
The Type Inference Engine for
MATLAB��

Pramod G. Joisha and Prithviraj Banerjee

Department of Electrical and Computer Engineering, Northwestern University, USA.
{pjoisha, banerjee}@ece.northwestern.edu

1 Introduction

(MAthematica system for General-purpose Inferring and Compile-time
Analyses) is an extensible inference engine that can determine the types (value
range, intrinsic type and array shape) of expressions in a MATLAB program.
Written as a Mathematica application, it is designed as an add-on module that
any MATLAB compiler infrastructure can use to obtain high-quality type infer-
ences.

1.1 A Type Inference Using

Lines In[1] and Out[2] below demonstrate a simple interaction with
through a notebook interface.1 On line In[1] , the type function ob-
ject is applied on a representation of the MATLAB expression tanh(3.78i).

’s response, shown on Out[2] , is the inferred type of tanh(3.78i).
In this case, “type” is the expression {v, i, s} where v, i and s are the value
range, intrinsic type and array shape of tanh(3.78i); Out[2] indicates these
to be the point 0.742071 ıi, the $nonreal intrinsic type designator, and the two-
dimensional array shape with unit extents along both dimensions—that is, the
scalar shape.

In[1]:= type[tanh[3.78�]]

Out[1]= �0.742071 �, $nonreal, ��1 , 1�, 2��

1.2 Feature Support

The above is an example of a type inference on a single MATLAB expression.
can infer the types of whole MATLAB programs comprising an ar-

bitrary number of user-defined functions, each having an arbitrary number of
statements. User-defined functions can return multiple values, can consist of
� This research was supported by DARPA under Contract F30602–98–2–0144, and

by NASA under Contract 276685/NAS5–00212. Mathematica� fonts by Wolfram
Research, Inc.

1 The outputs in this paper can be exactly reproduced by typing the code shown
against each In[n]:= prompt into a notebook interface to version 1.0 of ,
running on Mathematica 4.1.

G. Hedin (Ed.): CC 2003, LNCS 2622, pp. 121–125, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

122 P.G. Joisha and P. Banerjee

assignment statements, the for and while loops, and the if conditional state-
ment. (All these MATLAB constructs are explained in [3].) In addition,
can handle close to 70 built-in functions in MATLAB. These include important
Type II operations2 like subsref, subsasgn and colon that are used in array
indexing and colon expressions. For the most part, the full or nearly the full
semantics of a built-in function, as specified in [3], is supported. For instance,
subscripts in array indexing expressions can themselves be arrays, and arrays
can be complex-valued. Not all of MATLAB’s features are currently handled;
these include structures, cell arrays and recent additions like function handles.

2 Representing MATLAB in

symbolically represents constructs in MATLAB. An example of this is
the Mathematica expression plus[a, b], which is ’s representation of
the MATLAB expression a+b. On line In[1] above, the Mathematica expression
tanh[3.78ıi] was used to denote the MATLAB expression tanh(3.78i). The
idea of functionally representing a MATLAB expression can also be used to
denote high-level constructs. For instance, the MATLAB assignment statement
l ← cos(3.099), where l is a MATLAB program variable, is represented in

as shown on line In[2] below.

In[2]:= assignment[$$lhs � l, $$rhs � cos[3.099]]

Out[2]= assignment�$$lhs � l, $$rhs � cos�3.099��

The expression’s head is assignment and this is used to uniquely identify MAT-
LAB assignments. The tags $$lhs and $$rhs serve to identify the assignment’s
left-hand side and right-hand side. We call l and cos[3.099] as tag values. A
tag value can be any expression; this allows for the representation of arbitrary
MATLAB assignments, including the multiple-value assignment [3].

In general, MATLAB statements are represented in as

h[x1 :→ y1, x2 :→ y2, . . . , xn :→ yn]

where the head h serves as a construct identifier, and where the delayed rules
[4] xi :→ yi (1 ≤ i ≤ n) stand for tag-value pairs. places no signif-
icance on the position of a tag-value pair; this point should be kept in mind
when making new definitions to extend the system. A fair amount of
documentation regarding data structure layouts has been coded into
itself as usage messages [4]; this provides a convenient, on-line way of pulling
up layout information while interacting with .
2 MATLAB’s built-in functions can be classified into one of three groups, based on

how the shapes of the outputs are dependent on the shapes of the inputs [1]. Type
I built-ins produce outputs whose shapes are completely determined by the shapes
of the arguments, if any. Type II built-ins produce an output whose shape is also
dependent on the elemental values of at least one input. All remaining built-ins fall
into the Type III group.

The Type Inference Engine for MATLAB� 123

In[3]:= ?if

�if�$$condition :� c_, $$then :� t_, $$else :� e_��
is the functional equivalent of an if statement in MATLAB. Forms such as �
$$condition �� c�, �$$then �� t� and �$$else �� e� can also be used.

3 Transitive Closure of a Graph

The two boxes in Figure 1 display a complete MATLAB program that computes
the transitive closure of a graph. The graph is represented in the N×N adjacency
matrix A, which is initialized arbitrarily in the function tclosure. Its transitive
closure is returned in B. The shown code is directly from Alexey Malishevsky’s
thesis [2], with three nontrivial changes: (1) the tic and toc timing commands
were removed, (2) disp was used to display B, and (3) the original monolithic
script was reorganized into two files, one containing the function driver and the
other containing tclosure.

3.1 M-File Contexts

Input files that constitute a MATLAB program are referred to as M-files in
MATLAB parlance. Every M-file has its own parsed representation in ,
which we call an M-file context. Through Mathematica’s information-hiding con-
text mechanism [4], provides a way to save, and later retrieve, the M-file
contexts of a MATLAB program. On line In[4] below, the M-file contexts of
the two user-defined functions driver and tclosure, saved in an earlier session
of , are loaded from disk.3

In[4]:= Scan[load[#, load$Disk � True]&, {"tclosure‘", "driver‘"}]

An M-file context is basically a collection of Mathematica definitions that cap-
ture information about a user-defined MATLAB function. As an example, for a
user-defined function f , a definition is made against the statements function
object so that statements[f] expands to the function body of f . This is how
the type object operates on the statements in the body of driver on line In[5]
below.4

In[5]:= type[statements[driver]] // Timing

Out[5]= �5.47 Second, �_�12�N1 � �512., $integer, ��1 , 1�, 2��,
_�10�B1 � ��0, 1�, $boolean, ��512 , 512�, 2��,
�Indeterminate, $illegal, ���1 , 1�, 2����

3 These representations are in ASCII, and can be manually or automatically generated.
4 The timings are on a 440 MHz Solaris 7 UltraSPARC-IIi having 128MB of main

memory.

124 P.G. Joisha and P. Banerjee

function driver

N ← 512;

B ← tclosure(N);

disp(B);

function B = tclosure(N)
% Initialization.
A ← zeros(N, N);
for ii = 1:N,
for jj = 1:N,
if ii*jj < N/2,
A(N-ii, ii+jj) ← 1;
A(ii, N-ii-jj) ← 1;

end;
if ii == jj,
A(ii, jj) ← 1;

end;
end;

end;
B ← A;
% Closure.
ii ← N/2;
while ii >= 1,
B ← B*B;
ii ← ii/2;

end;
B ← B > 0;

Fig. 1. The MATLAB Transitive Closure Program

3.2 Interprocedural Type Inference

The definitions against the type object—currently over a 100—take care of prop-
agating information across user-defined function interfaces. Thus the application
of type on line In[5] causes type information pertaining to N to be propagated
into tclosure, resulting in the shown type inference for its output variable B.
On line Out[5] , 12N1 stands for N and 10B1 for B; this renaming is an artifact
of the way in which the Mathematica representations for this program were au-
tomatically generated. Out[5] thus shows that the value range of B is [[0, 1]], its
intrinsic type is $boolean, and that its shape is 512× 512. The third inference
on Out[5] represents the type of disp’s outcome; the shown values reflect the
fact that disp doesn’t return anything.

4 Architecture

is used through a front-end, which is a separate operating system pro-
cess that builds a Mathematica representation of an input MATLAB program.
The front-end transfers the representation to for type analysis; the type
inferences that generates are transferred back, for use in type-related
optimizations, code generation or simply for code annotation and visualization.
Exchanges between the front-end and happen across an interprocess
communication link using the MathLink protocol [4]. Figure 2 shows three ex-
isting front-ends to . Two of these—the GUI-based notebook and the
text-based interface—are shipped with Mathematica. Interacting with
using them requires either the handcrafting of the program representations that
are to be type inferred, or the availability of those representations on disk. (In[1]
and In[2] are examples of handcrafted representations; In[4] uses prefabri-
cated representations.) The third front-end, called , is a custom-built one
that takes a MATLAB program in its native form and translates it to optimized
C; it uses as the inference engine to obtain the necessary type informa-
tion. In fact, it was by using that the M-file contexts for the example in

The Type Inference Engine for MATLAB� 125

§ 3 were produced in advance. Figure 2 also shows the disk image of a sample
M-file context.

Fig. 2. The Architecture

5 Summary

This paper briefly introduced a software tool called that infers value
ranges, intrinsic types and array shapes for the MATLAB programming lan-
guage. Though shown in an interactive mode in this paper, can also be
used in a batch mode from a custom front-end. Currently, is being used
this way by , a MATLAB-to-C translator that converts a MATLAB source
to optimized C code.

References

1. P.G. Joisha, U.N. Shenoy, ad P. Banerjee. “An Approch to Array Shape Deter-
mination in MATLAB”. Technical report CPDC-TR-2000-10-010, Department of
Electrical and Computer Engineering, Northwestern University, October 2000.

2. A. Malishevsky. “Implementing a Run-Time Library for a Parallel MATLAB Com-
piler”. M.S. report, Oregon State University, April 1998.

3. The MathWorks, Inc. MATLAB: The Language of Technical Computing, January
1997. Using MATLAB (Version 5).

4. S. Wolfram. The Mathematica Book, 4th ed. Wolfram Media, Inc., 1999.

	The MAGICA Type Inference Engine forMATLAB^®
	Introduction
	A Type Inference Using MAGICA
	Feature Support

	Representing MATLAB in MAGICA
	Transitive Closure of a Graph
	M-File Contexts
	Interprocedural Type Inference

	Architecture
	Summary
	References

