Skip to main content

Multi-object Adaptive Cruise Control

  • Conference paper
  • First Online:
Book cover Hybrid Systems: Computation and Control (HSCC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2623))

Included in the following conference series:

Abstract

In this paper we propose an algorithm for solving a Multi-Object Adaptive Cruise Control problem. In a multi-object traffic scene the optimal acceleration is to be found respecting traffic rules, safety distances and driver intentions. The objective function is modelled as a quadratic cost function for the discrete time piecewise affine system. We find the optimal state-feedback control law by solving the underlying constrained finite time optimal control problem via dynamic programming.

Radar sensors at the same time provide distance and relative speed measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richtlinien für die Anlage von Strassen (RAS-L-1), Forschungsgesellschaft für Strassen-und Verkehrswesen, Köln, (1984)

    Google Scholar 

  2. Zapp, A., Dickmanns, E.D.: A curvature-based scheme for improved road vehicle guidance by computer vision. SPIE conference on mobile robots, (1986)

    Google Scholar 

  3. Franke, U., Gavrila, D., Gern, A., Goerzig, S., Janssen, R., Paetzold, F., Woehler C.: From Door to Door-Principles and Applications of Computer Vision for Driver Assistance Systems. Intelligent Vehicles Technologies: Theory and Applications, Arnold, (2000)

    Google Scholar 

  4. Franke, U., Gavrila, D., Goerzig, S., Lindner, F., Paetzold, F., Woehler, C.: Autonomous Driving Goes Downtown. IEEE Intelligent Systems, Vol. 13(6):40–48, (1998)

    Article  Google Scholar 

  5. Liubakka, M.K., Rhode, D.S., Winkelman, J.R., Kokotovic, P.V.: Adaptive Automotive Speed Control. IEEE Transactions on Automatic Control, Vol. 38(7):1011–1020, (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ha, I., Tugcu, A.K., Boustany, N.M.: Feedback Linearizing Control of Vehicle Longitudinal Acceleration. IEEE Transactions on Automatic Control, Vol. 34(7):689–698, (1989)

    Article  MATH  Google Scholar 

  7. Won, M. Hedrick, J.K.: Disturbance Adaptive Discrete-Time Sliding Control With Application to Engine Speed Control. Journal of Dynamic Systems, Measurement and Control, Vol. 123(1):1–9, (2001)

    Article  Google Scholar 

  8. Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press INC, San Diego, New York (1988)

    MATH  Google Scholar 

  9. Bar-Shalom, Y., Dale Blair, W.: Multitarget-Multisensor Tracking: Applications and Advances Volume III. Artech House, Boston, London, (2000)

    Google Scholar 

  10. Blackman, S.S.: Multiple Target Tracking with Radar Applications. Artech House, (1986)

    Google Scholar 

  11. Magill, D.T.: Optimal Adaptive Estimation of Sampled Stochastic Processes. IEEE Transactions on Automatic Control, Vol. 10(4):434–439, (1965)

    Article  MathSciNet  Google Scholar 

  12. Blom, A.P., Bar-Shalom, Y.: The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients. IEEE Transactions on Automatic Control, Vol. 33(8):780–783, (1988)

    Article  MATH  Google Scholar 

  13. Sontag, E.D.: Nonlinear regulation: The piecewise linear approach. IEEE Trans. Automatic Control, 26(2):346–358, (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Borrelli, F., Baotic, M., Bemporad, A., Morari, M.: An efficient algorithm for computing the state feedback optimal control law for discrete time hybrid systems. Technical Report AUT02-04, ETH Zurich, http://control.ethz.ch/~hybrid/hysdel, (2002)

  15. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica, 38(1):3–20, (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Borrelli, F.: Discrete Time Constrained Optimal Control. Dr.sc.tech. thesis, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Möbus, R., Baotic, M., Morari, M. (2003). Multi-object Adaptive Cruise Control. In: Maler, O., Pnueli, A. (eds) Hybrid Systems: Computation and Control. HSCC 2003. Lecture Notes in Computer Science, vol 2623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36580-X_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-36580-X_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00913-9

  • Online ISBN: 978-3-540-36580-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics