abstraction level the datatypes pertaining to the static aspects
of such systems. The dynamic aspects may be expressed using state diagrams
(such as UML or SDL ones) and the static aspects may be expressed using either
algebraic specifications or state oriented specifications (such as Z or B). Our
approach introduces a flexible use of datatypes. It also may take into account
different semantics for the state diagrams.

Keywords. formal methods integration, state diagrams, algebraic specifi-
cations, Z, B

1 Introduction

The joint use of formal and semi-formal specification languages is a promising ap-
proach, with the objective of taking advantage of both approaches: specifier-friendliness
and readability from semi-formal approaches, high abstraction level, expressiveness,
consistency and verification means from formal approaches. In this paper, we propose
an approach dealing with this issue. It enables one to specify the different aspects of
complex systems using an integrated language.

Static and functional aspects are specified using static formal specification languages
(algebraic specifications [6], state oriented languages such as Z [24] or B [1]). This
makes the verification of specifications possible but also the datatypes description at a
very high abstraction level. The flexibility we propose at the static aspects specification
level enables the specifier to choose the formal language that is the more suited to this
task: either the one (s)he knows well, the one with tools, or the one that makes possible
the reuse of earlier specifications.

Dynamic aspects (i.e. behaviour, concurrency, communication) are modelled using
state diagrams. Our proposal is generic. Different dynamic semantics may be taken
into account, hence our approach may be used for Statecharts [17], for the different
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(yet growing number) of UML state diagrams semantics, [21,20,25,19] for instance,
and more generally for any state / transition oriented specification. In our approach,
the specification is control-driven: the dynamic aspects are the main aspects within a
specification and state how the static aspects datatypes are used. On a larger scale, our
work deals with the formal specifications integration and composition issues, where
we yet have some general results [3]. At the global specification level, our approach
therefore also addresses the consistency of the static and dynamic parts.

This paper is structured as follows. In Sect. 2, we present the syntactic extensions
used to integrate formal datatypes within state diagrams. Section 3 deals with the generic
integration semantics. To end, Sect. 4 concludes the paper and presents some perspec-
tives.

2 Syntax

We here present the syntactic extensions we add to state diagrams to take into account
the formal datatypes integration. We advocate for a control-driven approach of mixed
specification. This means that the main part of a specification is given by the dynamic
aspects modelling (behaviours and communications). The static aspects are encapsulated
within the dynamic aspects.

We first add module1 importation and local variables declaration extensions to state
diagrams. Both are done using data boxes (Fig. 1), a kind of UML-inspired note which
is usually used to give additional informations to a diagram in a textual form. The
IMPORT notation is introduced to indicate which data modules are imported as well as the
language used to write their contents (algebraic specifications, Z schemas, B machines,
or other). Such a language is called a framework in our approach and is used to define the
specific evaluation functions which enable us to evaluate the data embeddings into state
diagrams. Variables are also declared and typed in the data boxes. Since modules often
contain several type definitions, and since types with the same name may be defined in
two different modules, the type of a variable may be prefixed with the name of a module
in order to avoid conflicts.

The general form of a state diagram transition is made up of two states (which
can contain activities) and a label with an event, a guard and an action to do when

x: Module1.Type1

IMPORT Larch−spec Module1

IMPORT Z−spec Module2

IMPORT B−spec Module3

y: Type2

Fig. 1. Local declarations of data into state diagrams

1 A module (general definition) is a collection of one or several descriptions of datatypes or
behaviours.
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Table 1. Links between state diagrams and data

Part of label Kind of interaction Example with data
EVENT reception event-name(x1:T1, . . . ,xn :Tn )
GUARD guard predicate(t1, . . . ,tn )
ACTION emission receiver ˆ event-name(t1, . . . ,tn )
ACTION local modification x:=t

the transition is triggered. Datatype extensions (data expressions) may appear in both
states and transitions. In states, our extensions correspond to activities (actions such as
entry/exit or local modifications, and events). In transitions, our extensions (Table 1)
enable one to (i) receive values in events and then store these values into local variables,
(ii) guard transitions with data expressions, (iii) send events containing data expressions
and (iv) make assignments of data expressions to the local variables. The last two take
place in the action part of transitions. Possible extended activities within states are not
directly taken into consideration in our approach. However, such activities can be viewed
as a specific case of transitions between states.

Data expressions may be either variables, terms for algebraic specifications or oper-
ation applications for state oriented specifications. As far as the formal language for the
static aspects is concerned, the only constraint is to have some well-defined evaluation
mechanism. The reason for this is that we are interested in operational semantics to
address in a generic way operational issues of mixed specifications (animation, equiv-
alences/bisimulations, model checking) which have been addressed for specific mixed
specification languages (e.g. LOTOS [11]). Denotational issues may be treated with
denotational approaches based on institutions for example [16,2] and would enable to
ease this evaluation mechanism constraint. Our approach makes possible the joint use
of several static formal languages at the same time. However, a strong mix of constructs
from several languages (such as importing a Z module within an algebraic specification,
or using algebraic specification variables in a Z operation application) is prohibited in
order to avoid possible semantic inconsistencies. Our goal is neither to advocate for such
complex combinations, nor to develop a mean to solve such inconsistencies. As a simple
way to detect them, we develop a meta-type concept using meta-typing rules (see the
semantics below). Terms which are not meta-typed (i.e. inconsistent) will not be able to
be used in the dynamic rules.

3 Semantics

In this section, our goal is to give a formal semantics to state diagrams extended with
formal datatypes in a way that has been presented in the syntactic part. We do not aim
at formalizing some specific kind of state diagram, which has already successfully been
done, see [21,20,25,19,17] for example. We rather aim at being able to reuse different
existing state diagram semantics. Therefore, our semantics is presented in such a way
that generic concepts may then be instantiated for a specific kind of state diagram. In
our semantics we will deal with properties such as “the event pertains to the input event
collection of the state diagram”, which could thereafter be instantiated for a specific
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state diagram language into “the event is the first element of the input queue associated
with the state diagram process”. Such generic concepts are represented in our semantics
using boxes (e.g. event ∈ Qin ).

Using this generic approach, we preserve a very general description of extended
state diagrams. In this way, all kinds of state diagrams and their underlying semantics
could be considered. The only constraint is that the semantics of a non-extended state
diagram D has to be given in terms of a Labelled Transition System (LTS) ( INIT (D),

STATE (D), TRANS (D)), which is currently always the case. We may then define
precisely the meaning of the integration of data into dynamic diagrams using extended
states evolutions and evaluation functions.

Our semantics is given using rules which may be decomposed into: meta-typing
rules (badly meta-typed terms may not be evaluated), action evaluation rules (describing
the effects of actions on extended states), dynamic rules (formalizing the individual
evolution of an extended state diagram), open systems rules (describing the effect of
putting extended state diagrams within an external environment), and global system and
communication rules (putting things altogether). We will also discuss the evaluation
functions associated with the different static specification languages one may use. To
end this section on the semantics of our approach, we will illustrate the application of
our semantic rules on a simple piece of specification. Specific notations are introduced
throughout the semantic definitions.

Meta-Typing Rules. These rules are needed in order to detect multiple language in-
consistencies and to be able to perform the evaluation of a term using the adequate
evaluation function, that is the one dedicated to its meta-type (e.g. Larch, CASL, Z, B).
In the following, D corresponds to the set of extended state diagrams. Within the rules
we are in the context of a specific diagram D pertaining to D. The states of D are denoted
by STATE (D), its initial states by INIT (D) (which is a subset of STATE (D)), and
its transitions by TRANS (D). DeclImp(D) and DeclVar !(D) denote respectively the
imports and the variables declarations of the diagram D data box. DeclVar?(D) is the
set of (typed) variables received in events. DeclVar is the union of DeclVar?(D) and
DeclVar !(D). A diagram D may be given syntactically by a tuple (INIT , STATE ,
TRANS , DeclImp, DeclVar !). def (x ,M ) is true if x is defined within the module M .
We use T for usual types and X for meta-types. The notation t ::D X means that t has
X for meta-type within the diagram D . Throughout the semantic part, operators suf-
fixed with meta-types (e.g. �X ) will denote their interpretation within the context of the
corresponding framework (e.g. �B denotes the B evaluation function). The meta-typing
rules are given in Fig. 2.

IMPORT X −SPEC M ∈ DeclImp(D)
def (T ,M )

x : T ∈ DeclVar(D)
x ::D X

(a)

IMPORT X −SPEC M ∈ DeclImp(D)
def (op,M )

∀ i ∈ 1..n . ti ::D X

op t1 . . . tn ::D X
(b)

Fig. 2. Meta-typing rules
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The Fig. 2a rule is used to give a meta-type to variables using data local declarations.
The Fig. 2b rule gives the meta-type of a construction from the meta-types of elements
which compose it. op t1 . . . tn is an abstract notation to denote the application of
an operation to a list of terms, since syntactically there are some differences between
algebraic and state oriented formal specification languages.

Action Evaluation Rules. This set of rules deals with the effect of actions on the
extended states used to give semantics to extended state diagrams. Let us first give
a definition of these states. EVENT ? is the set of all input events, whose gen-
eral form is event − name(value1, ...,valuen), that is a concrete instantiation with
values of an abstract event parameterized by variables (e.g. e(0) is an instantiation
of e(x : Nat)). EVENT ! is the set of all output events, whose general form is
receiver ˆevent −name(value1, ...,valuen). EVENT is the set of all events, that is:
EVENT = EVENT ? ∪ EVENT !. The set of extended states for an extended state
diagrams is defined as:

S ⊆ STATE (D) ×E× Q [EVENT ?]× Q [EVENT !]

where

– STATE (D) is the set of states used to give a semantics to the non-extended state
diagram D ;

– E is the set of environments, which are finite sets of pairs (x ,v) denoting that the
variable x is bound to the value v ;

– Q is the set of collections2, Q [EVENT ?] the set of input events collections, and

Q [EVENT !] the set of output events collections.

Collections are introduced to memorize events exchanged between diagrams. QinD

(resp. QoutD ) is used to denote a collection associated to diagram D to store input (resp.
output) events. The E � e �X v notation means that using the evaluation defined in the
X framework, v is a possible evaluation of e using the environment E for substituting
the free variables. More details concerning the semantics of �X will be given in the
remainder. Furthermore, if E and E ′ are environments then EE ′ is the environment in
which variables of E and E ′ are defined and the bindings of E ′ overload those of E . We
recall that symbols in boxes depict abstract structures and operations to be instantiated
for a given type of state diagram. S will thereafter be used to denote an element of S,
and Γ D to denote an element of STATE (D). When there is no ambiguity on D , we
use Γ for Γ D , Qin for QinD

, and Qout for QoutD . The rules describing the evaluation of
actions are given in Fig. 3.

The EVAL−SEQ rule is used to evaluate the actions in sequence. a1 . . .an is an
abstract notation for a sequence of actions as we do not wish to set here some particular
concrete syntax for these. The EVAL−NIL rule states that doing no action does not
change the global state. The event emissions are dealt with by the EVAL−SEND rule,

2 A collection is an abstract structure which may be instantiated for a given type of state diagram
by a queue, a set or a multiset for example.
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act−eval(a1,S ,D) = S ′

act−eval(a2 . . . an ,S ′,D) = S ′′

act−eval(a1 . . . an ,S ,D) = S ′′ EVAL−SEQ act−eval(εact ,S ,D) = S
EVAL−NIL

∀ i ∈ 1..n . ∃Xi . ti ::D Xi . ∃ vi . E � ti �Xi vi

act−eval(recˆe(t1, . . . , tn), < Γ,E ,Qin ,Qout >,D) =
< Γ,E ,Qin ,Qout � {recˆe(v1, . . . , vn)} >

EVAL−SEND

∃X . t ::D X . ∃ v . E � t �X v

act−eval(x := t , < Γ,E ,Qin ,Qout >,D) =< Γ,E{x �→ v},Qin ,Qout >
EVAL−ASSIGN

Fig. 3. Action evaluation rules

which expresses that the effect of sending an event is to evaluate its arguments and then
put it3 into the state diagram output event collection.

The EVAL − ASSIGN rule may need some explanations. Roughly speaking,
assignments update the local environment. The understanding of this rule in an
algebraic specification framework is quite natural (v is an interpretation of t). For
state oriented languages, the interpretation of the rule is slightly different. x is a state
variable. The value v denotes the new state obtained from the environment and after
the evaluation of t . The notation used in this rule is specific to our approach and
slightly different of the usual notation (i.e. pointed or with side effect). However,
we wish to have at our disposal a common notation for the different considered languages.

Dynamic Rules. This set of rules deals with the dynamic evolution of a single state
diagram. We introduce a special event, ε denoting (as usual) a stuttering step.

EVENT ?+ = EVENT ? ∪ {ε}

The state diagram evolutions are given in terms of a LTS (INIT ,STATE ,TRANS )
where states are extended states, with:

STATE ⊆ S
INIT ⊆ STATE

TRANS ⊆ STATE × EVENT ?+ × STATE

We recall that extended state diagrams may be given syntactically as a tuple (INIT ,
STATE , TRANS , DeclImp, DeclVar !) and that the semantics of non-extended state
diagrams are given in terms of a LTS ( INIT (D), STATE (D), TRANS (D)). For
some kind of state diagrams, there is a correspondence of the notion of states (i.e. INIT ,
STATE , INIT and STATE have the same type). However, for the others (such as
the UML state diagrams), the semantics of non-extended state diagrams are given in

3 � denotes an abstract union operation which may be instantiated differently depending on
the type of state diagram semantics we want: union, put in front of a queue, etc.
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terms of configurations [21,20,25] which are sets of active states. The active function
is used to know if a state is active in a configuration (or more generally in some element
of STATE ). active(γ , Γ ) yields true if γ is active in Γ .

To be able to reuse the semantic information yield by TRANS (D), we have first to
define a function that maps members of TRANS (D) (extended transitions) to members
of TRANS (D). This function, base, is defined inductively on the structure of the
extended diagram notation [8]. A first rule (Fig. 4) is used to obtain the initial extended
states which correspond to the initial states of the non-extended state diagram underlying
semantics ( INIT (D)) extended with initial values for the variables and empty input

and output collections ( ∅ ).

∃ γ0 ∈ INIT (D) .

∃ Γ0 ∈ INIT (D) .
active(γ0, Γ0)

DeclVar !(D) = ∪i∈1..n{xi : Ti}
∀ i ∈ 1..n . ∃Xi . xi ::D Xi . ∃ vi :Xi Ti

< Γ0, ∪i∈1..n{xi �→ vi}, ∅ , ∅ > ∈ INIT (D)
DYN −INIT

Fig. 4. Initialization rule

The meta-type of variables is used to define the notion of type in terms of a specific
framework, which is noted v :X T . Hence, the notation ∃ v :X T denotes the fact that,
within the X framework, v is a value of type T . A second rule (Fig. 5) is used to express
stuttering steps. These steps denote an extended state diagram doing no evolution and
will be used when putting state diagrams in an open system environment.

S ∈ STATE(D)

S
ε−→ S ∈ TRANS(D)

DYN −ε

Fig. 5. Stuttering steps rule

The next dynamic rule (Fig. 6) expresses the general evolution triggered when an
event is read from the state diagram input event collection. This event may carry data
values that are put into the state diagram variables environment. TRUEX denotes the
truth value within the X framework.

However, sometimes there are no events to trigger transitions. Such a case is dealt
with by Fig. 7 rule, where the corresponding transition of TRANS (D) is labelled by
the stuttering step label (ε ).

Once again, boxed elements are abstract concepts to be instantiated for a given type
of state diagram semantics. e ∈ Q denotes that the event e is in the collection Q. Possible
instantiations are: e is in Q (e ∈ Q), e is the first/top element in Q (e = car(Q)), e is
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S ∈ STATE(D)
S =< Γ,E ,Qin ,Qout >

∃ γ ∈ STATE(D) . ∃ γ′ ∈ STATE(D) .
∃ l = e(x1 : T1, . . . , xn : Tn) g / a1 . . . am .

γ
l−→ γ′ ∈ TRANS(D)

active(γ, Γ )
∃ e(v1, . . . , vn) ∈ Qin

Q ′
in = Qin \ {e(v1, . . . , vn)}

∃ Γ
base(l)−−−−→ Γ ′ ∈ TRANS (D)

∀ i ∈ 1..n . ∃Xi . xi ::D Xi . ∃ vi :Xi Ti

E ′ = E ∪i∈1..n {xi �→ vi}
∃X . g ::D X

E ′ � g �X TRUEX

act−eval(a1 . . . am , < Γ,E ′,Q ′
in ,Qout >,D) =< Γ,E ′′,Q ′

in ,Q ′
out >

S ′ =< Γ ′,E ′′,Q ′
in ,Q ′

out >

S ′ ∈ STATE(D)

S
e(v1,... ,vn )−−−−−−−→ S ′ ∈ TRANS(D)

DYN −E

Fig. 6. Basic dynamic rule (event reception)

S ∈ STATE(D)
S =< Γ,E ,Qin ,Qout >

∃ γ ∈ STATE(D) . ∃ γ′ ∈ STATE(D) .
∃ l = g / a1 . . . am .

γ
l−→ γ′ ∈ TRANS(D)

active(γ, Γ )

∃ Γ
base(l)−−−−→ Γ ′ ∈ TRANS (D)

∃X . g ::D X
E � g �X TRUEX

act−eval(a1 . . . am , < Γ,E ,Qin ,Qout >,D) =< Γ,E ′,Q ′
in ,Q ′

out >
S ′ =< Γ ′,E ′,Q ′

in ,Q ′
out >

S ′ ∈ STATE(D)
S

ε−→ S ′ ∈ TRANS(D)

DYN −E∅

Fig. 7. Basic dynamic rule (no event reception)

the element in Q with the highest priority, and so on. e \ Q denotes, in the same way,

the (abstract) removal of e out of Q. TRANS (D) is the set of transitions of the non-
extended state diagram semantics. The DYN−E and DYN−E∅ rules deal with the more
general forms of state diagrams transitions (i.e. with the EVENT [GUARD]/ACTION
and [GUARD]/ACTION forms). Rules for restricted forms of transitions (e.g. without
guard) may be obtained in an easy way from these general rules (e.g. consider the guard



Integration of Formal Datatypes within State Diagrams 349

to be true). An operational semantics is easily obtained from this model associating to D
its LTS (INIT (D), STATE (D), TRANS (D)), and then using an usual trace semantics
(TR) for example:

|| D ||oper= TR(INIT (D),STATE (D),TRANS (D))

Open System Rules. This set of rules is used to express what happens when a single
state diagram is put into an open system environment. Mainly, the intuition we want to
express is that some events may be received from the environment and some other may
be send to it. As far as the input and output event collections of the state diagrams are
concerned, this means that things are put into the input collection and things are taken out
of the output collection. Something important to note is that these modifications of the
extended states may appear meanwhile the state diagram does a transition (i.e. following
the DYN −E and DYN −E∅ rules) but also if it does nothing. To be able to represent
this, we may use the ε transitions (rule DYN −ε ). Let us now formalize this intuition.
As usual in our approach, the semantics of a state diagram in an open system will be
defined as the traces of the LTS (INIT open(D),STATEopen(D),TRANSopen(D)),
that is:

|| D ||openoper = TR(INIT open(D),STATEopen(D),TRANSopen(D))

For a given diagram D , we state that:

INIT open(D) ⊆ INIT (D)
TRANSopen(D) ⊆ TRANS (D)× Q [EVENT ?]× Q [EVENT !]

STATEopen(D) ⊆ SOURCE (TRANSopen(D)) ∪ TARGET (TRANSopen(D))

with functions SOURCE and TARGET respectively denoting the source and target
extended states of transitions. A unique rule, DYN −OPEN (Fig. 8), is then defined to
express the collection modifications that may take place in an open system semantics. In
this rule, the label l matches the two possible things the state diagram may do during the
collections modification: nothing (rule DYN−ε ) or a classical transition (rules DYN−E
and DYN −E∅).

P (E ) denotes the collection obtained from the powerset of a set E . Ein (resp. Eout )
in open transitions (members of TRANSopen(D)) is used to keep the information of
what has been put into the input event collection (resp. taken out of the output event

collection) of the state diagram. S l−→Ein ,Eout S ′ ∈ TRANSopen(D) is used as a
shorthand notation for (S , l ,S ′,Ein ,Eout) ∈ TRANSopen(D).

Global System and Communication. We may now define the last set of rules, putting
things altogether. The idea is that a global system made up of several extended state dia-
grams (denoted ∪i∈1..nDi ) will evolve as its component evolve. Once again we will de-
fine the operational semantics of the system to be the traces of a LTS (INIT (∪i∈1..nDi),
STATE (∪i∈1..nDi), TRANS (∪i∈1..nDi)), that is:

|| ∪i∈1..nDi ||openoper =
TR(INIT (∪i∈1..nDi),STATE (∪i∈1..nDi),TRANS (∪i∈1..nDi))
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< Γ,E ,Qin ,Qout >
l−→< Γ ′,E ′,Q ′

in ,Q ′
out > ∈ TRANS(D)

∃Eout ⊆ Qout

∃Ein ⊆ P (EVENT ?)

< Γ,E ,Qin ,Qout >
l−→Ein ,Eout < Γ ′,E ′,Q ′

in � Ein ,Q ′
out \ Eout > ∈ TRANSopen(D)

DYN−OPEN

Fig. 8. Open dynamic rule

We now have to define INIT , STATE and TRANS .

INIT (∪i∈1..nDi) ⊆ Π iINIT open(Di)
TRANS (∪i∈1..nDi) ⊆ {t ∈ Π iTRANSopen(Di) | CC (t)}

STATE (∪i∈1..nDi) ⊆ INIT (∪i∈1..nDi) ∪ TARGET (TRANS (∪i∈1..nDi))

STATE is obtained from initial states (INIT ) and reachable states (target states of
transitions). TRANS is obtained from the product of the TRANSopen sets of each state
diagram of the system, restricting this product with a communication constraint (CC )
which expresses that whenever an emission event is taken out of a given diagram (Dk )
output event collection (i.e. present in Eoutk ), and if the receiver of this emission is a
member (Dj ) of the system, then this receiver has the event being put into its input event
collection (Einj ).

CC (S1
l1−→Ein1 ,Eout1

S ′
1, . . . ,Sn

ln−→Einn ,Eoutn
S ′
n) ⇔

∀ k ∈ 1..n . ∀Dj ˆe ∈ Eoutk . Dj ∈ ∪i∈1..nDi =⇒ e ∈ Einj

Other specific communication contraints may be defined in order to take different
communication semantics into account.

Semantics of �X . Several kinds of evaluation functions may be defined depending
on which data specification language is used. In this paper, we focus on state oriented
languages and especially on Z. Comprehensive explanations concerning algebraic spec-
ifications and B are reported in [8].

Z [24] is a mathematical notation based on set theory and first order predicate cal-
culus. Z defines schemas to structure data specifications and operation specifications. A
schema is made up of a declaration part (a set of typed schema variables) and a predicate
part built on these variables. The semantics of a state schema consists in a set of bindings
between the schema variables and values such that the predicate holds. State schemas
define state spaces. A complete Z specification also uses an initialization schema which
defines initial values for the variables.

The idea to define the Z evaluation function is to consider LTSs associated with Z
specifications. This is possible since Z follows a model oriented approach. For this pur-
pose, we use both the state schema, the initialization schema and the operation schemas
of Z specifications. Let z be a Z specification defined with a state schema SSchz , an
initialization schema SInitz , and a set of operation schemas. We may then define the as-
sociated LTS. Its set of states (STATEz ) corresponds to the SSchz semantics state space.
The set of initial states of the LTS is the subset of STATEz with elements that satisfy the
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predicate of SInitz . Finally, each operation schema predicate, used to relate the bindings
of two states, defines a set of transitions labelled by operation applications. The set of
transitions of the LTS (TRANSz ) is the union of all these transitions. The evaluation

function �Z is then defined as: E � l �Z s ′ ⇔ ∃ s ⊆ E . s l→ s ′ ∈ TRANSz .

Application. In this part we illustrate the application of our semantic rules on a simple
example with three communicating state diagrams (Fig. 9).

D2

tick(x:Nat) /n:=n+2

D1

tick(x:Nat) backback

D3

/D1^tick(n+1),
D2^tick(n+1)

IMPORT Larch−spec NAT IMPORT Larch−spec NAT
IMPORT Larch−spec NAT
n:Nat

1 11

2 22

Fig. 9. A simple data extended state diagrams system

We first have to choose a non-extended state diagram semantics, like for example
the semantics of UML state diagrams given by Jürjens [19]. INIT , STATE and

TRANS , used to define a semantics to non-extended state diagrams, are instantiated

from [19]. INIT (D), for example, correspond to the initial states computed using the
SCInitialize(D) rule formalized in [19]. However, in this example we will still use the

abstract notations to keep the rules readable. Each generic concept within our rules ( ∅ ,

Q , ∈ , \ , � ) is instantiated by some concrete concept (resp. nil, Queue, car, cdr,
append). Here, the event collections are queues, together with the usual operations on
them.

Our example uses natural numbers (sort Nat) defined in an usual way using 0 and
succ [8]. Nat is written using the input language of the LP theorem prover [15], which
is a subset of Larch. Within this framework, the evaluation function corresponds to term
rewriting, i.e. �Larch−spec ≡ �∗

R with R being the set of rewrite rules. The rewrite
rules are obtained from the algebraic specification axioms applying the noeq-dsmpos
LP ordering command [15]. TRUELarch−spec corresponds to true in LP.

As a first example of rule application, Fig. 10 gives an example of a simple dynamic
evolution. This is an instantiation of the DYN −E∅ rule (Fig. 7) without guard. It
represents an independent evolution of diagram D3 from state 2 to state 1. The w value
bound to the n variable is supposed to be the normal form of the n+2 term. This evaluation
is performed through the act−eval application, and the underlying semantic rule EVAL−
SEND of Fig. 3 (having as premise: {(n,v)} � n + 2 �∗

R w). The conclusion of the
rule denotes the state and transition construction of the diagram model.
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S ∈ STATE(D3)
S =< Γ3, {(n, v)}, ∅,nil >

l = / n := n + 2

γ3
l−→ γ′

3 ∈ TRANS(D3)
active(γ3, Γ3)

Γ3
εact−−→ Γ ′

3 ∈ TRANS (D3)
act−eval(n := n + 2, < Γ3, {(n, v)},nil ,nil >, D3) =< Γ3, {(n, w)},nil ,nil >

S ′ =< Γ ′
3, {(n, w)},nil ,nil >

S ′ ∈ STATE(D3)
S

ε−→ S ′ ∈ TRANS(D3)

Fig. 10. Independent dynamic evolution

An example of communication is given in Figs. 11, 12, and 13. It describes the
asynchronous communication on tick between D1, D2 and D3 (which sends the tick
events). In this example, we assume that the diagrams D1 and D2 are initially in state 1
and that the diagram D3 is in state 2 with the two sent events in its output queue. Figure 11
describes a conjunction of evolutions for the three diagrams where D3 has events taken
out of its output queue whereas D1 and D2 have events put into their input queues. Such
individual evolutions (here in premises) could have been proven correct, independently
for each diagram, using dynamic evolution rules (such as the one given in Fig. 10) and
then the open system rule (expressing the possible queues evolutions). We do not give
the whole proof here by lack of place. Figure 12 states that the communication constraint
is verified for Fig. 11 global evolution and therefore this evolution is a legal evolution
for the global system (Fig. 13). Note that in the rules, the abstract concepts have been
instantiated by concrete concepts, with queue being the Queue constructor.

S1 =< Γ1, ∅,nil ,nil > ∧ S ′
1 =< Γ1, ∅, queue(tick(u)),nil >

T1 = S1
ε−→queue(tick(u)),nil S ′

1

S2 =< Γ2, ∅,nil ,nil > ∧ S ′
2 =< Γ2, ∅, queue(tick(u)),nil >

T2 = S2
ε−→queue(tick(u)),nil S ′

2

S3 =< Γ3, {(n, v)},nil , queue(D1ˆtick(u), D2ˆtick(u)) >
S ′

3 =< Γ3, {(n, v)},nil ,nil >

T3 = S3
ε−→nil,queue(D1ˆtick(u),D2ˆtick(u)) S ′

3

T = (T1,T2,T3)
T ∈ Πi∈1..3TRANSopen(Di)

Fig. 11. Events exchange

4 Discussion

Our goal is to propose specifier-friendly integrated languages for mixed specifications,
and more generally an integration method suited to the specification of mixed complex
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CC (S1
ε−→queue(tick(u)),nil S ′

1,S2
ε−→queue(tick(u)),nil S ′

2,S3
ε−→nil,queue(D1ˆtick(u),D2ˆtick(u)) S ′

3) ⇐⇒
(D1ˆtick(u) = car(queue(D1ˆtick(u), D2ˆtick(u))) ∧ D1 ∈ ∪i∈1..3Di =⇒

tick(u) = car(queue(tick(u)))) ∧
(D2ˆtick(u) = car(queue(D1ˆtick(u), D2ˆtick(u))) ∧ D2 ∈ ∪i∈1..3Di =⇒

tick(u) = car(queue(tick(u))))

Fig. 12. Instantiation of the CC rule

T = (S1
ε−→queue(tick(u)),nil S ′

1,S2
ε−→queue(tick(u)),nil S ′

2,S3
ε−→nil,queue(D1ˆtick(u),D2ˆtick(u)) S ′

3)
T ∈ Πi∈1..3TRANSopen(Di) | CC (T )

T ∈ TRANS(∪i∈1..3Di)

Fig. 13. Example of transition in the final semantic model

systems. We choose to combine state diagrams with formal specification languages
devoted to abstract datatypes (algebraic specifications or state oriented specifications
such as Z and B). This joint use, in a formal and integrated framework, of a semi-formal
notation for dynamic aspects with formal languages for static aspects enables one to take
advantage of both approaches: specifier-friendliness and readability from semi-formal
approaches, high abstraction level, expressiveness, consistency and verification means
from formal approaches. For an example of a case study specified using our approach,
the reader may refer to [9].

Comparison. As a complement to the description of datatypes using class diagrams,
the usual extension of state diagrams is the use of OCL (Object Constraint Language)
constraints. However, OCL is not really suited to the description of formal abstract
datatypes. There are also numerous works combining state diagrams with Z or B such
as [10,23]. In both cases, authors proceed using a translation into the static formalism
(Z or B) which thereafter constitutes an homogeneous framework for the subsequent
steps of the formal development. Casl-Chart [22] combines Statecharts (following the
Statemate semantics [17]) with the CASL algebraic specification language [4].A Casl-
Chart specification is made up of datatypes written in CASL and several Statecharts that
may use these datatypes in events, guards and actions. Astesiano et al. [5] suggest a
method to compose languages, in particular a data description language and a paradigm-
specific language. Their goal is the description of languages in a component-based style,
focusing on the data definition component. Unlike all these existing approaches, our
proposal enables to take into account the different UML state diagrams semantics, and
more generally Statecharts semantics or any states and transitions formalisms such as the
SDL [14] or the recent works on symbolic transition systems [18,11,12]. Our approach
is also more flexible as it permits to use different datatype description languages, hence
increasing the reusability level of specifications.

Perspectives. A first perspective addresses verification issues. If it is yet possible
to verify the aspects taken separately, it is important to be able to verify the global
system. We are working on the translation of our generic approach for integrated mixed
languages and its semantics into higher order logic tools such as PVS [13]. We also



354 C: Attiogbé, P: Poizat, and G. Salaün

have developed a tool dedicated to the animation of specifications combining CCS with
abstract datatypes. This tool, ISA [7], is quite generic over the datatype (i.e. static)
language which is concerned. The next step will then be to extend ISA in order to deal
with several dynamic specification languages. Finally, a generalization of our approach
represents an interesting challenge in order to be able to combine different formalisms
based on the integration of formal datatypes within state / transition systems (such as
SDL [14]).
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