
The Interprocedural Express-Lane Transformation

David Melski1 and Thomas Reps2

1 GrammaTech, Inc., melski@grammatech.com
2 Comp. Sci. Dept., Univ. of Wisconsin, reps@cs.wisc.edu

Abstract. The express-lane transformation isolates and duplicates frequently ex-
ecuted program paths, aiming for better data-flow facts along the duplicated paths.
An express-lane p is a copy of a frequently executed program path such that p has
only one entry point at its beginning; p may have branches back to the original
code, but the original code never branches into p. Classical data-flow analysis is
likely to find sharper data-flow facts along an express-lane, because there are no
join points.
This paper describes several variants of interprocedural express-lane transforma-
tions; these duplicate hot interprocedural paths, i.e., paths that may cross procedure
boundaries. The paper also reports results from an experimental study of the effects
of the express-lane transformation on interprocedural range analysis.

1 Introduction

In path profiling, a program is instrumented with code that counts the number of times
particular finite-length path fragments of the program’s control-flow graph—or observ-
able paths—are executed. One application of path profiling is to transform the profiled
program by isolating and optimizing frequently executed, or hot, paths. We call this
transformation the express-lane transformation. An express-lane p is a copy of a hot
path such that p has only one entry point at its beginning; p may have branches back
to the original code, but the original code never branches into p. Classical data-flow
analysis is likely to find sharper data-flow facts along the express lanes, since there are
no join points. This may create opportunities for program optimization.

We use the interprocedural express-lane transformation together with range analysis
to perform program optimization. Our approach differs from the literature on profile-
driven optimization in one or more of the following aspects:

1. We duplicate interprocedural paths. This may expose correlations between branches
in different procedures, which can lead to more optimization opportunities [5].

2. We perform code transformation before performing data-flow analysis. This allows
us to use classic data-flow analyses.

3. We guide path duplication using interprocedural path profiles. This point may sound
redundant, but [7], for example, uses edge profiles to duplicate intraprocedural paths.
The advantage of using interprocedural path profiles is that we get more accuracy
in terms of which paths are important.

4. We perform interprocedural range analysis on the transformed graph.
5. We attempt to eliminate duplicated code when there was no benefit to range analysis.

This can help eliminate code growth.

G. Hedin (Ed.): CC 2003, LNCS 2622, pp. 200–216, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

The Interprocedural Express-Lane Transformation 201

This paper describes algorithms and presents experimental results for the approach to
profile-driven optimization described above. Specifically, our work makes the following
contributions:

1. [3] provides an elegant solution for duplicating intraprocedural paths based on an
intraprocedural path profile; this paper generalizes that work by providing algo-
rithms that take a program supergraph (an interprocedural control-flow graph) and
an interprocedural path profile and produce an express-lane supergraph.

2. We show that interprocedural express-lane transformations yield benefits for range
analysis: programs optimized using an interprocedural express-lane transformation
and range analysis resolve (a) 0–7% more dynamic branches than programs opti-
mized using the intraprocedural express-lane transformation and range analysis, and
(b) 1.5–19% more dynamic branches than programs optimized using range analysis
alone.

3. We show that by using range analysis instead of constant propagation, the intrapro-
cedural express-lane transformation can lead to greater benefit than previously re-
ported. We also show that code growth due to the intraprocedural express-lane
transformation is not always detrimental to program performance.

4. Our experiments show that optimization based on an interprocedural express-lane
transformation does benefit performance, though usually not enough to overcome
the costs of the transformation. These results suggest that software and/or hardware
support for entry and exit splitting may be a profitable research direction; entry and
exit splitting are described in Section 3.1.

The remainder of the paper is organized as follows: Section 2 describes the relevant
details of the interprocedural path-profiling techniques. Section 3 describes the interpro-
cedural express-lane transformations. Section 4 presents experimental results. Section 5
describes related work.

2 Path Profiling Overview

To understand the interprocedural express-lane transformation, it is helpful to understand
the interprocedural paths that are duplicated. This section summarizes the relevant parts
of [10] and [11]. In these works, the Ball-Larus technique [4] is extended in several
directions:

1. Interprocedural vs. Intraprocedural: [10] presents interprocedural path-profiling
techniques in which the observable paths can cross procedure boundaries. Interpro-
cedural paths tend to be longer and to capture correlations between the execution
behavior of different procedures.

2. Context vs. Piecewise: In piecewise path profiling, each observable path corre-
sponds to a path that may occur as a subpath (or piece) of an execution sequence.
In context path profiling, each observable path corresponds to a pair 〈C, p〉, with an
active-suffix p that corresponds to a subpath of an execution sequence, and a context-
prefix C that corresponds to a context (e.g., a sequence of pending calls) in which p
may occur. A context path-profiling technique generally has longer observable paths
and maintains finer distinctions than a piecewise technique.

202 D. Melski and T. Reps

In this paper, we use three kinds of path profiles: Ball-Larus path profiles (i.e., intraproce-
dural piecewise path profiles) and the interprocedural piecewise and context path profiles
of [10,11]. (Our techniques could be applied to other types of path profiles.)

Interprocedural path profiling works with an interprocedural control-flow graph
called a supergraph. A program’s supergraph G∗ consists of a unique entry vertex
Entryglobal , a unique exit vertex Exitglobal , and a collection of control-flow graphs.

Fig. 1. Example of an interpro-
cedural context path. The active-
suffix is shown in bold and sur-
rogate edges are shown using
dashed-lines.

The flowgraph for procedure P has a unique entry
vertex, EntryP , and a unique exit vertex, ExitP . The
other vertices of the flowgraph represent statements and
predicates in the usual way, except that each procedure
call in the program is represented a call vertex and a
return-site vertex. For each procedure call to procedure
P (represented, say, by call vertex c and return-site ver-
tex r), G∗ contains a call-edge, c → EntryP , and a
return-edge, ExitP → r. The supergraph also contains
the edges Entryglobal → Entrymain and Exitmain →
Exitglobal .

As in the Ball-Larus technique, the observable paths
in the interprocedural path-profiling techniques are not
allowed to contain backedges. Furthermore, an observ-
able path cannot contain a call-edge or return-edge from
a recursive call-site. (Recursive call-sites are those that
are the source of a backedge in the call graph.)

An observable path in an interprocedural context path
profile may contain surrogate edges; surrogate edges are
required because observable paths are not allowed to con-
tain backedges. Unlike other edges in an observable path,
a surrogate edge is not an edge in the supergraph. A sur-
rogate edge EntryP− → v in an observable path p rep-
resents an unknown path fragment q that starts at the
entry vertex EntryP of a procedure P and ends with a
backedge to vertex v in procedure P . An observable path
from an interprocedural path profiling technique may
also contain summary edges. A summary edge connects
a call vertex with its return-site vertex.

In the context path-profiling technique, a context-
prefix is a sequence of path fragments in the supergraph,
each fragment connected to the next by a surrogate edge. The context-prefix summarizes
both the sequence of pending call-sites and some information about the path taken to each
pending call-site. Fig. 1 shows a schematic of an observable path from an interprocedural
context path profile.

Fig. 2 shows the average number of SUIF1 instructions in an observable path for
several SPEC95 benchmarks. (For technical reasons discussed in [11], there are some
situations where an interprocedural piecewise path is considered to have a context-prefix,
cf. m88ksim, li, perl, and vortex.)

The Interprocedural Express-Lane Transformation 203

Fig. 2. Graph of the average number of SUIF instructions in an observable path for interprocedural
context, interprocedural piecewise, and intraprocedural piecewise path profiles of SPEC95 bench-
marks when run on their reference inputs. Each observable path was weighted by its execution
frequency.

3 The Interprocedural Express-Lane Transformation

The intraprocedural express-lane transformation takes a control-flow graph and an in-
traprocedural, piecewise path profile and creates an express-lane graph [3]. In this sec-
tion, we describe how to extend this algorithm to take as input the program supergraph
and an interprocedural path profile, and produce as output an express-lane supergraph.

There are several issues that must be addressed.The definition of an express-lane must
be extended. In a context path profile, a path may consist of a non-empty context-prefix
as well as an active-suffix. Also, an observable path may contain “gaps” represented by
surrogate edges.An express-lane version of an observable path may have a context-prefix
and an active-suffix, and may have gaps just as the observable path does.

There are also technical issues that must be resolved. The interprocedural express-
lane transformation requires a mechanism for duplicating call-edges and return-edges.
We will use a straightforward approach that duplicates a call edge c → EntryP by
creating copies of c and EntryP and duplicates a return edge ExitP → r by creating
copies of ExitP and r.

Many modifications of the intraprocedural algorithm are required to obtain an al-
gorithm for performing the interprocedural express-lane transformation. The Ammons-
Larus express-lane transformation uses a hot-path automaton — a deterministic finite
automaton (DFA) for recognizing hot-paths — and takes the cross product of this au-
tomaton with the control-flow graph (CFG), which can be seen as another DFA.

204 D. Melski and T. Reps

To create an automaton that recognizes a set of interprocedural hot-paths, we require
a pushdown automaton (PDA). The supergraph can be seen as a second PDA. Thus, if
we mimic the approach in [3], we would need to combine two pushdown automata, a
problem that is uncomputable, in general. Instead, we create a collection of deterministic
finite automata, one for each procedure; the automaton for procedure P recognizes hot-
paths that start in P .

3.1 Entry and Exit Splitting

The algorithm for performing the interprocedural express-lane transformation uses entry
splitting to duplicate call-edges and exit splitting to duplicate return-edges [5,6]. Entry
splitting allows a procedure P to have more than one entry. Exit splitting allows a
procedure P to have multiple exits, each of which is assigned a number. Normally,
when a procedure call is made, the caller provides a return address. In the case where a
procedure has multiple exits, the caller provides a vector of return addresses. When the
callee reaches the ith exit vertex, it branches to the ith return address. Our implementation
uses a semantically equivalent but inferior method of entry (and exit) splitting: each call
vertex sets an entry number before making a normal procedure call; the called procedure
(calling procedure) then executes a switch on the entry (exit) number to jump to the proper
entry (return) point.

3.2 Defining the Interprocedural Express-Lane

Entrymain

a

b c

d

e

Exitmain

Entryfoo

F

G H

I

J

Exitfoo

main foo

Fig. 3. Example supergraph.

In this section, we give a definition of an in-
terprocedural express-lane. First we consider
a simple example to develop intuition about
what should happen when we duplicate an ob-
servable path from an interprocedural context
path profile.
Example 1. Consider the supergraph shown
in Fig. 3. Suppose we wish to create an
express-lane version of the observable path
p = [Entrymain → a → b → d →
Entry foo − → F → H → I] The context-
prefix [Entrymain → a → b → d →
Entry foo] indicates a path taken in main to the
call-site on foo. The active-suffix of p is [F →
H → I]. The principal difficulty in duplicat-
ing p has to do with the edgeEntry foo− → F :
this surrogate-edge appears in the middle of
the observable path, but does not appear in
the supergraph. What does it mean to dupli-
cate this edge?

Peeking ahead, Fig. 9 shows an express-lane graph with an express-lane version
of p. When we create an express-lane version of p, we create copies of the path’s
context-prefix and its active-suffix. The copy of the context-prefix ends at a copy

The Interprocedural Express-Lane Transformation 205

[Entry foo , 4] of vertex Entry foo . The copy of the active-suffix begins at a copy [F, 8]
of vertex F . We desire that any time execution reaches [F, 8], it came along a path from
[Entry foo , 4]: we want to make sure that the duplicated active-suffix executes in the
context of the duplicated context-prefix.�

We can now give a technical definition of an interprocedural express-lane: let G∗ be
a supergraph and let p be an observable path. Let H∗ be a supergraph where every vertex
of H∗ is a copy of a vertex in G∗. Then an express-lane version of p is a sequence of
vertices [a1, a2, . . . , an] in H∗ such that the following properties are satisfied:

Duplication property: ai is a copy of the ith vertex in p.
Minimal predecessor property: A vertex ai may have multiple predecessors if ai ≡

a1, or the (i − 1)th edge of p is a surrogate edge, or ai is a copy of a return-site
vertex; otherwise ai has exactly one predecessor, which is ai−1. If ai is a copy of
return-site vertex r then let c be the call vertex associated with r:

– If there is a copy of c in [a1 . . . ai−1], then ai is associated with one call vertex,
the last copy of c in [a1 . . . ai−1]; otherwise, ai may be associated with many
call vertices.

– If ai−1 is a copy of an exit vertex, then ai is targeted by exactly one return-edge,
ai−1 → ai. If ai is a1 or ai−1 is a copy of a call vertex, then ai may be targeted
by multiple return-edges.

Context property: For a vertex ai in procedure P , if there is a copy of EntryP in
[a1 . . . ai], then ai can reached by an intraprocedural path from the last copy of
EntryP in [a1 . . . ai] and not from any other copy of EntryP .

These properties sometimes allow a vertex on an express-lane to have multiple predeces-
sors (i.e., there may be branches into the middle of an express-lane). This is necessary
because: (1) a surrogate edge u → v does not specify a direct predecessor vertex of v in
the supergraph; (2) a return-site vertex always has both an intraprocedural predecessor
(the call site vertex) and an interprocedural predecessor.

3.3 Performing the Interprocedural Express-Lane Transformation

We now present two algorithms for performing the interprocedural express-lane trans-
formation, one for interprocedural piecewise path profiles, and one for interprocedural
context path profiles.

Our approach to constructing the express-lane supergraph consists of three phases:

1. Construct a family A of automata with one automaton Ap for each procedure P .
The automaton AP is specified as a DFA that recognizes (prefixes of) hot-paths that
begin in P .

2. Use the Interprocedural Hot-path Tracing Algorithm (see below) to combine A with
the supergraph G∗ to generate an initial express-lane supergraph.

3. Make a pass over the generated express-lane supergraph to add return-edges and
summary-edges where appropriate. This stage finishes connecting the intraproce-
dural paths created in the previous step.

206 D. Melski and T. Reps

The two algorithms for performing the interprocedural express-lane transformation differ
slightly in the first step.

The Hot-path TracingAlgorithm treats the automata in A as DFAs, though technically
they are not: an interprocedural hot path p may contain “gaps” that are represented by
surrogate- or summary-edges. These gaps may be filled by same-level valid paths, or
SLVPs; an SLVP is a path in which every return-edge can be matched with a previous
call-edge, and vice versa.An automaton that recognizes the hot-path p requires the ability
to skip over SLVPs in the input string, which requires a PDA. However, we can treat the
hot-path automata as DFAs for the following reasons:

1. The automata in A have transitions that are labeled with summary-edges.A transition
(qi, c → r, qj) that is labeled with a summary-edge c → r is considered to be an
“oracle” transition that is capable of skipping over an SLVP in the input string. The
oracle required to skip an SLVP is the supergraph-as-PDA.

2. When we combine a hot-path automaton with the supergraph, an oracle transition
(qi, c → r, qj) will be combined with the summary-edge c → r of the supergraph
to create the vertices [c, qi] and [r, qj] and the summary-edge [c, qi] → [r, qj] in the
express-lane supergraph. The justification for this is that the set of SLVPs that an
oracle transition (qi, c → r, qj) should skip over is precisely the set of SLVPs that
drive the supergraph-as-PDA from c to r.

Throughout the following sections, our examples use the program shown in Fig. 3.

The Hot-Path Automata for Interprocedural Piecewise Paths In this section, we
show how to construct the set A of hot-path automata for recognizing hot interprocedural
piecewise paths. We expand our definition of A to allow each automaton AP ∈ A to
transition to other automata in A; thus, it is more accurate to describe A as one large
automaton with several sub-automata.

As in [3], we build a hot-path automaton for recognizing a set of hot paths by building
a trie A of the paths and defining a failure function that maps a vertex of the trie and a
supergraph edge to another vertex of the trie [2]. We then consider A to be a DFA whose
transition function is given by the edges of the trie and the failure function.

For each procedure P , we create a trie of the hot paths that start in P . Hot paths
that can only be reached by following a backedge u → v are prefixed with the special
symbol •v before they are put in the trie. A transition that is labeled by •v can match
any backedge that targets v. Fig. 4 shows the path tries for the supergraph in Fig. 3 and
the following paths:

Entrymain → a → b → d → Entry foo → F → G → I
•F F → H → I
•F F → G → I → J → Exit foo → e → Exitmain

Every hot-path prefix corresponds to a unique state in a path trie. If a hot-path prefix
ends at a vertex v and drives an automaton to state q, we say that q represents v; the root
of the path trie for procedure P is said to represent EntryP . The fact that q represents
vertex v is important, since for a vertex [v, q] in the express-lane supergraph, either [v, q]
is not on an express-lane and q represents an entry vertex, or q represents v.

The Interprocedural Express-Lane Transformation 207

As in [3], we define a failure function h(q , u + u) for a state q of any trie and an
intraprocedural or summary-edge u + u; the failure function is not defined for interpro-
cedural edges. If q represents a vertex w of procedure P and u + u is not a backedge,
then h(q , u + u) = root-triep, where root-triep is the root of the trie for hot paths
beginning in P. If u + u is a backedge, then h (q , u + u) = q.*, where q.* is the target
stateinthetransition (root-triep, r , , q.*); ifthereisnotransition (root-triep, r , , q.*),
then q.* = root-triep.

Fig.4. Path trie for an interprocedural piece-
wise path profile of the supergraph in Fig. 3.
For i t [4..15] and a backedge e in foo,
h(qi, e) = qs; For i t [4..15] and a non-
backedge e in foo, h(qi, e) = q8. For i t
([0..3] U [16..17]) and an edge e in main,
h(qi, e) = qo.

The later phases of the express-lane transformation make use of two functions, Las-
tActiveCaller and LastEntry, which map trie states to trie states. For a state q that rep-
resents a vertex in procedure P, LastActiveCaller(q) maps to the most recent ancestor
of q that represents a call vertex that makes a non-recursive call to P. LastEntry(q)

Fig. 5. Path trie for an interprocedural context
path profile of the supergraph in Fig. 3. For
i t ([0..3] U [15..16]) andanedge e in main,
h(qi, e) = qo. For i t [4..14] and a backedge
e in foo, h(qi, e) = q4; for i t [4..14] and a
non-backedge e in foo, h(qi,e) = q8. For qIr
andany edge e in foo, h(ql,, e) = ql,.

208 D. Melski and T. Reps

maps to the most recent ancestor of q that represents EntryP . LastActiveCaller(q) and
LastEntry(q) are undefined for q if there is no appropriate ancestor of q in the trie.

The Hot-Path Automata for Interprocedural Context Paths The principal difference
with the previous section is in how the failure function is defined. As above, a path trie
is created for each procedure. Before a path is put into a trie, each surrogate edge u → v
is replaced by an edge labeled with •v . As before, •v matches any backedge that targets
v. Fig. 5 shows the path tries for the supergraph in Fig. 3 and the paths:

Entrymain → a → b → d → Entry foo → F → G → I
Entrymain → a → b → d → Entry foo •F F → H → I
Entrymain → a → b → d → Entry foo •F F → G → I → J → Exit foo → e

→ Exitmain

A state q that represents an entry vertex EntryP corresponds to a hot-path prefix
p that describes a calling context for procedure P . For this reason, states in the trie
that represent entry vertices take on special importance in this section. Also, the map
LastEntry will be important.

The maps LastActiveCaller and LastEntry are defined as in the last section. The
failure function is defined as follows: if u → v is not a backedge, then h(q, u → v) =
LastEntry(q). If u → v is a backedge, then h(q, u → v) = q′, where q′ is the state
reached by following the transition labeled •v from LastEntry(q); if there is no such
state, then q′ = LastEntry(q).

We now give some intuition for how the Hot-path Tracing Algorithm interacts with
an automaton for interprocedural context paths. For any context-prefix p that leads to a
procedure P , the Interprocedural Hot-path Tracing Algorithm may have to clone parts of
P . This is required to make sure that the Context Property is guaranteed for express-lanes
that begin with p (see Example 1). To accomplish this, the Hot-path Tracing Algorithm
may generate many vertices [x, q], where q is the automaton state in hot-path automaton
A that corresponds to the context-prefix p: when the hot-path automaton A is in the state
q and is scanning a path [u → v → w . . .] in procedure P that is cold in the context
described by p, the automaton will stay in state q. Thus, the Interprocedural Hot-path
Tracing Algorithm generates the path [[u, q] → [v, q] → [w, q] . . .]. Only when the
tracing algorithm begins tracing a path that is hot in the context of p does the hot-path
automaton move out of state q.

Phase 2: Hot-Path Tracing of Intraprocedural Path Pieces This section describes
the hot-path tracing algorithm that combines the family A of hot-path automata with the
supergraph. A state q is a reset state if h(q, u → v) = q for some non-backedge u → v.
Reset states are important for several reasons: (1) a context-prefix p always drives a hot-
path automaton to a reset-state; (2) for every vertex [v, q] in the express-lane supergraph
that is not part of an express-lane (i.e., [v, q] is part of residual, cold code), q is a reset
state; and (3) for a reset state q and an express-lane supergraph vertex [v, q], either v is an
entry vertex represented by q, or [v, q] is a cold vertex. We use these facts to determine
whether an express-lane supergraph vertex [v, q] is part of an express-lane.

The Interprocedural Express-Lane Transformation 209

�� is the input supergraph.
� is a family of hot-path automata, with one automaton for each procedure in ��

�� � � denotes the automaton for procedure �
�� denotes the transition relation of ��

� is the disjoint union of all ��
���� �������� is the start state of �����

� is a worklist of express-lane supergraph vertices
�� � ����� is the express-lane supergraph

������
/* First, create all the vertices that might begin a hot-path */

1: � � ������ �

������ �����
�

�������
2: Foreach procedure �
3: 	��
���������������� � ���� ����� �� /* See Figure 8 */
4: If there is a transition ����� ����� � ��� 	�� where
 is a return-site vertex

/* For hot-paths that begin at return-sites, start the express-lane. */
5: 	��
����������
� 	���
6: � � ������ �

������ � ���������� � ���� �������� ��

8: ������ �� 	
9: ��� 	� � �

��� � /* select and remove an element from W */
10: If � is a call vertex
11: �������	
�������� ���� 	��
12: Else If � is an exit vertex
13: ForeachEdge � �
 in ��

14: /* � �
 is a return-edge */
15: If there is a transition �	� � �
� 	�� � � .
16: 	��
����������
� 	��� /* See Figure 8 */
17: Else
18: ForeachEdge � � �� in ��

19: Let 	� be the unique state such that �	� � � ��� 	�� � � .
20: 	��
������������� 	���
21: � � �
 ���� 	� � ���� 	���
22: Foreach vertex ��������� � 	� � �
23: � � �
 ���������� � 	� � ���� ��������

End Main

Fig. 6. Interprocedural Hot-Path Tracing Algorithm.

Fig. 6 and 7 show the Interprocedural Hot-path Tracing Algorithm. The bulk of the
work of the Interprocedural Hot-Path TracingAlgorithm is done by lines 19–21 of Fig. 6:
these process each express-lane supergraph vertex [v, q] that is not a call or exit vertex.
This part of the algorithm is very similar to [3]: given an express-lane supergraph vertex
[v, q], a supergraph edge v → v′ (which represents the transition (v, v → v′, v′) in the
supergraph-as-PDA), and a transition (q, v → v′, q′), lines 19–21 “trace out” a new edge
[v, q] → [v′, q′] in the express-lane supergraph. If necessary, a new vertex [v′, q′] is added
to the express-lane supergraph and the worklist W .

The Interprocedural Hot-Path Tracing Algorithm differs from its intraprocedural
counterpart in the processing of call and exit vertices. Fig. 7 shows the function
ProcessCallVertex that is used to process a call-vertex [c, q]. ProcessCallVertex has
two responsibilities: (1) it creates call-edges from [c, q]; and (2) it must creates return-site
vertices [r, q′] that could be connected to [c, q] by a summary-edge in Phase 3 of the con-

210 D. Melski and T. Reps

���������������� ���
24: If ��� �� �� �

25: � � � � ���� ���
26: ������ ��� ���

End CreateVertex

���	�

�������������� ��� /* c is a call vertex */
27: Let � be the return-site vertex associated with c

/* Create call edges to all appropriate entry vertices */
28: ForeachEdge �� ������

/* v may have many callees if it is an indirect call-site */
29: If ��� �� �����

�
� ��� � �

/* There is a hot path continuing from � along the edge �� ������ */
30: ���	��
������������

�
� ����

31: � � � � ���� �� � ������� � �
���

32: Label ��� �� � ������
�
� ��� with “������”

33: Else
/* Hook up ��� �� to a cold copy of �����

�
*/

34: ���	��
������������
�
� ���� ��
�� ��

35: � � � � ���� �� � ������� � ���� ��
�� ��
36: Label the call-edge ��� �� � ������� � ���� ��
�� � with “������”

/* Create every return-site vertex [r,q’] that could be needed in phase 3 */
37: Let �� be the unique state such that ��� � � �� ��� � �

38: ���	��
��������� ����
End ProcessCallVertex

Fig. 7. The procedures CreateVertex and ProcessCallVertex used in Fig. 6.

struction. If Phase 3 does not create the summary-edge [c, q], then [r, q′] is unnecessary
and will be removed from the graph in Phase 3.

Phase 3: Connecting Intraprocedural Path Pieces The third phase of the interproce-
dural express-lane transformation is responsible for completing the express-lane super-
graph H∗. It must add the appropriate summary-edges and return-edges. Formally, this
phase of the interprocedural express-lane transformation ensures the following:

For each call vertex [c, q]
For each call-edge [c, q] → [EntryP , q′]

For each exit vertex [ExitP , q′′] reachable from [EntryP , q′] by an SLVP
There must be a return-site vertex [r, q′′′] such that

1. There is a summary-edge [c, q] → [r, q′′′]
2. There is a return-edge [ExitP , q′′] → [r, q′′′]

The algorithm for Phase 3 is given in [11], Section 7.3.4.

4 Experimental Results

This section is broken into two parts. Section 4.1 discusses the effects of the various
express-lane transformations on interprocedural range analysis. Section 4.2 presents
experimental results on using the express-lane transformation and range analysis to
perform program optimization.

The Interprocedural Express-Lane Transformation 211

[Entrymain,0]

[a,1]

[b,2] [c,0]

[d,3]

[e,16]

[Exitmain,17]

[Entryfoo,4]

[F,5]

[G,6] [H,8]

[I,7]

[J,8]

[Exitfoo,8]

[Entryfoo,8]

[F,8]

[G,8]

[d,0]

[e,0]

[Exitmain,0]

[I,8]

[F,9]

[G,12] [H,10]

[I,11][I,13]

[J,14]

[Exitfoo,15]

main
foo

Fig. 8. Express-lane supergraph for the supergraph in Fig. 3 and the hot-path automaton in Fig. 4.
Most of the graph is constructed during Phase 2 of the construction. The edges [d, 3] → [e, 16],
[d, 3] → [e, 16], [d, 3] → [e, 0], [d, 0] → [e, 0], and [Exit foo , 8] → [e, 0] are added during Phase 3.
Each shaded vertex [v, q] has a state q that is a reset state; except for [Entrymain , 0] and
[Entry foo , 4], these are cold vertices.

4.1 Effects of the Express-Lane Transformation on Range Analysis.

We have written a tool in SUIF 1.3.0.5 called the Interprocedural Path Weasel (IPW) that
performs the interprocedural express-lane transformation.1 The program takes as input
a set of C source files for a program P and a path profile pp for P . IPW first identifies
the smallest subset pp′ of pp that covers 99% of the SUIF instructions executed.2 Next,
IPW performs the appropriate express-lane transformation on P , creating an express-
lane version of each path in pp′. Finally, IPW performs interprocedural range analysis
on the express-lane (super)graph.

The experiments with IPW were run on a 550 MhZ Pentium III with 256M RAM
running Solaris 2.7. IPW was compiled with GCC 2.95.3 -O3. Each test was run 3
times, and the run times averaged. Cols. 3–5 of Table 1 compare the code growth and
the increase in range-analysis time for the different express-lane transformations.

To evaluate the results of range analysis on a program P , we weighted each data-
flow fact in vertex v by the execution frequency of v. Columns 6–8 of Table 1 compare

1 The tool is named after, and based on, Glenn Ammons’s tool Path Weasel, which performs the
intraprocedural express-lane transformation [3].

2 The value 99% was arrived at experimentally; duplicating more paths does not cause a greater
benefit for range analysis, but it does cause a significant increase in code growth [11].

212 D. Melski and T. Reps

[Entrymain,0]

[a,1]

[b,2] [c,0]

[d,3]

[e,15]

[Exitmain,16]

[Entryfoo,4]

[F,5]

[G,6] [H,4]

[I,7]

[J,4]

[Exitfoo,4]

[Entryfoo,17]

[F,17]

[G,17] [H,17]

[I,17]

[J,17]

[Exitfoo,17]

[d,0]

[e,0]

[Exitmain,0]

[I,4]

[F,8]

[G,11] [H,9]

[I,10][I,12]

[J,13]

[Exitfoo,14]

main
foo

Fig. 9. Express-lane supergraph for the hot-path automaton in Fig. 5 and the supergraph in Fig. 3.
Most of the graph is constructed during Phase 2. The edges [d, 3] → [e, 15], [d, 3] → [e, 0],
[d, 0] → [e, 0], and [Exit foo , 17] → [e, 0] are added during Phase 3. Each shaded vertex [v, q]
has a state q that is a reset state; except for [Entrymain , 0] and [Entry foo , 4], these are cold
vertices.

the results of range analysis after the express-lane transformations have been performed.
Three comparisons are made: the percentage of instruction operands that have a constant
value; the percentage of instructions that have a constant result; and the percentage of
decided branches, or conditional branch instructions that are determined to have only
one possible outcome. In all cases, the interprocedural express-lane transformations do
better than the intraprocedural express-lane transformation.

The range analysis we use allows the upper bound of a range to be increased once be-
fore it widens the upper bound to (MaxVal−1). Lower bounds are treated similarly. Our
range analysis is similar to Wegman and Zadeck’s conditional constant propagation [14]
in that (1) it simultaneously performs dead code analysis and (2) it uses conditional
branches to refine the data-flow facts.

4.2 Using the Express-Lane Transformation for Program Optimization

As mentioned in the introduction, it is possible to reduce the express-lane graph while
preserving “valuable” data-flow facts. We used three different reduction strategies:

1. Strategy 1 preserves data-flow facts that determine the outcome of a conditional
branch. Strategy 1 is based on the Coarsest Partitioning Algorithm [1,11].

The Interprocedural Express-Lane Transformation 213

Table 1. Columns 3–5 show a comparison of the (compile-time) cost of performing various
express-lane transformations and the (compile-time) cost of performing interprocedural range
analysis after an express-lane transformation has been performed; times are measured in sec-
onds. Columns 6–8 show a comparison of the results of range analysis after various express-lane
transformations have been performed.

Benchmark E-Lane
Transform.

Transform.
Time (sec)

Vertices in
E-Lane Graph

Range Prop.
Time (sec)

% const.
operands

% const.
results

% decided
branches

124.m88ksim Inter., Context 9.8 24032 569.5 28.5 33.1 19.7
Inter., Piecewise 4.9 15113 508.4 28.6 33.2 20.0
Intra., Piecewise 3.0 14218 734.2 27.7 32.3 17.5
None - 11455 300.8 25.9 31.1 0.8

129.compress Inter., Context 1.4 2610 14.7 21.3 26.9 9.8
Inter., Piecewise 0.3 1014 9.4 21.3 26.9 9.8
Intra., Piecewise 0.2 696 10.2 21.3 26.2 2.2
None - 522 5.2 20.8 25.8 0.0

130.li Inter., Context 12.9 23125 99.1 24.1 27.3 4.0
Inter., Piecewise 5.3 11319 73.2 24.1 27.3 3.9
Intra., Piecewise 1.9 7940 35.7 23.6 26.8 2.2
None - 7240 29.0 23.3 26.5 0.0

132.ijpeg Inter., Context 13.0 18087 628.8 16.8 23.6 4.0
Inter., Piecewise 8.5 13768 526.1 16.8 23.6 4.0
Intra., Piecewise 7.1 12955 504.3 16.6 23.3 1.4
None - 12192 488.2 15.9 22.7 0.0

134.perl Inter., Context 10.3 33863 713.8 24.3 28.8 3.3
Inter., Piecewise 9.0 30189 655.2 24.2 28.8 3.0
Intra., Piecewise 6.7 29309 718.6 24.1 28.7 2.8
None - 27988 573.9 23.0 28.5 1.3

2. Strategy 2 preserves all data-flow facts. Strategy 2 is based on the Coarsest Parti-
tioning Algorithm and the Edge Redirection Algorithm given in [11].

3. Strategy 3 is similar to Strategy 2, but only preserves data-flow facts that decide
conditional branches (as in Strategy 1).

[11] contains more details, and more discussion of the trade-offs between these strategies.
Fig. 10 compares the amount of reduction achieved by these strategies.

Tables 2 through 4 show the results of using various forms of the express-lane trans-
formation together with Range Analysis to optimize SPEC95Int benchmarks. Specifi-
cally, we followed these steps:

1. Perform an express-lane transformation.
2. Perform interprocedural range analysis on the express-lane (super)graph.
3. Reduce the express-lane (super)graph.
4. Eliminate decided branches and replace constant expressions.
5. Emit C source code for the transformed program.
6. Compile the C source code using GCC 2.95.3 -O3.
7. Compare the runtime of the new program with the runtime of the original program.

For a base case, we performed range analysis without any express-lane transformation
(repeated as Col. 2 in Tables 2 through 4). We ran experiments with three different
express-lane transformations. For each of the transformations, we tried the three reduc-
tion strategies listed above. We also ran experiments where we performed an express-lane

214 D. Melski and T. Reps

Fig. 10. Comparison of the strategies for reducing the express-lane supergraph.

transformation, then used Strategy 1 to reduce the express-lane (super)graph and then
skipped Step 4 above. The reported run time is always the average of three runs.

The best results were for the intraprocedural express-lane transformation (Tables 4).
The intraprocedural express-lane transformation together with the range analysis opti-
mizations has a benefit to performance even when no reduction strategy is used to limit
code growth. In fact, aggressive reduction strategies can destroy the performance gains.
There are several possible reasons for this:

1. GCC may be able to take advantage of the express-lane transformation to perform
its own optimizations (e.g., code layout [7]).

2. Reduction of the hot path graphs may result in poorer code layout that requires more
unconditional jumps along critical paths [12].

3. The more aggressive reduction strategies seek only to preserve decided branches,
and may destroy data-flow facts that show an expression to have a constant value.

4. The code layout for the reduced graph may interact poorly with the I-cache.

The results shown in Tables 4 and 5 are often (but not always) negative. There are
two likely reasons for this:

1. It would have been difficult to modify an x86 code generator or a hardware simulator
to support entry and exit splitting; instead, we used a straightforward implementation
in software. This incurred overhead on each procedure entry and exit.

2. There is a significant increase in code growth.

Col. 4 of Tables 4 and 5 (and 6) show the performance overhead incurred by the trans-
formations. Fig. 10 shows reasonable code growth for the interprocedural express-lane

The Interprocedural Express-Lane Transformation 215

Table 2. Program speedups due to the interprocedural, context express-lane transformation and
range propagation. For the base run times shown in Col. 2, the benchmarks were optimized by re-
moving decided branches and constant expressions (but without any express-lane transformation)
and then compiled using GCC 2.95.3 -O3.

Reduction Strategy

Benchmark
Base run
time (sec)

None Strategy 1 Strategy 1,
No Step 4

Strategy 2 Strategy 3

124.m88ksim 146.70 -34.7% -9.3% -29.5% -13.1% -11.4%
129.compress 135.46 -14.0% 1.0% -4.3% 2.4% 2.0%
130.li 125.81 -57.2% -20.4% -27.8% -30.4% -25.4%
132.ijpeg 153.83 -7.5% -1.6% -1.2% -4.5% -4.8%
134.perl 109.04 -21.3% 4.9% 6.0% -3.1% -3.0%

Table 3. Program speedups due to the interproc., piecewise express-lane trans. and range prop.

Reduction Strategy

Benchmark
Base run
time (sec)

None Strategy 1 Strategy 1,
No Step 4

Strategy 2 Strategy 3

124.m88ksim 146.70 -13.6% -0.7% -11.4% 5.7% 5.4%
129.compress 135.46 -14.0% 0.5% -4.5% -0.2% 2.0%
130.li 125.81 -68.1% -26.7% -40.1% -11.4% 2.5%
132.ijpeg 153.83 -2.3% -2.2% -0.8% -2.2% -4.2%
134.perl 109.04 -19.4% 2.8% 2.7% 6.1% 3.6%

transformation, and we assume that most of the performance degredation is due to entry
and exit splitting. Using the reduction strategies with the interprocedural express-lane
transformations usually helps performance. (Graph reduction may eliminate the need
for entry and exit splitting.) With aggressive reduction, the interprocedural piecewise
express-lane transformation usually leads to performance gains (see Col. 6 of Table 3).

It should also be noted that the interprocedural express-lane transformations com-
bined with the range-analysis optimizations do have a strong positive impact on program
performance, although it is usually not as great as the costs incurred by the transforma-
tions. This can be seen in the experiments where we did not eliminate branches and
replace constants: cf. Columns 3 and 4 of the Tables 4 and 5. (In those few cases where

Table 4. Program speedups due to the intraproc., piecewise express-lane trans. and range prop.

Reduction Strategy

Benchmark
Base run
time (sec)

None Strategy 1 Strategy 1,
No Step 4

Strategy 2 Strategy 3

124.m88ksim 146.70 10.6% 13.0% 1.2% 11.6% 7.4%
129.compress 135.46 6.4% 5.5% -2.1% 2.1% 0.1%
130.li 125.81 8.1% 10.3% 7.2% -1.7% -0.6%
132.ijpeg 153.83 1.0% 0.7% -0.1% -1.6% -2.0%
134.perl 109.04 9.7% 10.0% 6.3% 9.9% 5.4%

216 D. Melski and T. Reps

performance showed a slight improvement, we assume there was a change in code layout
that had instruction cache effects.) This suggests that software and/or hardware support
for entry and exit splitting would be a profitable research direction.

5 Related Work and Conclusions

The work in this paper is an interprocedural extension of the work in [3]. This paper
and [3] are related to other work that focuses on improving the performance of particu-
lar program paths. A partial list of such works includes [8,7,9,13,6,15]. A more detailed
discussion of related work can be found in [11]. As stated in the introduction, the inter-
procedural express-lane transformation differs from other techniques in the literature on
one or more of the following points:

1. We duplicate interprocedural paths before performing analysis.
2. We guide path duplication using interprocedural path profiles.
3. We perform interprocedural range analysis on the transformed graph.
4. We eliminate duplicated code when there was no benefit to range analysis.

We have shown that the interprocedural express-lane transformations have a benefi-
cial effect on interprocedural range analysis. The performance gains from the interpro-
cedural express-lane transformation are slight or negative — but we have shown that it
has potential. Specifically, we have shown that a greater percentage of dynamic branches
can be decided statically, and that performance improvements are likely with a better
hardware and/or software implementation of entry and exit splitting.

References

1. A. V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer algorithms.
Addison-Wesley, 1974.

2. Alfred V. Aho. Algorithms for finding patterns in strings, chapter 5, pages 255–300. MIT
Press, 1994.

3. G. Ammons and J. Larus. Improving data-flow analysis with path profiles. In PLDI98.
4. T. Ball and J. Larus. Efficient path profiling. In MICRO 1996, 1996.
5. R. Bodik, R. Gupta, and M.L. Soffa. Interprocedural conditional branch elimination. In

PLDI’97.
6. Rastislav Bodik. Path-sensitive, value-flow optimizations of programs. PhD thesis, University

of Pittsburg, 2000.
7. P.P. Chang, S.A. Mahlke, and W.W. Hwu. Using profile information to assist classic code

optimizations. Software practice and experience, 1(12), Dec. 1991.
8. J. A. Fisher. Trace scheduling: A technique for global microcode compaction. In IEEE Trans.

on Computers, volume C-30, pages 478–490, 1981.
9. R.E. Hank. Region-Based Compilation. PhD thesis, UIUC, 1996.

10. D. Melski and T. Reps. Interprocedural path profiling. In CC99.
11. D.G. Melski. Interprocedural Path Profiling and the Interprocedural Express-Lane Transfor-

mation. PhD thesis, University of Wisconsion, 2002.
12. F. Mueller and D. B.Whalley. Avoiding unconditional jumps by code replication. In PLDI92.
13. M. Poletto. Path splitting: a technique for improving data flow analysis, 1995.
14. M.N. Wegman and F.K. Zadeck. Constant propagation with conditional branches. In POPL85.
15. Reginald Clifford Young. Path-based Compilation. PhD thesis, Harvard University, 1998.

	The Interprocedural Express-Lane Transformation
	Introduction
	Path Profiling Overview
	The Interprocedural Express-Lane Transformation
	Entry and Exit Splitting
	Defining the Interprocedural Express-Lane
	Performing the Interprocedural Express-Lane Transformation

	Experimental Results
	Effects of the Express-Lane Transformation on Range Analysis
	Using the Express-Lane Transformation for Program Optimization

	Related Work and Conclusions
	References

