Skip to main content

Hyperfigures and Their Interpretations

  • Conference paper
  • First Online:
  • 316 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2616))

Abstract

This paper proposes a new formulation of the Minkowski algebra for figures. In the conventional Minkowski algebra, the sum operation was always defined, but its inverse was not necessarily defined. On the other hand, the proposed algebra forms a group, and hence every element has its inverse, and the sum and the inverse operation can be taken freely. In this new algebraic system, some of the elements does not correspond to the figures in an ordinary sense; we call these new elements “hyperfigures”. Physical interpretations and practical usage of the hyperfigures are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrera, A.H.: Computing the Minkowski sum of monotone polygons. Technical Report of the Special Interest Group on Algorithms of the Information Processing Society of Japan, 96-AL-50-9, 1996.

    Google Scholar 

  2. Boissonnat, J.-D., de Lange, E., and Teillaud, M.: Minkowski operations for satellite antenna layout. Proceedings of the13th Annual ACM Symposium on Computational Geometry, pp. 67–76, 1997.

    Google Scholar 

  3. Bourbaki, N.: Éléments de Mathématique, Algébre 1. Hermann, Paris, 1964.

    Google Scholar 

  4. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 4th Edition, Academic Press, Boston, 1999.

    Google Scholar 

  5. Ghosh, P.K.: A mathematical model for shape description using Minkowski operators. Computer Vision, Graphics and Image Processing, vol. 44, pp. 239–269, 1988.

    Article  Google Scholar 

  6. Ghosh, P.K.: A solution of polygon containment, spatial planning, and other related problems using Minkowski operators. Computer Vision, Graphics and Image Processing, vol. 49, pp. 1–35, 1990.

    Article  Google Scholar 

  7. Ghosh, P.K.: An algebra of polygons through the notion of negative shapes. CVGIP: Image Understanding, vol. 54, pp. 119–144, 1991.

    Article  MATH  Google Scholar 

  8. Ghosh, P.K.: Vision, geometry, and Minkowski operators. Contemporary Mathematics, vol. 119, pp. 63–83, 1991.

    Google Scholar 

  9. Ghosh, P.K., and Haralick, R. M.: Mathematical morphological operations of boundary-represented geometric objects. Journal of Mathematical Imaging and Vision, vol. 6, pp. 199–222, 1996.

    Article  MathSciNet  Google Scholar 

  10. Guibas, L. J., Ramshaw, L., and Stol., J.: A kinetic framework for computational geometry. Proceedings of the 24th Annual IEEE Symposium on Foundation of Computer Sciences, pp. 100–111, 1983.

    Google Scholar 

  11. Guibas, L. J., and Seidel, R.: Computing convolutions by reciprocal search. Discrete and Computational Geometry, vol. 2, pp. 157–193, 1987.

    MathSciNet  Google Scholar 

  12. Haralick, R. M., Sternbery, S.R., and Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-9, pp. 532–550, 1987.

    Article  Google Scholar 

  13. Har-Peled, S., Chan, T.M., Aronov, B., Halperin, D., and Snoeyink, J.: The complexity of a single face of a Minkowski sum. Proc. of the 7th Canadian Conference on Computational Geometry, pp. 91–96, 1995.

    Google Scholar 

  14. Hataguchi, T., and Sugihara, K.: Exact algorithm for Minkowski operators. Proc. of the 2nd Asian Conference on Computer Vision, vol. 3, pp. 392–396, 1995.

    Google Scholar 

  15. Kaul, A., O’Connor, M.A., and Srinivasan, V.: Computing Minkowski sums ofregular polygons. Proc. of the 3rd Canadian Conf. on Computational Geometry, pp. 74–77, 1991.

    Google Scholar 

  16. Kaul, A., and Farouki, R.T.: Computing Minkowski sums of plane curves. International Journal of Computational Geometry and Applications, vol. 5 (1995), pp. 413–432.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kedem, K., Livne, R., Pach, J., and Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete and Computational Geometry, vol. 1, pp. 59–71, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  18. Leven, D., and Sharir, M.: Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagram. Discrete and computational Geometry, vol. 2, pp. 9–31, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  19. Lozano-Perez, T., and Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. of the ACM, vol. 22, pp. 560–570, 1979.

    Article  Google Scholar 

  20. Mikusiński, J.: Operational Calculus (in Japanese), Shokabo, Tokyo, 1963.

    Google Scholar 

  21. Mount, D., and Silverman, R.: Combinatorial and computational aspects of Minkowski decompositions. Contemporary Mathematics, vol. 119, pp. 107–124, 1991.

    MathSciNet  Google Scholar 

  22. Ramkumar, G.D.: An algorithm to compute the Minkowski sum outer-face of two simple polygons. Proceedings of the12th Annual ACM Symposium on Computational Geometry, pp. 234–241, 1996.

    Google Scholar 

  23. Rossignac, J.R., and Requicha, A.A. G.: Offseting operations in solid modeling. Computer Aided Geometric Modeling, vol. 3, pp. 129–148, 1986.

    Article  MATH  Google Scholar 

  24. Schmitt, M.: Support function and Minkowski addition of non-convex sets. P. Maragos, R. W. Schafer and M. A. Butt (eds.): Mathematical Morphology and its Applications to Image and Signal Processing, Kluwer Academic Publishers, 1996, pp. 15–22.

    Google Scholar 

  25. Schwartz, J.T.: Finding the minimum distance between two convex polygons. Information Processing Letters, vol. 13 pp. 168–170, 1981.

    Article  MathSciNet  Google Scholar 

  26. Serra, J.: Image Analysis and Mathematical Morphology, 2nd Edition, Academic Press, 1988.

    Google Scholar 

  27. Sugihara, K., Imai, T., and Hataguchi, T.: An algebra for slope-monotone closed curves. International Journal of Shape Modeling, vol. 3, pp. 167–183, 1997.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sugihara, K. (2003). Hyperfigures and Their Interpretations. In: Asano, T., Klette, R., Ronse, C. (eds) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol 2616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36586-9_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-36586-9_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00916-0

  • Online ISBN: 978-3-540-36586-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics