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Abstract. We define the Value State Dependence Graph (VSDG). The
VSDG is a form of the Value Dependence Graph (VDG) extended by the
addition of state dependence edges to model sequentialised computation.
These express store dependencies and loop termination dependencies of
the original program. We also exploit them to express the additional
serialization inherent in producing final object code.
The central idea is that this latter serialization can be done incrementally
so that we have a class of algorithms which effectively interleave register
allocation and code motion, thereby avoiding a well-known phase-order
problem in compilers. This class operates by first normalizing the VSDG
during construction, to remove all duplicated computation, and then
repeatedly choosing between: (i) allocating a value to a register, (ii)
spilling a value to memory, (iii) moving a loop-invariant computation
within a loop to avoid register spillage, and (iv) statically duplicating a
computation to avoid register spillage.
We show that the classical two-phase approach (code motion then regis-
ter allocation in both Chow and Chaitin forms) are examples of this class,
and propose a new algorithm based on depth-first cuts of the VSDG.

1 Introduction

An important problem encountered by compiler designers is the phase order-
ing problem, which can be phrased as “in which order does one schedule the
register allocation and code motion phases to give the best target code?”. These
phases are antagonistic to each other—code motion may increase register pres-
sure, while register allocation places additional dependencies between instruc-
tions, artificially constraining code motion. In this paper we show that a unified
approach, in which both register allocation and code motion are considered to-
gether, sidesteps the problem of which phase to do first.

In support of this endeavour, we present a new program representation, the
Value State Dependence Graph (VSDG), as an extension of the Value Depen-
dence Graph (VDG) [21]. It is a simple unifying framework within which a wide
range of code space optimizations can be implemented. We believe that the
VSDG can be used in both intermediate code transformations, and all the way
through to final target code generation.
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Traditional register allocation has been represented as a graph colouring
problem, originally proposed by Chaitin [5], and based on the Control Flow
Graph (CFG). Unfortunately the CFG imposes an artificial ordering of instruc-
tions, constraining the register allocator to the given order.

The VDG represents programs as value dependencies—there is an edge (p, n),
drawn as an arrow n → p, if node n requires the value of p to compute its own
value. This representation removes any specific ordering of instructions (nodes),
but does not elegantly handle loop and function termination dependencies.

The VSDG introduces state dependency edges to model sequentialised com-
puting. These edges also have the surprising benefit of generalising the VSDG:
by adding sufficient serializing edges we can select any one of a number of CFGs.
Our thesis is that relaxing the exact serialization of the CFG into the more gen-
eral VSDG supports a combined register allocation and code motion algorithm.

1.1 Paper Structure

This paper is structured as follows. Section 2 describes the forms of nodes and
edges in the VSDG, while Section 3 explores additional serialization and liveness
within the VSDG. In Section 4 we describe the general approach to joint register
allocation and code motion (RACM ) as applied to the VSDG, and show that
classical Chaitin/Chow-style register colouring specialises it. Section 5 introduces
our new greedy register allocation algorithm. Section 6 provides context for this
paper with a review of related work, with Section 7 concluding.

2 Formalism

The Value State Dependence Graph is a directed graph consisting of operation
nodes, loop and merge nodes together with value- and state-dependency edges.
Cycles are permitted but must satisfy various restrictions. A VSDG represents
a single procedure; this matches the classical CFG but differs from the VDG
in which loops were converted to tail-recursive procedures called at the logical
start of the loop. We justify this because of our interest in performing RACM
at the same time; inter-procedural motion and allocation issues are considered
a topic for future work.

An example VSDG is shown in Fig. 1. In (a) we have the original C source
for a recursive factorial function. The corresponding VSDG (b) shows both value
and state edges and a selection of nodes.

2.1 Definition of the VSDG

Definition 1. A VSDG is a labelled directed graph G = (N, EV , ES , �, N0, N∞)
consisting of nodes N (with unique entry node N0 and exit node N∞), value-
dependency edges EV ⊆ N × N , state-dependency edges ES ⊆ N × N . The
labelling function � associates each node with an operator (§2.2 for details).
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int fac( int n ) {
int result;

if ( n == 1 )
result = n;

else
result = n * fac( n - 1 );

return result;
}
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Fig. 1. A recursive factorial function, whose VSDG illustrates the key graph
components—value dependency edges (solid lines), state dependency edges (dashed
lines), a const node, a call node, two γ-nodes, a conditional node (==), and the func-
tion entry and exit nodes. The left-hand γ-node returns the original function argument
if the condition is true, or that of the expression otherwise. The right-hand γ-node be-
haves similarly for the state edges, returning either the state on entry to the function,
or that returned by the call node.

VSDGs have to satisfy two well-formedness conditions. Firstly � and the
(EV ) arity must be consistent, e.g. that a binary arithmetic operator must have
two inputs; secondly (at least for the purposes of this paper) that the VSDG
corresponds to a structured program, e.g. that there are no cycles in the VSDG
except those mediated by θ (loop) nodes (see §3.2).

Value dependency (EV ) indicates the flow of values between nodes, and must
be preserved during register allocation and code motion.

State dependency (ES), for this paper, represents two things; the first is
essential sequential dependency required by the original program, e.g. a given
load instruction may be required to follow a given store instruction without
being re-ordered, and a return node in general must wait for an earlier loop to
terminate even though there might be no value-dependency between the loop
and the return node. The second purpose, which in a sense is the centre of
this work, is that state-dependency edges can be added incrementally until the
VSDG corresponds to a unique CFG (§3.1). Such state dependency edges are
called serializing edges.

An edge (n1, n2) represents the flow of data or control from n1 to n2, i.e.
in the forwards data flow direction, so we will see n1 as a predecessor of n2.
Similarly we will regard n2 as a successor of n1. If we wish to be specific we
will write V -successors or S-successors for respectively EV and ES successors.
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Similarly, we will write succV (n), predS(n) and the like for appropriate sets
of successors or predecessors, and dom(n) and pdom(n) for sets of dominators
and post-dominators respectively. We will draw pictures in the VDG form, with
arrows following the backwards data flow direction, so that the edge (n1, n2) will
be represented as an arrow from n2 to n1.

The VSDG inherits from the VDG the property that a program is implicitly
represented in Static Single Assignment (SSA) form [8]: a given operator node,
n, will have zero or more EV -successors using its value. Note that, in implemen-
tation terms, a single register can hold the produced value for consumption at
all successors; it is therefore useful to talk about the idea of an output port for
n being allocated a specific register, r, to abbreviate the idea of r being used
for each edge (n1, n2) where n2 ∈ succ(n1). Similarly, we will talk about (say)
the “right-hand input port” of a subtraction instruction, or of the R-input of a
θ-node.

2.2 Node Labelling with Instructions

There are four main classes of VSDG nodes, based on those of the triVM In-
termediate Language [13]: value nodes (representing pure arithmetic), γ-nodes
(conditionals), θ-nodes (loops), and state nodes (side-effects).

2.2.1 Value Nodes. The majority of nodes in a VSDG generate a value based
on some computation (add, subtract, etc) applied to their dependent values
(constant nodes, which have no dependent nodes, are a special case).

2.2.2 γ-Nodes. Our γ-node is similar to the γ-node of Gated Single As-
signment form [2] in being dependent on a control predicate, rather than the
control-independent nature of SSA φ-functions.

Definition 2. A γ-node γ(C, T, F ) evaluates the condition dependency C, and
returns the value of T if C is true, otherwise F .

We generally treat γ-nodes as single-valued nodes (constrast θ-nodes, which are
treated as tuples), with the effect that two separate γ-nodes with the same
condition can be later combined (Section 4) into a tuple using a single test.
Fig. 2 illustrates two γ-nodes that can be combined in this way.

2.2.3 θ-Nodes. The θ-node models the iterative behaviour of loops, modelling
loop state with the notion of an internal value which may be updated on each
iteration of the loop. It has five specific ports which represent dependencies at
various stages of computation.

Definition 3. A θ-node θ(C, I, R, L, X) sets its internal value to initial value I
then, while condition value C holds true, sets L to the current internal value and
updates the internal value with the repeat value R. When C evaluates to false
computation ceases and the last internal value is returned through the X port.
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A loop which updates k variables will have: a single condition port C, initial-value
ports I1, . . . , Ik, loop iteration ports L1, . . . , Lk, loop return ports R1, . . . , Rk,
and loop exit ports X1, . . . , Xk. The example in Fig. 3 shows a pair (2-tuple) of
values being used for I, R, L, X, one for each loop-variant value.

For some purposes the L and X ports could be fused, as both represent out-
puts within, or exiting, a loop (the values are identical, while the C input merely
selects their routing). We avoid this for two reasons: (i) we have operational se-
mantics for VSDGs G and these semantics require separation of these concerns;
and (ii) our construction of Gnoloop (§3.2) requires it.

The θ-node directly implements pre-test loops (while, for); post-test loops
(do...while, repeat...until) are synthesised from a pre-test loop preceded
by a duplicate of the loop body. At first this may seem to cause unnecessary
duplication of code, but it has two important benefits: (i) it exposes the first
loop body iteration to optimization in post-test loops (cf. loop-peeling), and (ii)
it normalizes all loops to one loop structure, which both reduces the cost of
optimization, and increases the likelihood of two schematically-dissimilar loops
being isomorphic in the VSDG.

2.2.4 State Nodes. Loads, stores, and their volatile equivalents, compute
a value and/or state (non-volatile loads return a value from memory without
generating a new state). Accesses to volatile memory or hardware can change
state independently of compiler-aware reads or writes (cf. IO-state [7]).

The call node takes both the name of the function to call and a list of
arguments, and returns a list of results; it is treated as a state node as the
function body may read or update state.

We maintain the simplicity of the VSDG by imposing the restriction that
all functions have one return node (the exit node N∞), which returns at least
one result (which will be a state value in the case of void functions). To ensure
that function calls and definitions are colourable, we suppose that the number of
arguments to, and results from, a function is smaller than the number of physical
registers—further arguments can be passed via a stack as usual.

a) if (P)
x = 2, y = 3;

else
x = 4, y = 5;

b) if (P) x = 2; else x = 4;
...

if (P) y = 3; else y = 5;

2 4

γ

P

C

T F

x y

3 5

γC

T F

Fig. 2. Two different code schemes (a) & (b) map to the same γ-node structure.
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Fig. 3. A θ-node example showing a for loop. Evaluating the θ-node’s X port triggers
it to evaluate the I value (outputting the value on the L port). While C evaluates to
true, it evaluates the R value (which in this case also uses the θ-node’s L value). When
C is false, it returns the final internal value through the X port. As i is not used after
the θ-node loop then there is no dependency on the i port of X.

Note also that the VSDG neither forces loop invariant code into nor out-of
loop bodies, but rather allows later phases to determine, by adding serializing
edges, such placement of loop invariant nodes for later phases.

3 Applying the VSDG to RACM

3.1 Serialization

Weise et al. [21] observe that their mapping from CFGs to VDGs is many-
one; that paper also suggests that “Code motion optimizations are decided when
the demand dependence graph is constructed from the VDG”—i.e. that a VDG
should be mapped back into a CFG for further processing—but does not give
an algorithm or consider which of the many CFGs corresponding to a VSDG
should be selected.

We identify VSDGs with ‘enough’ serializing edges with CFGs—such VSDGs
can be simply transformed into CFGs if desired—the task of RACM then be-
ing to make the VSDG sufficiently sequential. The following informal definition
captures this idea for the purposes of this paper.

Definition 4. A sequential VSDG is one which has enough serializing edges to
make it correspond to a single CFG.

Here ‘enough’ means in essence that each node in the VSDG has a unique (EV ∪
ES) immediate dominator which can be seen as its predecessor in the CFG.
Exceptions arise for the start node (which has no predecessors in the VSDG or
corresponding CFG), γ-nodes and θ-nodes. Given a γ-node, we interpret those
nodes which the T port post-dominates as the condition-true sub-CFG and those
which the F port post-dominates as the condition-false sub-CFG; a control-
split node (corresponding to a CFG test node) is added to the VSDG as the
immediate ES-dominator of both sub-CFGs. For a θ-node, we recursively require
this sequential property for its body, L, and interpret the “unique immediate
dominator” property as a constraint on its I port.
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3.2 VSDG Well-Formedness

As in the VDG we restrict attention to reducible graphs for the VSDG; recall that
any CFG can be made reducible by duplicating code or by introducing additional
boolean variables. For this paper we further restrict to programs whose only loops
are while-loops and which exit them only by the condition becoming false, i.e.
no break and the like (again this could be achieved with code duplication or
with additional boolean variables).

In order to specify the “all cycles in a VSDG are mediated by θ-nodes”
restriction, it is convenient to define a transformation on VSDGs.

Definition 5. Given a VSDG, G, we define Gnoloop to be identical to G except
that each θ-node θi is replaced with two nodes, θhead

i and θtail
i ; edges to or from

ports I or L of the original θ-node are redirected to θhead
i whereas those to or

from ports R, X, C are redirected to θtail
i .

We then require Gnoloop to be an acyclic graph.
When adding serializing edges we must maintain this acyclic property. To

serialize nodes connected to a θ-node’s X port we add serializing edges to θtail ;
all nodes within the body of the loop are on the sequential path from θtail to
θhead ; all other nodes are serialized before θhead . Definition 6 below sets out the
conditions for a node to be within a loop.

Although this is merely a formal transformation, note that if we interpret
θtail as a γ-node (or possibly a tuple thereof) and interpret θhead as an identity
operation then Gnoloop represents a VSDG in which each loop is executed zero
or one times according to the condition. Our θhead and θtail nodes, while similar
to GSA’s µ- and ηF -functions [2], avoids the need for their “non-deterministic
merge gate” to break cyclic dependencies.

The formal definition of a VSDG being well-formed is then:

Definition 6. A VSDG, G, is well-formed if ( i) Gnoloop is acyclic and ( ii)
for each pair of (θhead , θtail) nodes in Gnoloop, θtail post-dominates all nodes in
succ+

V ∪S(θhead) ∩ pred+
V ∪S(θtail).

The second condition says that no value computed during a loop can be used
outside the loop, except via the X port of a θ-node.

3.3 VSDG Normalization

The RACM algorithms below will assume (for maximal optimization potential
rather than correctness) that the VSDG has been normalized, roughly in the
way of ‘hash-CONSing’: any two nodes which have identical input nodes, will
be assumed to have been replaced with a single node provided that this does not
violate well-formedness by creating a cycle in the VSDG. Consider

int f( int v[], int i ) {
int a = v[i+1];
v[7] = 0;
return v[i+1] + a;

}
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There will only be one node for the constant 1, and one for the addition of this
node to the second formal parameter (i+1) but two nodes for the loading from
v[i+1] because sharing this node would lead to a cycle in ES by being both a
predecessor and successor of the store to v[7].

Note that this is a safe form of CSE and loop invariant code lifting; this
optimization is selectively undone (node cloning) during the joint RACM phase
when required by register pressure.

3.4 Liveness in VSDGs

For the purposes of register allocation (cf. the register interference graph), we
need to know which (output ports of) VSDG nodes may hold values simultane-
ously so we can forbid them being allocated the same register.

We define a cut to be a partition N1 ∪ N2 of nodes in the VSDG with the
property that there is no EV ∪ ES edge from N2 to N1 (excepting edges from L
ports of θ-nodes—see the Gnoloop construction).

We now define nodes n and n′ to interfere if there is a cut N1 ∪ N2 with
n, n′ ∈ N1 and with both succ(n) and succ(n′) having non-empty intersections
with N2.

This generalises the normal concept register of interference in a CFG; there
a cut is just a program point and interference means “simultaneously live at any
program point”. Similarly “virtual register” corresponds to our “output port of
a node”. Note that we use the concept of “cut based on Depth From Root” in
Section 5 for our new greedy algorithm.

4 Register Allocation and Code Motion

The goal of register allocation in the VSDG is to allocate one physical register
(from a fairly small set) to each node’s output ports. θ-nodes are a special case,
as they require multiple registers on their tupled I, R, L and X ports.

Register requirements can be reduced by serializing computations (a register
can be reused in two independent computations if we know that they do not
interleave), or by reducing the range over which a value is live by duplicating
a computation or by spilling a value to memory. In both cases the idea is that
these operations reduce the register interference.

4.1 A Non-deterministic Approach

Given a VSDG we repeatedly apply the following non-deterministic algorithm
until all the nodes are coloured and the VSDG is sequential:

1. Colour a port with a physical register—provided no port it interferes with
is already coloured with the same register;

2. Add a serializing edge to force one node before another—this removes edges
from the interference graph by forbidding interleaving of computations;
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3. Clone a node, i.e. recalculate it to reduce register pressure.
4. Tunnel values through memory by introducing store/load spill nodes.
5. Merge two γ-nodes a and b into a tuple, provided their C ports reference the

same node and there is no path from a to b or from b to a.

The first action assigns a physical register to a port of the given node. The second
moves the node, with the effect of changing the register usage; the choice of which
node to move is determinined by specific algorithms (see §4.2 and Section 5).

Node cloning replaces a single instance of a node that has multiple uses,
with multiple copies (clones) of the node, each with a subset of the original
dependency edges. For example, a node n with two dependent nodes p and q,
can be cloned into n′ and n′′, with p dependent on n′ and q dependent on n′′.

Spilling follows the traditional Chaitin-style register spilling where we add
store and load nodes, together with some temporary storage in memory.

Finally, because the initial VSDG was normalized to ensure that each γ-node
represented the merge of a single variable, given a VSDG such as that in Fig. 2,
we can either arrange to serialize the two γ-nodes (action 2) resulting in two
separate tests (or conditional move instructions) or to merge them (action 5) so
that a single test is used (as in Fig. 2(a)).

The cost of spilling loop-variant variables is rather higher than the store-and-
reload for a normal spill. For θ-nodes where the tuple is wider than the available
target registers, we must spill one or more of the θ-node variables over the loop
test code, not merely within the loop itself. At most this requires two stores and
three loads for each variable spilled. Fig. 4 shows the location of the five spill
nodes (a), with table (b) describing the use of each of the spill nodes.

4.2 The Classical Algorithms

We can phrase the classical Chaitin/Chow-style register allocators as instances
of the above algorithm:

1. Perform all code motion transforms through adding serializing edges and
merging γ-nodes if not already sequentialised;

st

ld

ld
ld

st

θ
P

(Loop Body)

A

C

B

D

E

C

I
R

X L

Spill Node Needed if variable...

A Is initialised
B Is used in Loop Body
C Is defined in Loop Body
D Is used after the loop
E Is used in the condition

predicate P

(a) (b)

Fig. 4. Illustrating the locations of the five spill nodes associated with a θ-node.
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2. Map the VSDG onto a CFG by adding additional serializing edges;
3. If there are insufficient physical registers to colour a node port, then:

a) Chaitin-style allocation [5]: spill nodes, with the restriction that the tar-
get register of the reload is the same as the source register of the store.
Chaitin’s cost estimates can be applied to determine which edge to spill;

b) Chow-style allocation [6]: spill nodes, but without the register restriction
of Chaitin-style, thus splitting the live-range of the virtual register; use
Chow’s heuristics to decide which edge to split.

In both Chaitin and Chow instances post-code-motion transformations dur-
ing register allocation are limited to inserting store and load nodes into the
program.

5 A New Register Allocation Algorithm

The Chaitin/Chow algorithms do not make full use of the dependence informa-
tion within the VSDG; they assume that a previous phase has performed code
motion to produce a sequential VSDG—corresponding to a single CFG—on
which traditional register colouring algorithms are applied.

We now present the central point of this paper—a register allocation al-
gorithm specifically designed to maximise the usage of information within the
VSDG. The algorithm consists of two distinct phases:

1. Starting at the exit node N∞, walk up the graph edges calculating the max-
imal Depth From Root (DFR) of each node (see Definition 7); for each set of
nodes of equal depth calculate their liveness width (the number of distinct
values on which they depend, taking into account control flow).

2. Apply a forward “snow-plough”1-like graph reshaping algorithm, starting
from N∞ and pushing up towards N0, to ensure that the liveness width is
never more than the number of physical resisters. This is achieved by split-
ting, spilling or adding serializing edges in greedy way so that the previously
smoothed-out parts of the graph (nearer the exit) are not re-visited.

The result is a colourable VSDG; colouring it constitutes register assignment
completing the algorithm.

5.1 Partitioning the VSDG

The first phase annotates the VSDG with the maximal Depth From Root. The
second phase then processes each cut of the VSDG in turn.

Definition 7. The maximal Depth From Root, D(n), of a node n ∈ N is the
length of the longest path p ∈ (EV ∪ ES)∗ from the root to n. Loop bodies are
traversed once, such that a θ-node has two DFRs—one each for the θhead and
θtail nodes.
1 Imagine a snow plough pushing forward, scooping up excess snow, and depositing it

where there is little snow. The goal is to even out the peaks and troughs.
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Definition 8. A depth-first cut S=d is the set of nodes with the same DFR d:

S=d = {n ∈ N | D(n) = d}

It is convenient also to write

S≤d = {n ∈ N | D(n) ≤ d}
S>d = {n ∈ N | D(n) > d}

Note that the partition (S≤d, S>d) is a cut according to the definition of §3.4.
Computing the DFR of a given VSDG is equivalent to computing the depth-

first search of the graph—we simply start at the root node N∞ and recursively
walk along all dependency edges, setting each node to the larger of the node’s
current DFR and the new DFR, terminating either at the entry node N0 or nodes
with DFRs greater than the current DFR. It has a complexity of O(N+EV +ES).

5.2 Calculating Liveness Width

We wish to transform each cut so that the number of nodes having edges passing
through it is no greater than R, the number of registers available for colouring.

For a cut of depth d the set of such live nodes is given by

Win(d) = S>d ∩ predV (S≤d)

i.e. those nodes which are further than d from the exit node but whose values
may be used on the path to the exit node. Note that only EV and not ES edges
count towards liveness.

One might expect that |Win(d)| is the number of registers required to com-
pute the nodes in S≤d but this overstates the number of registers required for
conditional nodes. γ-nodes have the property that the edges of each of their
selection dependencies are disjoint—on any given execution trace, exactly one
path to the γ-node will be executed at a time, and so therefore we can reuse the
same registers to colour its True- and False-dominated nodes.

We identify the γ-node dependency register sets using the dominance prop-
erty thus:

Definition 9. A node n ∈ N is a predicated node iff it is post-dominated by
either the True or the False port of a γ-node, but not by both.

Note that replacing nodes in either of the True or False regions with no-ops each
gives a lower-bound to the liveness width of the cut2. Moreover, the greater of
the liveness widths for these modified VSDGs gives the corrected liveness width
for the original VSDG.

We prefer to formulate this in constraint form.
2 Such no-ops are nodes with no value dependencies on input or output, but with

state-dependences where previously there was either a value or state edge so that
the DFR is not affected.



12 N. Johnson and A. Mycroft

Definition 10. A VSDG is colourable with R registers if either:

1. Every cut of depth d has |Win(d)| ≤ R; or
2. Each VSDG resulting from replacing either True or False regions with no-ops

satisfies 1.

5.3 Pass through Edges

Some edges (i.e. of lifetime greater than one) pass through a cut. These pass-
through (PT ) edges may also interact with the cut. However, even the ordinary
PT edges require a register, and so must be accommodated in any colouring
scheme.

Definition 11. The lifetime L of an edge (n, n′) is the number of cuts over
which it spans:

L(n, n′) = D(n) − D(n′)

Definition 12. An edge (n, n′) ∈ EV is a Pass Through (PT) edge over cut S
of depth d when:

D(n) > d > D(n′)

A Used Pass Through (UPT) edge is a PT edge from a node which is also used
by one or more nodes in S, i.e. there is n′′ ∈ S with (n, n′′) ∈ EV .

In particular, PT (and to a lesser extent UPT) edges are ideal candidates for
spilling when transforming a cut. The next section discusses this further.

5.4 Register Allocation

In order to colour the graph successfully with R target machine registers no cut
of the graph must be wider (i.e. the number of live registers) than the number
of target registers available.

For every cut of depth d calculate Win(d). Then, while R > |Win(d)| we
apply three transformations to the VSDG in increasing order of cost: (i) node
raising (code motion), (ii) node cloning (undoing CSE), or (iii) node spilling,
where we first choose non-loop nodes followed by loop nodes.

The first—node raising—pushes a node up to the next cut by adding serializ-
ing edges from all other nodes in the cut. We repeat this until either the liveness
width is less than the number of physical registers, or there is only one node left
in the cut.

In node cloning, we take a node and generate copies (clones). Serializing
edges are added to maintain the DFR of the the clones. A simple algorithm for
this transformation is to produce as many clones as there are dependents of the
node; a node recombining pass will recombine clones that end up in the same
cut.

Node cloning is not always applicable as it may increase the liveness width
of higher cuts (when the in-registers of the cloned node did not previously pass
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through the cut); placing a cloned node in a lower cut can increase the liveness
width. But, used properly [18], node cloning can reduce the liveness width of
lower cuts by splitting the live range of a node, which potentially has a lower
cost than spilling.

Finally, when all other transformations are unable to satisfy the constraint,
we must spill one or more edges to memory. PT edges are ideal candidates for
spilling, as the lifetime of the edge affords good pipeline behaviour on superscalar
RISC-like targets; likewise, UPT edges are similarly beneficial, but place some
constraints on the location of the store node.

A related issue is the spilling of θ-nodes. As discussed previously the worst-
case cost of spilling a loop-variant variable from a θ-node tuple is two stores
and three loads, so these should always be done after spilling of PT nodes.
By contrast, Chaitin/Chow colouring has to use approximate cost heuristics to
decide to spill a variable in a loop or outside.

6 Related Work

6.1 Benefits over Other Program Graph Representations

The VSDG is based in part on the Value Dependence Graph (VDG) [21]. The
VDG uses a λ-node to represent both functions and loop bodies, thereby com-
bining loops and functions into one complex abstraction mechanism rather. In
the VSDG we treat them separately with call and θ-nodes. One particular
problem the VDG has is that of preserving the terminating properties of a
program—“Evaluation of the VDG may terminate even if the original program
would not...” [21].

Another significant issue with the VDG is the process of generating target
code from the VDG. The authors describe converting the VDG into a demand-
based Program Dependence Graph (dPDG)—a normal Program Dependence
Graph [9] with additional edges representing demand dependence—then convert-
ing that into a traditional control flow graph (CFG) [1] before finally generating
target code from the CFG with a standard back-end code generator; this is not
as flexible (or as clearly specified) as the VSDG presented in this paper.

Many other program graphs (with many and varied edge forms) have been
presented in the literature: the Program Dependence Graph [9], the Program
Dependence Web [2], the System Dependence Graph [11] and the Dependence
Flow Graph [15]. Our VSDG is both simpler—only two types of edge represent
all of the above flow information—and more normalizing (§3.3).

6.2 Solving Phase Order Problems

The traditional view of register allocation as a graph colouring problem was
proposed by Chaitin [5]. In §4.2 we generalise the both the Chaitin and Chow
approaches.

Goodwin and Wilken [10] formulate global register allocation (including all
possible spill placements) as a 0-1 integer programming problem. While they do
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achieve quite impressive results, the cost is very high: the complexity of their
algorithm is O(n3) and for a given time period the allocator does not guarantee
to allocate all functions.

Code motion as an optimization is not new (e.g. Partial Redundancy Elim-
ination [14]). Perhaps the work closest in spirit to ours is that of Rüthing et
al. [18] which presents algorithms for optimal placement of expressions and sub-
expressions, combining both raising and lowering of code within basic blocks.

Most work has concentrated on the instruction scheduling/register allocation
phase order problem, which we now consider.

The CRAIG framework [4], implemented within the ROCKET compiler [19],
takes a brute force approach:

1. attempt register allocation after instruction scheduling,
2. if the schedule cost is not acceptable (by some defined metric) attempt reg-

ister allocation before scheduling,
3. then while the cost is acceptable (i.e. there is some better schedule) add

back in information from the first pass until the schedule just becomes too
costly.

Their experience with an instance of CRAIG (CRAIG0) defines the metric as
the existence of spill code. Their experimental results show improvements in
execution time, but do not document the change in code size.

Rao [17] improves on CRAIG0 with additional heuristics to allow some
spilling, where it can be shown that spilling has a beneficial effect.

Touati’s thesis [20] argues that register allocation is the primary determinant
of performance, not scheduling. The goal of his thesis is again to minimize the
insertion of spill-code, both through careful analysis of register pressure, and
by adding serializing edges to each basic block data dependency DAG. It is
basic-block-based.

An early attempt at combining register allocation with instruction schedul-
ing was proposed by Pinter [16]. That work is based on an instruction level
register-based intermediate code, and is preceded by a phase to determine data
dependencies. This dependence information then drives the allocator, generating
a Parallelizable Interference Graph to suggest possible register allocations. Fur-
ther, the Global Scheduling Graph is then used to schedule instructions within a
region.

Another region-based approach is that of Janssen and Corporaal [12], where
regions correspond to the bodies of natural loops. They then use this hierarchy
of nested regions to focus register allocation, with the inner-most regions being
favoured by better register allocation (i.e. less spill code).

The Resource Spackling Framework of Berson et al. [3] applies a Measure
and Reduce paradigm to combine both phases—their approach first measures
the resource requirements of a program using a unified representation, and then
moves instructions out of excessive sets into resource holes. This approach is
basic-block-based: a local scheduler attempts to satisfy the target constraints
without increasing the execution time of a block; the more complicated global
scheduler moves instructions between blocks.
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7 Conclusions and Further Work

In this paper we have defined the VSDG, an enhanced form of the VDG which in-
cludes state dependency edges to model sequentialized computation. By adding
sufficient state-dependency edges we have shown that the VSDG is able to rep-
resent a single CFG; conversely fewer serializing edges relax the artificial con-
straints imposed by the CFG.

From this basis, we have shown that the VSDG framework supports a com-
bined approach to register allocation and code motion, using an incremental
algorithm which effectively interleaves the two phases, and thus avoiding the
well-known phase-ordering problem. We have described an algorithm which,
when given a well-formed, normalized VSDG then allocates registers, if nec-
essary interleaving this with code motion, node splitting and register spilling.

The work presented here is the start of a larger project: an implementation
of the algorithms in this paper is in progress.
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