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Abstract. We study an incorporation of generations into a modern ref-
erence counting collector. We start with the two on-the-fly collectors
suggested by Levanoni and Petrank: a reference counting collector and
a tracing (mark and sweep) collector. We then propose three designs
for combining them so that the reference counting collector collects the
young generation or the old generation or both. Our designs maintain the
good properties of the Levanoni-Petrank collector. In particular, it is ade-
quate for multithreaded environment and a multiprocessor platform, and
it has an efficient write barrier with no synchronization operations. To
the best of our knowledge, the use of generations with reference counting
has not been tried before.

We have implemented these algorithms with the Jikes JVM and com-
pared them against the concurrent reference counting collector supplied
with the Jikes package. As expected, the best combination is the one
that lets the tracing collector work on the young generation (where
most objects die) and the reference counting work on the old generation
(where many objects survive). Matching the expected survival rate with
the nature of the collector yields a large improvement in throughput
while maintaining the pause times around a couple of milliseconds.

Keywords: Runtime systems, Memory management, Garbage collec-
tion, Generational Garbage Collection.

1 Introduction

Automatic memory management is well acknowledged as an important tool for
fast development of large reliable software. It turns out that the garbage col-
lection process has an important impact on the overall runtime performance.
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Thus, clever design of efficient memory management and garbage collection is
an important goal in today’s technology.

1.1 Reference Counting

Reference counting is the most intuitive method for automatic storage manage-
ment known since the sixties (c.f. [8].) The main idea is that we keep for each
object a count of the number of references to the object. When this number be-
comes zero for an object o, we know that o can be reclaimed. Reference counting
seems very promising to future garbage collected systems, especially with the
spread of the 64 bit architectures and the increase in usage of very large heaps.
Tracing collectors must traverse all live objects, and thus, the bigger the usage
of the heap (i.e., the amount of live objects in the heap), the more work the
collector must perform. Reference counting is different. The amount of work is
proportional to the amount of work done by the user program between collec-
tions plus the amount of space that is actually reclaimed. But it does not depend
on the space consumed by live objects in the heap.

Historically, the study of concurrent reference counting for modern multi-
threaded environments and multiprocessor platforms has not been as extensive
and thorough as the study of concurrent and parallel tracing collectors. However,
recently, we have seen several studies and implementations of modern reference
counting algorithms on modern platforms building on and improving on previous
work. Levanoni and Petrank [17] following DeTreville [9] have presented an on-
the-fly reference counting algorithms that overcome the concurrency problems of
reference counting. Levanoni and Petrank have completely eliminated the need
for synchronization operations in the write barrier. In addition, the algorithm
of Levanoni and Petrank drastically reduces the number of counter updates (for
common benchmarks).

1.2 Generational Collection

Generational garbage collection was introduced by Lieberman and Hewitt [L§],
and the first published implementation was by Ungar [24]. Generational garbage
collectors rely on the assumption that many objects die young. The heap is parti-
tioned into two parts: the young generation and the old generation. New objects
are allocated in the young generation, which is collected frequently. Young ob-
jects that survive several collections are “promoted” to the older generation. If
the generational assumption (i.e., that most objects die young) is indeed correct,
we get several advantages. Pauses for the collection of the young generation are
short; collections are more efficient since they concentrate on the young part of
the heap where we expect to find a high percentage of garbage; and finally, the
working set size is smaller both for the program (because it repeatedly reuses
the young area) and for the collector (because most of the collections trace over
a smaller portion of the heap).

Since in this paper we discuss an on-the-fly collector, we do not expect to see
reduction of the pause time: they are extremely low already. Our goal is to keep
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the low pauses of the original algorithm. However, increased efficiency and better
locality may give us a better overall collection time and a better throughput.
This is indeed what we achieve.

1.3 This Work

In this work, we study how generational collection interacts with reference count-
ing. Furthermore, we employ a modern reference counting algorithm adequate
for running on a modern environment (i.e., multithreaded) and modern platform
(i.e., multiprocessor). We study three alternative uses of reference counting with
generations. In the first, both the young and the old generations are collected
using reference counting. In the second, the young generation is collected via
reference counting and the collector of the old generation is a mark-and-sweep
collector. The last alternative we explore is a use of reference counting to collect
the old generation and mark-and-sweep to collect the young generation. As build-
ing blocks, we use the Levanoni-Petrank sliding view collectors [I7]: the reference
counting collector and the mark-and-sweep collector. Our new generational col-
lectors are on-the-fly and employ a write barrier that uses no synchronization
operation (like the original collectors).

Note that one combination is expected to win the race. Normally, the per-
centage of objects that survive is small in the young generation and high in the
old generation. If we look at the complexity of the involved algorithms, reference
counting has complexity related to the number of dead objects. Thus, it matches
the death rate of the old generation. Tracing collectors do better when most ob-
jects die - thus, they match the death rate of the young generation. Indeed the
combination employing tracing for the young generation and reference counting
for the old yields the best results.

In addition to the new study of generations with reference counting, our work
is also interesting as yet another attempt to run generations with an on-the-fly
collector. The only other work that we are aware of that uses generations with
an on-the-fly collector is the work of Domani, Kolodner, and Petrank in which
generations are used with a mark and sweep collector [I5].

1.4 Generational Collection without Moving Objects

Usually, on-the-fly garbage collectors do not move objects; the cost of moving
objects while running concurrently with program threads is too high. Demers,
et al. [2] presented a generational collector that does not move objects. Their
motivation was to adapt generations for conservative garbage collection. Here

L A partial incorporation of generations with an mark and sweep collector, used only
for immutable objects was used by Doligez, Leroy and Gonthier [13]12]. The whole
scheme depends on the fact that many objects in ML are immutable. This is not true
for Java and other imperative languages. Furthermore, the collection of the young
generation is not concurrent. Each thread has its own private young generation (used
only for immutable objects), which is collected while that thread is stopped.
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we exploit their ideas: instead of partitioning the heap physically and keeping
the young objects in a separate area we partition the heap logically. For each
object, we keep one bit indicating if it is young or old.

1.5 Implementation and Results

We have implemented our algorithms on Jikes - a Research Java Virtual Machine
version 2.0.3 (upon Linux Red-Hat 7.2). The entire system, including the collec-
tor itself is written in Java (extended with unsafe primitives to access raw mem-
ory). We have taken measurements on a 4-way IBM Netfinity 8500R server with
a 550MHz Intel Pentium III Xeon processor and 2GB of physical memory. The
benchmarks used were the SPECjvm98 benchmark suite and the SPECjbb2000
benchmark. These benchmarks are described in detail in SPEC’s Web site[23]. In
Section [B] we report the measurements we ran with our collectors. We tested our
new collectors against the Jikes concurrent collector distributed with the Jikes
Research Java Virtual Machine package. This collector is a reference counting
concurrent collector developed at IBM and reported in [3]. Our most efficient
collector (the one that uses reference counting for the old generation) achieves
excellent performance measures. The throughput is improved by up to 40% for
the SPECjbb2000 benchmark. The pauses are also smaller. These results hold for
the default heap size of the benchmarks. Running the collectors on tight heaps
show that our generational collector is not suitable for very small heaps. In such
conditions, the original Jikes algorithm performs better. A possible explanation
to this phenomena is that reference counting is more efficient than the tracing
collection (of the young generation) when the collections are too frequent. In
this case, the tracing collector must trace the live (young) objects repeatedly,
whereas the reference counting only spends time proportional to the work done
in between the collections.

1.6 Cycle Collection

A major disadvantage of reference counting is that it does not collect cycles. If
the old generation is collected with a mark-and-sweep collector, there is no issue,
since the cycles will be collected then. When reference counting is used for the
old generation we also use the mark-and-sweep collector occasionally to collect
the full heap and reclaim garbage cyclesﬁ.

1.7 Organization

In Section[Z we review reference counting developments through recent years and
mention related work. In section ] we present the Levanoni-Petrank collectors
we build on. In section B we present the generational algorithms. In section in
section [@ we discuss our implementation and present our measurements. We
conclude in section

2 Another option was to use the cyclic structures collector of Bacon and Rajan [4] but

from their measurements it seems that tracing collectors should be more efficient.
Thus, we chose to use the readily available tracing collector.
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2 An Overview on Reference Counting Algorithms

The traditional method of reference counting, was first developed for Lisp by
Collins []]. The idea is to keep a reference count field for each object telling how
many references exist to the object. Whenever a pointer is updated the system
invokes a write barrier that keeps the reference counts updated. In particular, if
the pointer is modified from pointing to O; into pointing to Oy then the write
barrier decrements the count of O; and increments the count of Oy. When the
counter of an object is decreased to zero, it is reclaimed. The reference counts
of all its predecessors (its children values at the previous sliding-view) are then
decremented as well and the reclamation may continue recursively. Improvements
to the naive algorithm were suggested in several subsequent papers. Weizman [25]
studied ameliorating the delay introduced by recursive deletion. Several works
[2226] use a single bit for each reference counter with a mechanism to handle
overflows. The idea being that most objects are singly-referenced, except for the
duration of short transitions.

Deutsch and Bobrow [10] noted that most of the overhead on counter updates
originates from the frequent updates of local references (in stack and registers).
They suggested to use the write barrier only for pointers on the heap. Now, when
a reference count decreases to zero, the object can not be reclaimed since it may
still be reachable from local references. To collect objects, a collection is invoked.
During the collection one can reclaim all objects with zero heap reference count
that are not accessible from local references. Their method is called deferred
reference counting and it yields a great saving in the write barrier overhead. It
is used in most modern reference counting collectors. In particular, this method
was later adapted for Modula-2+ [9]. Further study on reducing work for local
variables can be found in [6] and [19].

Reference counting seemed to have an intrinsic problem with multithreading
implying that a semaphore must be used for each pointer update. The problems
were dealt with a series of paper [QI203/17]. The sliding views algorithm of Lev-
anoni and Petrank [I7] presented a reference counting collector that completely
eliminated the need for a synchronization operation in the write barrier. In this
work, we use the sliding views algorithms as the basic clock for the generational
algorithms. A detailed description of the Levanoni Petrank collectors follow.

3 The Levanoni-Petrank Collectors

In this section we provide a short overview of the Levanoni-Petrank collectors.
Due to space limitations we omit the pseudo code. More details appear in our
technical report [I]. The full algorithm is described in the original paper [17].

3.1 The Sliding-View Reference Counting Algorithm

The Levanoni-Petrank collectors [I7] are based on computing differences between
heap snapshots. The algorithms operate in cycles. A cycle begins with a collec-
tion and ends with another. Let us describe the collector actions during cycle
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k. Using a write barrier, the mutators records all heap objects whose pointer
slots are modified during cycle k. The recorded information is the address of
the modified object as well as the values of the object’s pointer slots before the
current modification. A dirty flag is used to let only one record be kept for any
modified slot. The analysis shows that (infrequent) races may cause more than
one record be created for an object, but all such records contain essentially the
same information. The records are written into a local buffer with no synchro-
nization. The dirty flag is actually implemented as a pointer, being either null
when the flag is clear, or a pointer o.LogPointer to the logging location in the
local buffer if the flag is set.

All created objects are marked dirty during creation. There is no need to
record their slots values as they are all null at creation time (and thus, also
during the previous collection). But objects that will be referenced by these
slots during the next collection must be noted and their reference counts must
be incremented.

A collection begins by taking a sliding-view of the heap. A sliding-view is
essentially a non-atomic snapshot of the heap. It is obtained incrementally, i.e.
the mutators are not stopped simultaneously. A snooping mechanism is used
to ensure that the sliding view of the heap does not confuse the collector into
reclaiming live objects: while the view is being read from the heap, the write-
barrier mark any object that is assigned a new reference in the heap. These
objects are marked as Snooped by ascribing them to the threads’ local buffer:
Snooped;, thus, preventing them from being collected in this collection cycle
mistakenly.

Getting further into the details, the Levanoni-Petrank collector employs four
handshakes during the collection cycle. The collection starts with the collector
raising the Snoop; flag of each thread, signaling to the mutators that it is about
to start computing a sliding-view. During the first handshake, mutator local
buffers are retrieved and then are cleared. The objects which are listed in the
buffers are exactly those objects that have been changed since the last cycle.
Next, the dirty flags of the objects listed in the buffers are cleared while the
mutators are running. This step may clear dirty marks that have been concur-
rently set by the running mutators. The logging in the threads’ local buffers
is being used in order to keep these dirty bits set in the second handshake.
The third handshake is carried out to assure the reinforcement is visible to all
mutators. During the fourth handshake threads local states are scanned and ob-
jects directly reachable from the roots are marked as Roots. After the fourth
handshake the collector proceeds to adjust rc fields due to differences between
the sliding views of the previous and current cycle. Each object which is logged
to one of the mutator’s local buffers was modified since the previous collection
cycle, thus we need to decrement the rc of its slots values in the previous sliding-
view and increment the rc of its slots values in the current sliding-view. The rc
decrement operation of each modified object is done using the objects’ replica
at the retrieved local buffers. Each object replica contains the object slots’ value
at the time the previous sliding-view was taken. The rc increment operation of
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each modified object is more complicated as the mutators can change the cur-
rent sliding-view values of the object’s slots while the collector tries to increment
their rc field. This race is solved by taking a replica of the object to be adjusted
and committing it. First, we check if the object’s dirty flag, o.LogPointer, is
set. If it is set it points already to a committed replica (taken by some mutator)
of the object’s slots at the time the current sliding-view was taken. Otherwise,
we take a temporary replica of the object and commit it by checking afterwards
that the object’s dirty flag is still not set. If it is committed the replica contains
the object’s slots value at the time the current sliding-view was taken and can be
used to increment the rc of the object’s slots value. Otherwise, if the dirty flag
is set, we use the replica pointed by the set dirty flag in order to adjust the rc
of the object’s slots. A collection cycle ends with reclamation which recursively
free any object with zero rc field which is not marked as local.

3.2 The Sliding-View Tracing Algorithm

“Snapshot at the beginning” [16] mark&sweep collectors exploit the fact that a
garbage object remains garbage until the collector recycles it. i.e., being garbage
is a stable property. The Levanoni-Petrank sliding-view tracing collector takes
the idea of “Snapshot at the beginning” one logical step further and show how
it is possible to trace and sweep given a “sliding view at the beginning”. The
collector computes a sliding-view exactly as in the previous reference counting
algorithm. After the Mark-Roots stage, the collector starts tracing according to
the sliding view associated with the cycle. When in needs to trace through an
object the collector tries to determine its value in the sliding view as was done
in the previous algorithm, i.e. by checking if the object’s LogPointer (the dirty
flag) is set. If it is set each object’s slot sliding-view value can be found directly
from the already committed (by some mutator) replica which is pointed to by
the object’s LogPointer. If it is not set, a temporary replica of the object is
taken and is committed by checking again if the object’s dirty flag is still not
set. If the replica is committed the collector continues by tracing through the
object’s replica. Finally, the collector proceeds to reclaim garbage objects by
sweeping the heap.

4 The Generational Collectors

In this section we describe the collectors we have designed. Due to lack of space,
we concentrate on the winning collector. The description of the other two col-
lectors appears in our technical report [I].

Our generational mechanism is simple. The young generation holds all objects
allocated since the previous collection and each object that survives a young
(or full) collection is immediately promoted to the old generation. This naive
promotion policy fits nicely into the algorithms we use. Recall that generations
are not segregated in the heap since we do not move objects in the heap. In
order to quickly determine if an object is young or old, we keep a bitmap (1 bit
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for each 8 bytes) telling which objects are old. All objects are created young and
promotion modifies this bit. By the experience of Domani et al [15] we believe
that spending more collection efforts on an aging mechanism does not pay. See
[15] for more the details of this experience.

4.1 Reference Counting for the Full Collection

Here, we describe the algorithm that worked best: using reference counting for
the full collections and tracing (mark-and-sweep) for the minor collections.
The minor (mark and sweep) collection. The mark and sweep minor col-
lection marks all reachable young objects at the current sliding view and then
sweeps all young unmarked objects. The young generation contains all the ob-
jects that were created since the previous collection cycle and were logged by
the i-th mutator to its local Young-Objects; buffer. These local buffers hold
addresses of all newly created objects since the recent collection and can be also
viewed as holding pointers to all objects in the young generation to be processed
by the next collection. These buffers are retrieved by the collector in the first
handshake of the collection and their union Young-Objects buffer of the collector
is the young generation to be processed(swept) in this minor collection cycle.
Recall that we are using the Levanoni-Petrank sliding view collectors as the
basis for this work. The sliding view algorithm uses a dirty flag for each object
to tell if it was modified since the previous collection. All modified objects are
kept in a Updates buffer (which is essentially the union of all mutator’s local
buffers) so that the rc fields of objects referenced by these objects’ slots can later
be updated by the collector. Since we are using the naive promotion policy, we
may use these buffers also as our remembered set: The young generation con-
tains only objects that have been created since the last collection, thus it follows
that inter-generational pointers may only be located in pointer slots that have
been modified since the last collection. Clearly, objects in the old generation that
point to young objects must have been modified since the last collection cycle,
since the young objects did not exist previous to this collection. Thus, the ad-
dresses of all the inter-generational pointers must appear in the Updates buffer
of the collector at this collection cycle. At first glance it may appear that this is
enough. However, the collection cycle is not atomic in the view of the program.
It runs concurrently with the run of the program. Thus, referring to the time
of the last collection cycle is not accurate. During the following discussion, we
assume that the reader is familiar with the Levanoni-Petrank [17] original col-
lectors. There are two cases in which inter-generational pointers are created but
do not appear in the Updates buffer read by the collector in the first handshake.

Case 1: Mutator M; creates a new object O after responding to the first hand-
shake. Later, Mutator M;, who has not yet seen the first handshake executes
an update operation assigning a pointer in the old generation to reference the
object O. In this case, an inter-generational pointer is created: the object O
was not reported to the collector in the first handshake and thus, will not be
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reclaimed or promoted in the current collection. It will be reported as a young
object to the collector only in the next collection. But the update is recorded
in the current collection (the update was executed before the first handshake in
the view of Mutator M;) and will not be seen in the next collection. Thus, an
inter-generational pointer will be missing from the view of the next collection.

Case 2: Some mutator updates a pointer slot in an object O to reference a
young object. The object O is currently dirty because of the previous collection
cycle, i.e., the first handshake has occurred, but the clear dirty flags operation
has not yet executed for that object. In this case, an inter-generational pointer
is created but it is not logged to the i-th mutator Updates local buffer. Indeed,
this pointer slot must appear in the Updates buffer of the previous collection
and correctness of the original algorithm is not foiled, yet in the next cycle the
Updates buffer might not contain this pointer, thus an inter-generational pointer
may be missing from the view of next collection.

In order to correctly identify inter-generational pointers that are created in
one of the above two manners, each minor collection records into a special buffer
called IGP-Buffer, all the addresses of objects that had to do with updates to a
young objects in the uncertainty period from before the first handshake has be-
gun until after the clear dirty flags operation is over for all the modified(logged)
objects. The next collection cycle will use that IGP-Buffer buffer that was ap-
pended in the previous collection cycle as its PrevlGP-Buffer buffer in order to
scan the potential inter-generational pointers that might have not appeared in
the Updates buffer. In this way, we are sure to have all inter-generational pointers
covered for each minor collection.

Finally, we note that the sweep phase processes only young objects. It scans
each object’s color in the Young-Buffer. Objects which are marked with white
color are reclaimed, otherwise, they are promoted by setting their old flag as
true.

The full (reference counting) collection. The Major-Young-Objects and
Major-Updates buffers are full collection buffers that correspond to the minor
collection’s Young-Objects and Updates buffers. These buffers are prepared by the
minor collections to serve the full collection. Only those objects which promoted
by the minor collections should be logged to the major buffers as these objects
will live till the next full collection. The minor collection avoids repetition in these
buffers using an additional bitmap called LoggedToMajorBuffers. Other than
the special care required with the buffers, the major collection cycle is similar
to the original reference counting collector besides. The rc field adjustments
are executed for each modified object, thus, logged to Major-Updates buffer
or Updates buffer. The rc of the object’s previous sliding-view slots values is
decremented and the object’s current sliding-view slots values rc is incremented.
As for young objects, the same procedure needs only to increment the rc fields of
the current sliding-view slots values for each young object, thus, logged to Major-
Young-Objects or Young-Objects. No decrement operation should be taken on the
rc field of Young-Objects objects slots because their object did not exist in the
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previous collection cycle and was created only afterwards and their value then
was null.

Using deferred reference counting ([17] following [10]), we employ a zero count
table denoted ZCT to hold each young object whose count decreases to zero
during the counter updates. All these candidates are checked after all the updates
are done. If their reference count is still zero and they are not referenced from
the roots, then they may be reclaimed. Note that all newly created (young)
objects must be checked since they are created with reference count zero. (They
are only referenced by local variables in the beginning.) Thus, all objects in the
Young-Objects as well as in the Major-New-Objects buffer are appended to the
ZCT that is reclaimed by the collector.

The inability of reference counters algorithms to reclaim cyclic structures
is being treated with an auxiliary mark-and-sweep algorithm used infrequently
during the full collection.

5 Implementation and Results

We have implemented our collectors into Jikes. We have decided to use the non-
copying allocator of Jikes, which is based on the allocator of Boehm Demers and
Shenker [7]. This allocator is suitable for collectors that do not move objects.
It keeps the fragmentation low and allows both efficient sporadic reclamation of
objects (as required by the reference counting) and efficient linear reclamation
of objects (as required by the sweep procedure). A full heap collection will be
triggered when the amount of available memory drops below a predefined thresh-
old. A minor heap collection will be triggered after every 200 new allocator-block
allocations. This kind of triggering strategy emulates allocations from a young
generation whose size is limited.

We have taken measurements on a 4-way IBM Netfinity 8500R server with
550MHz Intel Pentium III Xeon processors and 2GB of physical memory. We
also measured the run of our collector on a client machine: a single 550MHZ
Intel Pentium IIT processor and 2GB of physical memory. The benchmarks we
used were the SPECjvm98 benchmark suite and the SPECjbb2000 benchmark.
These benchmarks are described in detail in SPEC’s Web site[23].

The Jikes concurrent collector. Our collectors measurements are compared
with the concurrent reference counting collector supplied with the Jikes package
and reported in [3]. The Jikes concurrent collector is an advanced on-the-fly pure
reference-counting collector and it has similar characteristics as our collectors,
namely, the mutators are loosely synchronized with the collector, allowing very
low pause times.

Testing procedure. We used the benchmark suite using the test harness, per-
forming standard automated runs of all the benchmarks in the suite. Our stan-
dard automated run runs each benchmark five times for each of the JVM’s
involved (each implementing a different collector). To get an additional multi-
threaded benchmark, we have also modified the _227_mtrt benchmark from the
SPECjvm98 suite to run on a varying number of threads. We measured its run
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Max Pauses[ms] with SPECjvm98 and SPECjbb2000(1-3 threads)
Collector jess|javac|db |mtrt|jack|jbb-1{jbb-2|jbb-3
Generational: RC for full||2.6 |3.2 [1.3]1.8 |2.2 2.3 (3.5 [4.2
Jikes-Concurrent 2.712.8 |1.8]1.8 |1.6 [2.3 (3.1 [5.5

Fig. 1. Max pause time measurements for SPECjvm98 and SPECjbb2000 benchmarks
on a multiprocessor. SPECjbb2000 was measured with 1, 2, and 3 warehouses.

with 2, 4, 6, 8 and 10 threads. Finally, to understand better the behavior of these
collectors under tight and relaxed conditions, we tested them on varying heap
sizes. For the SPECjvm98 suite, we started with a 32MB heap size and extended
the sizes by 8MB increments until a final large size of 96MB. For SPECjbb2000
we used larger heaps, as reported in the graphs. In the results, we concentrate
on the best collector, i.e., the collector that uses reference-counting for the full
collection. In our technical report [1] we provide measurements for all collectors.
Also, in our technical report, we provide a systematic report on how we selected
our parameters, such as the triggering policy, the allocator parameters, the size
of the young generation, etc. We omit these reports from this short paper for
lack of space.

SPECjvm98 — Multiprocessor SPECjvm98 — Uniprocessor

——  _202_jess —— 202 jess
—%— _213_javac —— _209_db
—— 209 db 1.7H == ~222_mpegaudip 4
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Fig. 2. Running time ratios (Jikes-Concurrent/Generational) for the SPECjvm98 suite
with varying heap sizes. The graph on the left shows results on a multiprocessor and
the graph on the right reports results for a uniprocessor.

Server measurements. The SPECjvm98 benchmarks (and so also the
_227_mtrt modified benchmark) provide a measure of the elapsed running time
which we report. We report in figure 2] the running time ratio of our collector
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SPECjbb00 — Throughput Ratio
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Fig.3. The graph on the left shows SPEC_jbb2000 throughput ratios
(Generational/Jikes-Concurrent) on a multiprocessor and the graph on the right
reports running time ratio (Jikes-Concurrent/Generational) for the _227_mtrt
benchmarks on a multiprocessor.

and the Jikes concurrent collector. The higher the number, the better our col-
lector performs. In particular, a value above 1 means our collector outperforms
the Jikes concurrent collector.

We ran each of the SPECjvm98 benchmarks on a multiprocessor, allowing a
designated processor to run the collector thread. We report these results in figure
2 (graph on left). These results demonstrate performance when the system is not
busy and the collector may run concurrently on an idle processor. In practically
all measurements, our collector did better than the Jikes concurrent collector,
up to an improvement of 48% for _202_jess on small heaps. The behavior of
the collector on a busy system may be tested when the number of application
threads exceeds the number of (physical) processors. A special case is when the
JVM is run on a uniprocessor. In these cases, the efficiency of the collector is
important: the throughput may be harmed when the collector spends too much
CPU time. We have modified the _227_mtrt benchmark to work with varying
number of threads (4, 6, 8, 10 threads) and the resulting running time measures
are reported in the right graph of figure[Bl The measurements show an improved
performance for almost all parameters with typical to large heaps, with the
highest improvement being 30% for 227 mtrt with 6 threads and heap size
96MBytes. However, on small heaps the Jikes concurrent collector does better.

The results of SPECjbb2000 are measured a bit differently. The run of
SPECjbb2000 requires a multi-phased run with an increasing number of threads.
Each phase lasts for two minutes with a ramp-up period of half a minute before
each phase. Again, we report the throughput ratio improvement. Here the result
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Fig. 4. The results of the second generational algorithm which uses reference counting
for the minor generation. The graph on the left shows SPEC_jvm98 running time ra-
tios (Jikes-Concurrent/Generational) on a multiprocessor and the graph on the right
reports throughput ratio (Generational/Jikes-Concurrent) for SPEC_jbb2000 on a mul-
tiprocessor.

is throughput and not running-time. For clarity of representation, we report the
inverse ratio, so that higher ratios still show better performance of our collector,
and ratios larger than 1 imply our collector outperforming the Jikes concurrent
collector. The measurements are reported for a varying number of threads (and
varying heap sizes) in the left graph of Figure Bl When the system has no idle
processor for the collector (4,6, and 8 warehouses), our collector clearly outper-
forms the Jikes concurrent collector. The typical improvement is 25% and the
highest improvement is 45%. In the case in which 2 warehouses are run and the
collector is free to run on an idle processor, our collector performs better when
the heap is not tight, whereas on tighter heaps, the Jikes concurrent collector
wins.

The maximum pause times for the SPECjvm98 benchmarks and the
SPECjbb2000 benchmark are reported in figure I The SPECjvm98 bench-
marks were run with heap size 64MBytes and those of SPECjbb2000 (with 1,2,3
threads) with heap size 256MBytes. Note that if the number of threads exceed
the number of processors, then long pause times appear because threads lose
the CPU to other mutators or the collector. Hence the reported settings. It can
be seen that the maximum pause times (see figure [[)) are as low as those of the
Jikes concurrent collector and they are all below 5ms.

We go on with a couple of graphs presenting measurements of the second
best collector: the one that runs reference counting for the young generation and
mark and sweep for the full collection. In figure @ we report the running time and
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throughput ratio of this collector. As seen from these graphs this collector does
not perform significantly worse. In most measurements, it did better than the
Jikes concurrent collector, up to an improvement of 50% for _202_jess on small
heaps and 25% for the SPECjbb2000 benchmark with 8 number of threads. More
measurements appear in our technical report.

Client measurements. Finally, we have also measured our generational col-
lector on a uniprocessor to check how it handles a client environment with the
SPECjvm98 benchmark suite. We report the uniprocessor tests in figure
(graph on right). It turns out that the generational algorithm is better than
the Jikes concurrent collector in almost all tests. Note the large improvement of
around 60% for the _202_jess benchmark.

6 Conclusions

We have presented a design for integrating generations with an on-the-fly ref-
erence counting collector: using reference counting for the full collection and
mark and sweep for collecting the young generation. A tracing collector is infre-
quently used to collect cyclic garbage structures. We used the Levanoni-Petrank
sliding view collectors as the building blocks for this design. The collector was
implemented on Jikes and was run on a 4-way IBM Netfinity server.

Our measurements against the Jikes concurrent collector show a large im-
provement in throughput and the same low pause times. The collector presented
here is the best among the three possible incorporation of generations into ref-
erence counting collectors.
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