Register Allocation by Optimal Graph Coloring

Christian Andersson

Dept. of Computer Science, Lund University
Box 118, S-221 00 Lund, Sweden
chrisand@cs.lth.se

Abstract. We here present new insights of properties of real-life inter-
ference graphs emerging in register allocation. These new insights imply
good hopes for a possibility of improving the coloring approach towards
optimal solutions. The conclusions are based on measurements of nearly
28,000 real instances of such interference graphs. All the instances ex-
plored are determined to possess the so-called 1-perfectness property, a
fact that seems to make them easy to color optimally. The exact algo-
rithms presented not only produce better solutions than the traditional
heuristic methods, but also, indeed, seem to perform surprisingly fast,
according to the measurements on our implementations.

1 Introduction

For almost all architectures register allocation is among the most important of
compiler optimizations. Computations involving only register operands are much
faster than those involving memory operands. An effective utilization of the
limited register file of the target machine may tremendously speed up program
execution, compared to the same program compiled with a poor allocation.

Graph coloring is an elegant approach to the register allocation problem. Tra-
ditional algorithms used by compilers today [AI5J3J9)T7] make use of approximate
heuristics to accomplish the colorings.

Here we do not propose a new algorithm for register allocation. Our exper-
iments, however, suggest that such an algorithm may well be designed, which
guarantees optimal colorings for the purpose of a good allocation. Despite the
fact that graph coloring is an NP-complete problem, the input graphs in the case
of register allocation certainly seem to be efficiently colored, even when using an
exact algorithm.

2 Background

Let V = {v1,v9,vs3,...} be the set of variables in a given intermediate represen-
tation (IR) of a program. Given a certain point p in the program flow, a variable
v; € V is said to be live if it is defined above p but not yet used for the last time.
A live range (LR) for a variable v; € V is a sequence of instructions beginning
with the definition of v; and ending with the last use of v;. An LR interference

G. Hedin (Ed.): CC 2003, LNCS 2622, pp. 33-45] 2003.
© Springer-Verlag Berlin Heidelberg 2003

34 C. Andersson

is a pair (-,-) of variables whose live ranges intersect. Variables involved in such
an interference can not be assigned to the same register. We denote by E the
set of LR interference pairs. The register allocation problem is the problem of
finding a mapping ¢ : V +— {ry,re,...,71}, where r; are the registers of the
target machine, such that £ < N, where N is the total number of registers avail-
able and such that (v;,v;) € E = ¢(v;) # c(v;). This corresponds closely to
the well-known GRAPH-COLORING problem of finding a k-coloring of the graph
G = (V, E), which we call the interference graph (IG).

2.1 Graph Coloring

More exactly the GRAPH-COLORING problem is to determine for a given graph G
and a positive integer k whether there exists a proper k-coloring. The smallest
positive integer k for which a k-coloring exists is called the chromatic number
of G, which is denoted by x(G). GRAPH-COLORING is NP-complete [§].

The coloring problem seems not only practically impossible to solve exactly
in the general case. Numerous works in this field from the past decades show that
it is very hard to find algorithms that give good approximate solutions without
restricting the types of input graphs. One well-known and obvious lower bound
on the chromatic number x(G) is the clique number, which is denoted by w(G). A
cliqgue @ in a graph G = (V, E) is a subset of V such that the subgraph G’ induced
by @ is complete, i.e., a graph in which all vertices are pairwise adjacent, and
hence have to be colored using no less than |Q| colors. The MAXIMUM-CLIQUE
problem asks for the size of the largest clique of a given graph, the solution of
which is the cligue number w(G). There are, however, two problems with this
lower bound:

1. MAXIMUM-CLIQUE is (also) NP-complete [6].

2. According to, e.g., Kucera the gap between the clique number w and the
chromatic number y is usually so large, that w seems not to be usable as a
lower bound on x [14].

2.2 Traditional Approaches

Since GRAPH-COLORING is NP-complete [§], traditional register allocation im-
plementations [ARI3JIT7] rely on an approximate greedy algorithm for accom-
plishing the colorings. The technique used in all these implementations is based
on a simple coloring heuristic [12]:

If G = (V,E) contains a vertex v with a degree 6(v) < k, i.e., with fewer
than k neighbors, then let G’ be the graph G — {v}, obtained by removing v, i.e.,
the subgraph of G induced by V' \ {v}. If G’ can be colored, then so can G, for
when reinserting v into the colored graph G’, the neighbors of v have at most
k — 1 colors among them. Hence a free color can always be found for v.

The reduction above is called the simplify pass. The vertices reduced from
the graph are temporarily pushed onto a stack. If, at some point during sim-
plification, the graph G has vertices only of significant degree, i.e., vertices v of

Register Allocation by Optimal Graph Coloring 35

degree §(v) > k, then the heuristic fails and one vertex is marked for spilling.
That is, we choose one vertex in the graph and decide to represent it in memory,
not registers, during program execution. If, during a simplify pass, one or more
vertices are marked for spilling, the program must be rewritten with explicit
loads and stores, and new live ranges must be computed. Then the simplify pass
is repeated. This process iterates until simplify succeeds with no spills. Finally,
the graph is rebuilt, popping vertices from the stack and assigning colors to
them. This pass is called select.

3 Interference Graph Characterization

The traditional methods described above, which are used in register allocation
algorithms today, are approximate. Our experiments show, however, that making
optimal colorings using exponential algorithms, may actually be a possible way
of coloring graphs in the register allocation case. The key to this conjecture is
the claimed so-called 1-perfectness of interference graphs.

3.1 Graph Perfectness

In the study of the so-called Shannon capacity of graphs, Laszlé Lovéasz in the
1970’s introduced the ¥-function, which has enjoyed a great interest in the last
decades. For instance, its properties constitute the basis of a later on proven
fact, that there are important instances of graphs (the so-called perfect graphs),
whose possible k-colorability can indeed be determined in polynomial time.
The ¥(G) function has two important and quite remarkable properties [11]:

1. w(G) < Y9(G) < x(G)[] (The Sandwich Theorem)
2. For all graphs G, ¥(G) is computable in polynomial time.

Those special instances of graphs G for which w(G’) = x(G’) holds for each
induced subgraph G’ are said to be perfect, and they are indeed perfect in that
particular sense that their possible k-colorability can be determined in polyno-
mial time, as a direct consequence of the above properties. There are, however,
no (or at least very few) proposals of algorithms which use this fact, and which
run efficiently in practice. Moreover, the status of the recognition problem of the
class of all perfect graphs is unknown.

Despite the fact that nobody has succeeded in designing an algorithm that
efficiently solves the polynomial problem of perfect graphs, the elegance of the
theory of these special instances makes it interesting to explore the possible
perfectness of the interference graphs occurring in register allocation.

! The complement graph of G = (V, E) is the graph G = (V, E), where

E= {ez(u,v)|u,v€V, u # v, and (u, v) QE}

36 C. Andersson

Furthermore, Olivier Coudert, who works in the field of logic synthesis and
verification, wrote in 1997 a very interesting paper [7], on the claimed simplicity
of coloring “real-life” graphs, i.e., graphs which occur in problem domains such
as VLSI CAD, scheduling, and resource binding and sharing. This simplicity is,
according to Coudert, basically a consequence of the fact that most of the graphs
investigated are I-perfect, i.e., they are graphs such that w(G) = x(G), however,
not necessarily for all subgraphs as in the case of perfect graphs.

4 Interference Graph Experiments

The input graphs we have used for our metrics come from two sources:

— Andrew W. Appel and Lal George have published a large set of interfer-
ence graphs [1] generated by their compiler for Standard ML of New Jersey,
compiling itself. The 27,921 actual LR interference graphs differ in size from
around 25 vertices and 200 edges up to graphs with 7,500 vertices and 70,000
edges. These graphs do not, however, constitute the data used in empirical
measurements reported by the authors in their articles on Iterated Register
Coalescing [QT0].

— In a project task in the Lund University course on optimizing compilers@7
an SSA based experimental lab compiler for a subset of the C programming
language is provided, in which students are to implement optimization algo-
rithms. The best contribution in the fall 2000 course was provided by Per
Cederberg, PhD candidate at the Division of Robotics, Department of Me-
chanical Engineering, Lund Universit. His implementation included, for
instance, algorithms for constant and copy propagation, dead code elimina-
tion, global value numbering, loop-invariant code motion and the register
allocation algorithm proposed by George and Appel. Cederberg kindly let
us use his implementation for our experiments.

When looking at the interference graphs we have had access to, they indeed
seem to demonstrate some characteristics that point towards their potential 1-
perfectness. For example, interference graphs tend not to be very dense, although
they have large cliques. In other words, the density of these graphs seems not to
be uniformly spread out over the whole graph, but rather localized to one or a
few “clique-like” parts. Such characteristics certainly suggest a possibility of 1-
perfectness, and make it interesting to investigate whether Coudert’s conjecture
can or cannot be confirmed for interference graphs.

In order to decide whether a graph G is 1-perfect, we need to solve two
NP-hard problems (as far as we know today), the GRAPH-COLORING problem
and the MAXIMUM-CLIQUE problem. Our only possibility is to implement ex-
act algorithms, i.e., an approximate solution to either of these problems is not
adequate.

2 http://www.cs.1lth.se/Education/Courses/EDA230/
3 http://www.robotics.lu.se/

Register Allocation by Optimal Graph Coloring 37

The algorithms for exactly solving both of these problems are fairly simple
and well-known. The simplicity of the algorithm does, however, not imply that
they are fast — both of them obviously have exponential worst case execution
time, since we may need to perform an exhaustive search to find the optimal
solution.

4.1 Sequential Coloring

Algorithm [shows a backtracking search for an optimal coloring of an input
graph G. By initially searching for the maximum clique @ we get not only a
lower bound w on the chromatic number y, but also a partial coloring of the
graph. (The vertices of @ are colored using w colors, which is optimal since all
those vertices are pairwise adjacent in G.) If we are lucky, the graph is 1-perfect,
and when the recursive part of the algorithm finds a coloring using w colors, the
search can be interrupted.

Algorithm 1 Create an optimal proper coloring of a graph G using a standard
backtracking search algorithm. Return the chromatic number x(G), and leave
the coloring in a map color, indexed by vertices.
SEQUENTIAL-COLOR(G)

1 Q@ + MAXIMUM-CLIQUE(G)

2 k+0
3 foreach v € @ do
4 k+—k+1
5
6

color[v] + k
return SEQUENTIAL-COLOR-RECURSIVE(G, k, |[V(G)| + 1, |Q])

Input: G is a graph, partially colored using k colors. x is the current value on the
chromatic number and w is the lower bound given by MAXIMUM-CLIQUE.
SEQUENTIAL-COLOR-RECURSIVE(G, k, X, w)

1 if G is entirely colored then

2 return k

3 v < an uncolored vertex of G

4 foreach c € [I,MIN(k+ 1, x —1)] do

5 if Vn € Nv], color[n] # ¢ then > N[v] is the neighborhood of v
6 color[v] + ¢
7 X < SEQUENTIAL-COLOR-RECURSIVE(G, MAX(c, k), X, w)
8 if x = w then > 1-perfect graph
9 return x

10 return y > result after an exhaustive search

If, on the other hand, the graph is not 1-perfect, the maximum clique calculation
will not be of any help at all. The algorithm then has to exhaustively enumerate
all potential colorings that would improve on the chromatic number, which can
take exponential time. The problem is that the lower bound is static in the sense

38 C. Andersson

that it is not reevaluated at each recursion. Moreover, the algorithm simultane-
ously uses several unsaturated colors. (A color ¢ is said to be saturated if it can
not be used anymore to extend a partial coloring.) Efficiently estimating a lower
bound on the number of colors necessary to complete an unsaturated coloring is
an open problem.

In [7] it is concluded that the maximum clique is tremendously important
when coloring 1-perfect graphs. If the clique found is not maximal, we are left
with the same problem as when trying to color graphs which are not 1-perfect.

One important part of the algorithm is left unspecified: In what order should
the uncolored vertices be picked? Kucera showed in 1991, that it is practically
impossible to find an ordering which performs well in the general case when
using a greedy approach to the coloring problem [15].

The ordering of the vertices in the exact sequential algorithm may, however,
have a strong impact on the efficiency of the search. Brélaz in 1979 proposed
an efficient method called the DSATUR heuristic [2]. It consists of picking the
vertex that has the largest saturation number, i.e., the number of colors used by
its neighbors. If implementing the algorithm carefully, the information on vertex
saturation can in fact be efficiently maintained, using so-called shrinking sets,
as shown by, for example, Turner [16].

4.2 Obtaining the Maximum Clique

Algorithm 2] shows a simplified branch-and-bound approach to the MAXIMUM-
CLIQUE problem. The algorithm relies partially on the calculation of an approx-
imate coloring of the graph, which is used as an upper bound.

Algorithm] can be improved in a number of ways without jeopardizing
optimality of the computed clique [7]. Let G be the graph at some point of
the recursion, @) the clique under construction, @ the current best solution, and
{1, ..., I} a k-coloring obtained on G. Then the following improvements apply:

When we reach a state where |Q|+ |V (G)| < |Q|, we can immediately prune

the search space, since it is impossible to find a larger clique.

— Every vertex v such that 6(v) < |Q| — |@| must be removed from the graph,
because it can not be a member of a larger clique.

— Every vertex v such that §(v) > |V(G)| — 2, must be put into @, since
excluding it can not produce a larger clique. R

— Every vertex v that can be colored with ¢ colors, where ¢ > |Q| — |Q| + k,

yield unsuccessful branches, and can be left without further consideration.

The approximate coloring part of MAXIMUM-CLIQUE is a very simple greedy
algorithm, using no particular heuristic for the ordering of vertices. The graphs
have been represented simply as two-dimensional bit matrices. For the sake of
efficiency, the graphs ought to have been redundantly represented as adjacency
lists as well as matrices, a representation that has been chosen in register allo-
cators ever since Chaitin’s original algorithm. Our data structures are of course
easy to extend to this double representation.

Register Allocation by Optimal Graph Coloring 39

Algorithm 2 Find the maximum clique of a graph G using a simplified branch-
and-bound technique. Return the set of vertices contained in the maximum clique
found.
MaAXIMUM-CLIQUE(G)

1 return MAXIMUM-CLIQUE-RECURSIVE(G, @, 0, oo)

Input: G is the remaining part of the graph, Q is the clique under construction, @ 18
the largest clique found so far, and u is an upper bound on w (size of the maximum
clique)
MAXIMUM-CLIQUE-RECURSIVE(G, Q, @7 u)
1 if G is empty then
2 return @
3 {6, ..., I} + APPROXIMATE-COLOR(G)
4 u <+ MiN(u, |Q| + k) > compute a new upper bound
5 ifu< |@| then
6 return 62\
7 v <4 a maximum degree vertex of G
8 G’ + subgraph induced by N|v]
9 @ +— MAXIMUM-CLIQUE-RECURSIVE(G’, Q U {v}, @, u)
10 ifu= Q\ then_
11 return Q
12 G" <« graph induced by V[G] — {v}
13 return MAXIMUM-CLIQUE-RECURSIVE(G”, Q, Q, u)

5 Experimental Results and Issues for Future Research

In the experiments with the graphs, using algorithms shown in Section] several
interesting observations have been made. First and very importantly, every single
graph investigated turned out to be 1-perfect, that is, for every single instance of
the almost 28,000 graphs investigated, the chromatic number was determined to
be exactly equal to the clique number.

The chromatic numbers of the Appel-George graphs range between 21 and 89.
Most of them (27,590 graphs) have y = 21; 238 graphs have x = 29. Other test
programs written, and compiled with the Cederberg compiler, get chromatic
numbers on the interference graphs with a size of up to 15. All of them are
1-perfect. Despite numerous persistent tries, we have not managed to create
one single program that results in a non-1-perfect interference graph using our
compilers.

This experimental result raises two important questions to be further ex-
plored:

1. Are interference graphs always 1-perfect? Our experiments give strong em-
pirical evidence for this. If it is the case, we need to determine why. That
is, what in the earlier structural optimizations makes the graphs 1-perfect?
Further graph sets from different (kinds of) compilers need to be examined
in the future.

40 C. Andersson

2. If all, or almost all, interference graphs are 1-perfect, how can we use this
fact, in order to improve on the efficiency of the existing register allocation
algorithms? Or should we rather incorporate qualities, such as simplification
and/or copy propagation by live range coalescing, from the approximate
algorithms into the exact algorithm?

The second question partially gets an answer through the second of our experi-
mental results. We noted when running the exact algorithms on the graphs, that
they seemed to be surprisingly fast. Hence, the George-Appel allocator was also
implemented, using the pseudo-code given in [I0], and the same data structures
for graph representation as in the exact algorithms. Repeatedly running this
algorithm for all the graphs, using an N-value equal to the chromatic number
determined by the exact algorithm, and comparing execution times to those of
the exact algorithm, gave the following result:

The ezact algorithm for computing an optimal coloring is faster than George-
Appel’s approximate iteration algorithm.

Of course, the George-Appel allocator suffers a penalty through our choice
of a data structure — the authors recommend a combination of bit matrices and
adjacency lists.

But a change of the data structure would improve on the execution time of
the exact algorithm as well. The operation for determining the neighborhood of
a given vertex is expensive when using bit matrices, and it is very frequently
used in both algorithms.

The execution times for the two algorithms have been plotted as functions
of the sizes of the graphs in Fig. [l One large and, for some reason, very tough,
however, still 1-perfect graph instance containing 6,827 vertices, 45,914 edges,
and 4,804 move related instructions has been removed from the data. (The time
needed by the George-Appel algorithm to create the coloring was 3,290 seconds.
The exact algorithm needed 120 seconds.)

In order to show the difference trend in the execution times of the two al-
gorithms, a second degree polynomial has been fitted to the samples using the
least-squares method. We do not, however, assert that the execution times are
quadratic in the sizes of the graphs; the exact algorithm is obviously exponential
in the worst case.

In Fig. Plthe same execution times are plotted for the 23,000 smallest graphs
only, excluding the few very large and extremely tough instances.

There is one more thing which is important to note in the comparison of
the two algorithm approaches. In 46 of the 28,000 graphs, the George-Appel
algorithm fails to find optimum, and spills one or two variables to memory.
This number of failures is actually impressively low, as the algorithm uses an
approximate, heuristic method for the NP-complete problem of coloring. Perhaps
the reason for the good performance of the approximate algorithm is the 1-
perfectness of the graphs? Nevertheless, in comparison to the exact algorithm,
these spills are of course unfortunate, especially since it does not seem to take
longer time to find optimal colorings of the graphs using the exact algorithm.

Register Allocation by Optimal Graph Coloring 41

400

350

n N W

o a o

o o o
T T T

Execution time (s)

—_

(42

o
T

50

L 1 L 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of vertices

Fig. 1. Execution times for the two algorithms, coloring all graph instances. The dots
correspond to the exact algorithm; the pluses correspond to the George-Appel allocator.
The continuous functions are the best approximate second degree polynomials in the
least-squares sense. We do not, however, assert that the execution times are quadratic
in the sizes of the graphs. The intention is simply to compare the average execution
times of the algorithms for the graphs in question.

6 Conclusions

Graph coloring is an elegant approach to the register allocation problem. The
algorithms used by compilers today make use of approximate heuristics to ac-
complish the colorings.

In this paper, we do not propose a new algorithm for register allocation. The
experiments, however, suggest that such an algorithm may well be designed,
which guarantees optimal colorings for the purpose of a good allocation. Despite
the fact that graph coloring is an NP-complete problem, the input graphs in
the case of register allocation certainly seem to be efficiently colored, even when
using an exact algorithm.

In the implementation of the sequential coloring algorithm, none of the typ-
ical improvements designed for register allocation, such as copy propagation by
coalescing, graph simplification by vertex removal/merging, or interference re-
duction by live range splitting, have been accounted for. Our original purpose

42 C. Andersson

45 T T =+

o

5
T
+
I

w
T

I
o

Execution time (s)
N

-
o

05

0 100 200 300 400 . 500 600 700
Number of vertices

Fig. 2. Execution times for the two algorithms, coloring the 23,000 smallest graphs.
The dots and the lower function estimate correspond to the exact algorithm; the pluses
and the upper estimate correspond to the George-Appel allocator. The functions are
second degree polynomials estimated from all the measured points using the least-
squares method.

was simply to determine whether the graphs were 1-perfect, since this could have
the effect of maling optimal colorings efficiently computable.

In order to become applicable for register allocation, the algorithms need to
implement such functionality. After all, most of the graphs investigated have
much too large chromatic numbers, when not simplified, to fit into the register
file of most processors. Even If the processor has a large register file, it is still
desirable that programs do not use more registers than necessary, since loads
and stores, made for instance al procedure calls, suffer most. considerably when
having to switch large numbers of registers into and out of memory.

In order to complete the goal of improving the register allocation algorithms,
gsome questions remain to be answered:

— Do coalescing, merging, or splitting, the way we use these Improvements in
register allocators, jeopardize the 1-perfectness of the graphs?

— Is the 1-perfectness of interference graphs provable?

— Can we perhaps further strengthen the constraints in order to restrict the
graph classes towards perfectness?

Register Allocation by Optimal Graph Coloring 43

How expensive does the exact coloring algorithm become if the graphs are
not 1-perfect?

Is it at all possible to implement an efficient register allocator that contains
the different graph simplifications, and still guarantees the optimality of the
produced colorings?

We believe that the answer to the last of these questions may well be positive, and

our

work will be continued with the goal of achieving such an implementation.

Acknowledgments. The author would like to thank

Dr. Jonas Skeppstedt for his enthusiastic support in all parts of this work,
Per Cederberg for lending us his experimental compiler implementation.

References

(1]

(9]

[10]

Andrew W. Appel and Lal George. Sample graph coloring problems. Available on-
line at http://www.cs.princeton.edu/ appel/graphdata/, 1996. 27,921 actual
register-interference graphs generated by Standard ML of New Jersey version 1.09,
compiling itself.

Daniel Brélaz. New methods to color the vertices of a graph. Communications of
the ACM, 22(4):251-256, April 1979.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph
coloring register allocation. ACM Transactions on Programming Languages and
Systems, 16(3):428-455, May 1994.

G. J. Chaitin. Register allocation and spilling via graph coloring. In Proceedings
of the ACM SIGPLAN ’82 Symposium on Compiler Construction, pages 98-105,
Boston, Massachusetts, June 1982. The Association for Computing Machinery.
Fred C. Chow and John L. Hennessy. Register allocation by priority-based col-
oring. In Proceedings of the ACM SIGPLAN 84 Symposium on Compiler Con-
struction, pages 222-232, Montreal, June 1984. The Association for Computing
Machinery.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts 02142, second edition, 2001.

Olivier Coudert. Exact coloring of real-life graphs is easy. In Proceedings of the
34th annual conference on Design automation conference, pages 121-126, Ana-
heim, CA USA, June 1997. The Association for Computing Machinery.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New York,
1979.

Lal George and Andrew W. Appel. Iterated register coalescing. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 208-218, St. Petersburg Beach, FL. USA, January 1996. The
Association for Computing Machinery.

Lal George and Andrew W. Appel. Iterated register coalescing. ACM Transactions
on Programming Languages and Systems, 18(3):300-324, May 1996.

http://www.cs.princeton.edu/~appel/graphdata/

44 C. Andersson

[11] Martin Grotschel, Lészlé Lovéasz, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer—Verlag, Berlin Heidelberg, Germany,
1988.

[12] Alfred Bray Kempe. On the geographical problem of the four colours. American
Journal of Mathematics, 2:193-201, 1879.

[13] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred
Chow. Partial redundancy elimination in SSA form. ACM Transactions on Pro-
gramming Languages and Systems, 21(3):627-676, May 1999.

[14] Ludék Kuéera. Combinatorial Algorithms. Adam Hilger, Redcliff Way, Bristol
BS1 6NX, England, 1990.

[15] Lud8k Kucera. The greedy coloring is a bad probabilistic algorithm. Journal of
Algorithms, 12(4):674-684, December 1991.

[16] Jonathan S. Turner. Almost all k-colorable graphs are easy to color. Journal of
Algorithms, 9(1):63-82, March 1988.

[17] Steven R. Vegdahl. Using node merging to enhance graph coloring. In Proceed-
ings of the ACM SIGPLAN ’99 conference on Programming language design and
implementation, pages 150-154, Atlanta, GA USA, May 1999. The Association
for Computing Machinery.

[18] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional
branches. ACM Transactions on Programming Languages and Systems, 13(2):181—
210, 1991.

A A Simple Example

Fig.[3 presents parts of a sample compiling session using the Cederberg compiler.
First a high-level source code is input to the front-end. The intermediate repre-
sentation produced by the front-end is presented to the right. For the purpose of
simplicity, the user I/O functions, get and put, are assumed to be implemented
as processor instructions.

Temporary variables in the program are named t1, t2, t3,...; basic blocks
are labeled x1, x2, x3,....

The IR from the front-end is transformed into SSA form and is subject to two
optimizations, constant propagation with conditional branches [18] and partial
redundancy elimination [13], the result of which is shown down to the left on
normal form, i.e., transformed back from SSA.

Analyzing the live ranges of the variables, inserting an edge between ranges
that interfere, gives the interference graph presented down to the right. The
graph has the maximum clique

Q ={t11,t16,t17,t21,t22}, w =25,

and we conclude, directly from the figure, that the chromatic number x is no
larger than w. Hence the graph is 1-perfect.

Register Allocation by Optimal Graph Coloring 45

int £Q) xl: get t1
{ mov t1 a
int a; slt a 0 t2
int b; bf t2 x3
int c; X2: neg a t3
ret t3
a = get(); /* from user */ x3: mov 1024 b
if (a < 0) div b 1024 t4
return -a; mov t4 c
b = 1024; ba x5
c=b/ 1024; x4: mul a a t5
add c t5 t6
while (b < a) add t6 b t7
{ add t7 a t8
c=c+ax*xa+b+ a; mov t8 c
b=Db-1; sub b 1 t9
¥ mov t9 b
xb: sgt b a t10
put(c); /* to user x/ bt t10 x4
return O; x6: put [¢
} ret 0
xl: get t11
slt t11 0 t12
bf t12 x3
x2: neg t11 t13
ret t13
x3: mul t11 t11 t19
mov 1 t16
mov 1024 t17
ba x5
x4: add t16 t19 t20
add t20 t17 t21
add t21 t11 t22

sub t17 1 t23

mov t22 t16

mov t23 t17
x5: sgt t17 t11 t18

bt t18 x4
x6: put t16

ret 0

Fig. 3. Top-left: A high-level source code which is input to the compiler front-end.
Top-right: IR output from the front-end. Bottom-left: The final improved IR from the
optimizer. Bottom-right: 1G with the maximum clique @ of size w = 5 shown with
shaded vertices. Since, apparently, x = w the graph is 1-perfect.

	Register Allocation by Optimal Graph Coloring
	Introduction
	Background
	Graph Coloring
	Traditional Approaches

	Interference Graph Characterization
	Graph Perfectness

	Interference Graph Experiments
	Sequential Coloring
	Obtaining the Maximum Clique

	Experimental Results and Issues for Future Research
	Conclusions
	Acknowledgments
	References
	A Simple Example

